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 Dear Editor,
This  letter  presents  a  novel  data-driven  trajectory  planning  and

control scheme for the unmanned ground vehicles (UGVs). A recent
work [1] has  demonstrated  the  effectiveness  of  approximating  the
optimal  state  feedback  for  a  nonlinear  unmanned  system  via  deep
neural  network  (DNN).  To  further  the  previous  research,  we  con-
struct  a  long-short  term  memory  recurrent  deep  neural  network
(LSTMRDNN)  to  improve  the  performance  of  the  data-driven
approximation  instrument.  The  proposed  strategy  is  evaluated  and
verified through theoretical analyses and experiments.

Trajectory planning and control of unmanned systems remain topi-
cal.  Traditional  solutions  include  sample-and-search  methods [2],
optimization-based methods [3] and others. Sample-and-search meth-
ods (such as A* [4], RRT [5], and their derivative algorithms [6]) are
commonly  engaged  for  their  low  computational  burden.  In  recent
years,  optimization-based  planning  and  control  strategies  have
attracted ever more interest, as the environmental factors and task tar-
gets can be adhered to the algorithms. Wang et al. [7] solved the tra-
jectory problem of  underactuated autonomous vehicles  using a  neu-
ral dynamics optimization-based approach. Wang et al. [8] proposed
a novel periodic motion plan for underactuated autonomous vehicles
based  on  optimization  search.  Hu et  al. [9] used  probabilistic  deci-
sion-making method combined with trajectory optimization to solve
the problem of vehicle lane changing in automatic driving. However,
the  high computational  complexity  and the  high dependence on on-
board  hardware  remain  issues.  To  address  the  drawbacks,  artificial
intelligence theory based trajectory optimization schemes are devel-
oped  for  the  optimal  landing  of  spacecraft [10],  online  trajectory
planning  and  control  of  hypersonic  vehicles [1] and  the  trajectory
planning and tracking control of UGVs [11].

Nevertheless,  there  is  still  room  for  improvement  on  the  perfor-
mance of the planning and control scheme. Furthermore, in the previ-
ous  stability  analyses  of  neural  network  controllers,  stability  was
ensured by employing either  an  adaptive  control  framework [12] or
methods based on predefined Lyapunov functions [13], [14] for real-
time  adjustment  of  network  weights.  However,  the  aforementioned
techniques are only applicable to controllers based on shallow neural
networks.  When  confronted  with  the  deep  learning  network  models
commonly used in  most  research,  difficulties  are  often witnessed in
formulating  adaptive  rules  and  finding  appropriate  Lyapunov  func-
tions.

The main contributions of  the research presented in the letter  are:
first, a robust data-driven based real time motion planning scheme for
UGVs is proposed, of which an improved performance with minimal
computational  overhead  compared  to  the  existing  main  stream opti-

mization-based methods is validated. The proposed method has high
accuracy  and  is  completely  close  to  the  optimal  trajectory.  Second,
the stability of the states of trajectory obtained through the proposed
motion planner with the consideration of initial state perturbations is
theoretically analyzed with the help of differential algebra and high-
order  Taylor  maps  (HOTMs),  which  is  further  verified  in  experi-
ments.

Problem formulation: The main purpose of the study is to testify
and verify the proposed UGV trajectory optimization scheme. There-
fore, a model of the UGV, the scenario and the optimal control prob-
lem need to be established.

inBased on the  physical  characteristics  of  the  UGV  the  research,
the kinematic model can be described as follows:
 

