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   Dear Editor,
This  letter  focuses  on  the  fixed-time  (FXT)  cluster  optimization

problem  of  first-order  multi-agent  systems  (FOMASs)  in  an  undi-
rected network, in which the optimization objective is the sum of the
objective functions of all clusters. A novel piecewise power-law con-
trol protocol with cooperative-competition relations is proposed. Fur-
thermore,  a  sufficient  condition  is  obtained  to  ensure  that  the
FOMASs achieve the cluster consensus within an FXT. Then, on the
basis of maintaining the cluster consensus, the agents in each cluster
converge  to  the  optimal  solution  of  their  objective  functions  in
another FXT.

Cooperative control of multi-agent systems (MASs) has become a
hot issue in recent years due to its wide applications in many fields,
such  as  the  ground  vehicle  systems  [1]  and  the  circuit  systems  [2].
The consensus is  a fundamental  problem of the cooperative control.
So far, the asymptotic consensus of FOMASs was widely studied [3].
In  practical  applications,  a  faster  settling  time  can  improve  the
robustness  of  MASs.  In  this  view,  the  finite-time  consensus  of
FOMASs  was  considered  in  [4].  However,  the  settling  time  of  the
finite-time consensus depends on the initial values of the considered
systems  and  it  is  uncertain  if  the  initial  state  cannot  be  obtained  in
advance. Subsequently, the FXT consensus of FOMASs was studied
in [5] and [6], the settling time does not depend on the initial values
of the considered systems. It is noted that these previous works [3]–
[6] mainly consider the complete consensus (namely, all the agents in
an  MAS  attain  a  same  object)  of  FOMASs.  In  practice,  the  agents
may be divided into several clusters with cooperative or competitive
relations  to  perform  different  tasks,  such  as  the  foraging  cluster  of
mixed  species  and  the  multi-target  round-up  of  unmanned  aerial
vehicles.  In  recent  years,  the  FXT  cluster  consensus  of  FOMASs
with cooperative-competition relations was investigated in [7].

Besides,  the  optimization  is  an  inevitable  issue  when  considering
the control  cost  of  MASs.  In  [8]  and [9],  the  distributed asymptotic
optimization of FOMASs was considered. In [10], the FXT optimiza-
tion  problem  of  FOMASs  was  studied.  It  can  be  observed  that  the
optimization without clusters was considered in [8]–[10]. The asymp-
totic  cluster  optimization  problem  of  FOMASs  with  cooperative-
competition relations was analyzed in [11]. Up to now, there are few
results on the FXT cluster optimization of FOMASs.

In  summary,  this  letter  is  devoted  to  designing  a  control  protocol
with cooperative-competition relations to solve the FXT cluster opti-
mization  of  FOMASs.  The  contributions  of  this  letter  are  listed  as
follows.  1)  The  FXT  cluster  optimization  problem  of  FOMASs  is
proposed for the first time. 2) In comparison with [10], the proposed
control  protocol  in  this  letter  only  requires  the  gradient  information
of each agent’s cost function, and is independent of the information
of  its  Hessian  matrix.  3)  Unlike  the  asymptotic  cluster  optimization
in  [11],  the  piecewise  power-law control  protocol  developed  in  this
letter enables the FOMASs to achieve the FXT cluster optimization.

sigµ(z) = (sign(z1)|z1|µ, . . . ,sign(zn)|zn|µ)T ∇F(z)
∇2F(z) F(z)

Notations: Let . 
and  denote  the  gradient  and  the  Hessian  matrix  of ,
respectively.

Problem statement: Consider the following FOMAS:
 

ẋi(t) = ui(t), i ∈ V (1)
xi(t) ∈ Rn ui(t) ∈ Rn

V = {1,2, . . . ,N}

V
V = ∪m

k=1Vk Vk = {rk−1 +1,rk−1 +2, . . . ,rk} r0 = 0 rm =
N L

where  and  are the state and control input of agent
i,  respectively.  is  the  agent  set.  In  order  to  explore
the FXT cluster optimization of an MAS, it is assumed that the agent
set  can  be  divided  into m nonempty  and  disjoint  clusters.  i.e.,

,  where ,  and 
. Based on this agent division, the Laplacian matrix  of the clus-

ter-based communication topology can be expressed as
 

L =


L11 L12 · · · L1m
L21 L22 · · · L2m
...

...
. . .

...

Lm1 Lm2 · · · Lmm


Lpk ∈ R(rp−rp−1)×(rk−rk−1) k ∈ {1,2, . . . ,m}where , and p, .