ṗx(t) = v(t)cos(θ(t)) v̇(t) = a(t) θ̇(t) = v(t) tan(ϕ(t))/l
ṗy(t) = v(t) sin(θ(t)) ȧ(t) = η(t) ϕ̇(t) = ω(t). (1)

x = [px, py,v,a, θ,ϕ]T

u =
[
η,ω
]T

Among them, the system state is ; the mathe-
matical symbols within the brace represent the abscissa and ordinate
of the rear wheel axis of the UGV, vehicle speed, acceleration, body
direction angle  and vehicle  steering angle,  respectively.  The control
values of  the system include jerk and steering angle  rate,  which are
included  in .  The  state x and  control u of  the  vehicle
should be within a certain range
 

xmin ≤ x ≤ xmax, umin ≤ u ≤ umax. (2)
x0

x f

The  movement  of  the  UGV  starts  from  the  initial  state  and
finally terminates at the goal state 
 

x(t0) = x0, x(t f ) = x f . (3)
Another  constraint  of  the  motion planning task  is  collision-avoid-

ance, which can be described as
 

vehicle_ f unc(x)∩Obs = ∅ (4)
vehicle_ f unc(·)

Obs
where  represents  the  mapping  function  of  the  vehi-
cle  state  and  the  chassis,  and  represents  the  collection  of  the
obstacles in a certain scenario.  The collision-avoidance constraint  is
then formulated in accordance with the method proposed in [15].

With  the  optimal  objective  set  to  the  total  task  time,  the  optimal
control problem is formulated as
 

minJ = t f

s.t. ∀t ∈ [t0, t f ]
(1) (dynamic constraints)
(2) (state/control constraints)
(3) (initial/terminal conditions)
(4) (collision avoidance constraints). (5)

u∗

Methodology: The  framework  of  the  proposed  LSTMRDNN
motion  planning  and  control  scheme  is  shown  in Fig.  1.  The  upper
part of the figure represents the training process, utilizing the double-
layer  desensitization  trajectory  optimization  algorithm mentioned  in
[15] to solve the trajectory optimization model (5)  in this  design.  A
dataset  is  constructed  based  on  the  computed  time-shortest  optimal
trajectory.  This  dataset  comprises  state  and  control  variables  repre-
senting  optimal  trajectories  planned  from  different  initial  states,
which have been normalized for subsequent network training. A spe-
cific sequence length is selected, with the state variable sequence of
that length serving as the input for the LSTMRDNN, and the corre-
sponding control variables as the network’s output. Subsequently, the
adaptive moment estimation (Adam) algorithm is employed to mini-
mize the mean squared error (MSE) in training the LSTMRDNN to
establish  a  mapping  relationship  between  the  vehicle  state,  denoted
as x, and the optimal control values, denoted as . The lower part of
the figure is the working process of the neurocontroller,  the optimal
control  value  can  be  obtained  in  real  time  by  inputting  the  vehicle
state at the same time node to the neural network.

To  theoretically  analyze  the  stability  of  the  states  of  trajectory
obtained  through  the  proposed  controller  with  the  consideration  of
initial state perturbations, differential algebra techniques and HOTMs
are engaged. Using differential algebraic techniques as a foundation,
we obtain a high-order Taylor expansion form for the solutions gen-
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erated  by  the  neural  controller  within  the  vicinity  of  the  reference
solution.  This  expansion  is  used  for  further  analyzing  the  global
behavior of the controller in the presence of initial state uncertainties.

N(x)
N(x) ≈ u∗(x)

N·(·)

We use  to  represent  the  mapping  relations  of  the  state-con-
trol pair.  is used to approximate the optimal state feed-
back control. As shown in Fig. 2, n networks  are used to learn
the  mapping  relationship  between  each  control  quantity  and  state
quantity separately.
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Fig. 2. Comparison results of trajectories generated by LSTMRDNN, DNN,
MPC, and optimal trajectories.
 

x0 represents the initial state of the reference solution, the optimal
trajectory generated from the neural network control is presented as
 

xN (t) = ΨN (x0, t). (6)

x0 +δx0

By  using  differential  algebra  techniques  and  higher-order  Taylor
expansions,  the  solution  under  the  initial  condition  can  be
obtained and expressed in its k-order Taylor expansion form
 

xN (t) ≈Mt
k(δx0). (7)

x0 +δx0

Differential  algebra  technology  is  applied  by  introducing  a  new
data type, which enables the computer program to output the Taylor
expansion of the selected input. Subsequently, the trajectory approxi-
mation  of  the  vehicle  dynamics  system  under  the  initial  condition

 is  obtained  through  Runge-Kutta-Fehlberg  numerical  inte-
gration method. This is an explicit expression of the trajectory, which

δx0
Qε

ensures convergence when the disturbance size  of the initial con-
dition is limited to the sphere  with a radius of ε.

δx0

The following equation describes the k-order  Taylor  expansion of
the initial disturbance  under each t:
 

δx(t) =Mt
k(δx0)−ΨN (x0, t). (8)

Hi
H1 H2

We use  to describe its tensor matrix expanded in the i-th order,
for example, when i = 1,  represents the gradient; When i = 2, 
represents the Hessian matrix.

δx0 Qε limk→∞
|ak+1 |
|ak | ak =

∥Hk∥ ε limk→∞
|ak+1 |
|ak | < 1

Theorem 1: The convergence of the series in (8) is guaranteed for
any  belonging to the sphere , if  exists where 

. In that case, ε must satisfy the inequality .
δx(t) =Mt

k(δx0) −
ΨN (x0, t)

Proof:  First,  write  the i-th  component  of 
, using the Einstein notation

 

δxi = h1,i jδx0 j +h2,i jkδx0 jδx0k +h3,i jklδx0 jδx0kδx0l + · · · (9)
δx0i δx0 h1 h2

h3

where  denotes the i-th component of .  The terms ,  and
 are  components  of  the  Jacobian,  the  Hessian,  and the  third-order

partial derivative tensors. Taking the norm of the above formula and
using  the  induced  matrix  norm  inequality  and  triangular  inequality,
we can get
 

∥δx∥ ≤ ∥H1∥∥δx0∥+ ∥H2∥∥δx02∥+ ∥H3∥∥δx03∥+ · · · (10)
H2,i j = h2,ikl H3,i j = h3,iklq k = ( j−1) n+1

l = ( j−1)/n+1 q = ( j−1)/n2 +1 j = 1,2,3, . . . ,n2 j = 1,
2,3, . . . ,n3

δx02
δx03 δx02, j = δx0kδx0l δx03, j = δx0kδx0lδx0q

∥δx02∥ = ∥δx0∥2 ∥δx03∥ = ∥δx0∥3 δx

where  and  with  mod ,
 and ,  and 

 for each matrix. In order to write in matrix form, we have
unfolded  the  tensors.  We  use  the  same  method  to  the  vectors 
and  as , .  Therefore,

,  under  any r-norm.  The  size  of 
can be limited
 

∥δx∥ ≤ a1∥δx0∥+a2∥δx0∥2 +a3∥δx0∥3 + · · · (11)
ak = ∥Hk∥where .

δx0 ∥δx0∥ < εAs a consequence, for each , such that , the following
holds:
 

∥δx∥ <
k∑

i=0

aiε
i. (12)

ε limk→∞
|ak+1 |
|ak | < 1

Applying the ratio test (base on D’Alembert’s criterion), we could
guarantee its absolute convergence whenever . ■

From Theorem 1, it can be observed that when the conditions out-
lined in Theorem 1 are met,  (8) can converge.  This ensures that  the
planned trajectory under the neural controller converges to the refer-
ence  trajectory  (reference  solution).  Consequently,  trajectories
planned based on the neural controller can also reach the final target
state.

x f =
limt→∞ΨN (x0, t)
δx0 ∈ Qε ∥Hk∥ −→ 0 ∀k t −→∞

Theorem  2:  The  equilibrium  point  (the  final  target  state) 
 is  asymptotically  stable  for  any  perturbation

 if and only if , , as .
x f δx(t) −→ 0

∥Hk∥ −→ 0 ∀k ∥Hk∥ −→ 0
∀k t −→∞ δx(t) −→ 0

Mt
k(δx0) −→ ΨN (x0,∞) = x f

Proof: Assuming that  is asymptotically stable, then ,
hence  .  On  the  other  hand,  assuming  that 

 in  the  limit ,  then  we  could  find  form  (8),
hence . ■

Nd

Experimental results: The scenario setting of the study is an evac-
uation task in a nursing home. The map was established based on the
real scene of a nursing home. The task goal is to send the UGV to the
exit  from  a  certain  space  in  the  nursing  home  as  soon  as  possible.
The parameters of the UGV, the scenario and the neural network are
assigned in Table 1. l represent the wheelbase of the vehicle respec-
tively and  is the number of data in the data set.
  

Table 1. Vehicle/Algorithm-Related Parameters
Parameters Values Parameters Values Parameters Values Parameters Values

l 0.5 vmax 1 θmax 180 Nd 200 000

pmax
x 12 amax 0.75 umax

1 1 Nl 6

pmax
y 8 ϕmax 60 umax

2 2 Nn 64
 

Simulation comparisons are carried out to verify the effectiveness
and accuracy of the proposed LSTMRDNN method. Fig. 2 shows the
mission scenario of the UGV alongwith the comparison results of the
optimal trajectory, the trajectory based on LSTMRDNN, DNN-based
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Fig. 1. Motion planning and control framework based on LSTMRDNN.
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of

method and MPC method.  The  trajectory  optimization  model  (5)  in
this paper is addressed using the double-layer desensitization trajec-
tory  optimization  method  from [15] yielding  the  optimal  trajectory
for minimizing time in the present design scenario, serving as a refer-
ence  for  the  theoretical  optimum  value.  It  can  be  observed  that  all
four methods could complete the task safely and smoothly. Different
performance  of  each  methods  was  noticed.  The  trajectory  obtained
with  the  LSTMRDNN  method  almost  overlapped  with  the  optimal
trajectory. The right side of Fig. 2 is the quantitative error evaluation
curve  of  LSTMRDNN,  DNN,  MPC  and  the  optimal  trajectory.  In
order  to  judge  the  accuracy  of  the  proposed  method,  we  calculated
the root mean square error (RMSE)  the actual value relative to the
optimal value using the following formula:
 

RMS E(x) =

√√√
1
N

Nk∑
i=1

(xreal
i − xopti

i )2 (13)

Nk

xreal
i xopti

i

where  represents the number of discrete points on the trajectory,
 represents the state of the actual trajectory, and  represents

the state of the optimal trajectory.
The  specific  RMSE  values  obtained  are  shown  in Table  2.  The

RMSE value of our proposed LSTMRDNN-based method is smaller
than that of the MPC-based and DNN-based method.
 
 

Table 2. The RMSE Value of Each State Quantity
Method px py v a θ ϕ

The proposed 0.0209 0.0162 0.0094 0.0278 0.0110 0.0932

DNN 0.0317 0.0323 0.0115 0.0301 0.0168 0.1162

MPC 0.0395 0.0489 0.0160 0.0363 0.0288 0.1314
 

Furthermore, Fig. 3 illustrates the computation time for generating
optimized  trajectory  control  values  using  the  trained  LSTMRDNN
network over 300 iterations. The computation time refers to the dura-
tion  taken  by  the  network  to  calculate  corresponding  control  values

after  receiving  the  current  state  as  input.  As  depicted  in Fig.  3,  the
average computation time is approximately 1ms, indicating excellent
real-time performance.

An experiment to test the stability of the proposed scheme was car-
ried  out  subsequently. Fig.  4 shows  the  states  set  of  the  task  track
obtained with LSTMRDNN. It can be seen that even with the pertur-
bations on initial state, the stability of the terminal state can be guar-
anteed.

Conclusion: In  this  letter,  an  LSTMRDNN-based  trajectory  opti-
mization framework is proposed for the motion planning and control
of  UGVs.  The  performance  and  stability  of  the  method  is  verified
through theoretical analyses and experiments.
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using the trained LSTMRDNN network.
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Fig. 4. Trajectory states change after reaching the target position.
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