The goal of this letter is to design a FXT cluster optimization con-
trol protocol for the FOMAS (1),  so that the following optimization
problem is solved within an FXT.
 

min
m∑

k=1

Fk(x̂k(t)) =
m∑

k=1

∑
i∈Vk

fi(xi(t))

s.t. (Lkk ⊗ In)x̂k(t) = 0, k ∈ {1,2, . . . ,m}
(2)

x̂k(t) = (xT
rk−1+1(t), xT

rk−1+2(t), . . . , xT
rk

(t))T fi(xi(t)) : Rn→ R
Fk(x̂k(t))

where ,  rep-
resents  the  local  objective  function  of  agent i,  and  is  the
objective function of the kth cluster.

T > 0Definition 1 [11]: If there is a settling time  such that
 

lim
t→T
∥xi(t)− x j(t)∥ = 0, xi(t) = x j(t), t ≥ T, i, j ∈ Vk

sup lim
t→T
∥xi(t)− x j(t)∥ > 0, xi(t) , x j(t), t ≥ T, i ∈ Vk

j ∈ V\Vk,k ∈ {1,2, . . . ,m}
then, the FOMAS (1) is said to reach the FXT cluster consensus.

Next, some Assumptions are given for the proof of our main result.
fi(xi(t)) i ∈ V
xi(t)

∇2 fi(xi(t)) ≥ ϵiIn ϵi > 0

Assumption  1:  The  local  objective  function  ( )  is
twice  continuously  differentiable  with  respect  to  and  satisfies

 with .
∇ fi(xi(t)) = ϵixi(t)+ψi(xi(t))

ψi(xi(t)) ∇2 fi(xi(t)) ≥ ϵiIn

Remark 1:  In  [11],  needs to  be satis-
fied,  where  is  bounded.  However,  only  is
required here. Therefore, this assumption is more conducive to prac-
tical application.

Lpk1rk−rk−1 = 0rp−rp−1 p , k

Assumption 2:  The cluster-based communication topology is  con-
nected  and  the  balance  of  information  communication  among  clus-
ters is satisfied. (i.e., , .)

ai j > 0
ai j < 0

aii = 0 i ∈ V

Remark  2:  In  this  letter,  indicates  that  agents i and j are
cooperative  relationship,  while  represents  that  they are  com-
petitive relationship. In addition, suppose  ( ).

Main result: In order to analyze the optimization problem (2) with
cooperative-competition  relations,  the  piecewise  power-law  control
protocol is designed as follows:
 

ui(t) =



∑
j∈Vk

ai j(α1sigµ(χ ji(t))+β1sigν(χ ji(t)))

+
∑
k′,k

(α2sigµ(yi(t))+β2sigν(yi(t))), t ∈ [0,T1]

−ς1sigµ(
∑
j∈Vk

∇ f j(x j(t)))

−τ1sigν(
∑
j∈Vk

∇ f j(x j(t))), t ∈ (T1,T2]

(3)

α1 α2 β1 β2 ς1 τ1 i ∈ Vk µ > 1
0 < ν < 1 χ ji(t) = x j(t)− xi(t) yi(t) =

∑
j∈Vk′

ai j(χ ji(t)) k
′ ∈ {1,

2, . . . ,m} T1 T2

where , , , ,  and  are positive constants. , ,
, , , and k, 
.  and  are given later.

[0,T1]

(T1,T2]

Remark 3: It is not difficult to find that if the FOMAS (1) achieves
the  FXT cluster  consensus  within ,  the  agents  in  each  cluster
converge  to  the  optimal  solution  of  their  objective  functions  in

 while maintaining the cluster consensus.
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The following notations are introduced for convenience:
 

N = max
k=1,2,...,m

{rk − rk−1}, N = min
k=1,2,...,m

{rk − rk−1}

â = max
i∈Vk , j∈Vk′ ,k

′,k
|ai j|, ξ2 = β1λ22ν − ξ4

 

L
2
ν+1
kk =


−a

2
ν+1
i j , i , j,

rk∑
k=rk−1+1, j,i

a
2
ν+1
i j ,

L
2
µ+1

kk is similar to L
2
ν+1
kk

 

λ2 = min
k=1,2,...,m

{
λ
ν+1

2
2

(
L

2
ν+1
kk

)}
, ξ3 = α2N1âµN

µ−1
2

1+µ
2

λ̌2 = min
k=1,2,...,m

{
λ

1+µ
2

2

(
L

2
1+µ

kk

)}
, ξ4 = β2N1âν(Nn)

1−ν
2 2

1+ν
2

ξ1 = α1λ̌22µ(nN(N −1)m)
1−µ

2 − ξ3, N1 = N −N.

T1
T2

α1 β1

Theorem  1:  Suppose  that  Assumptions  1  and  2  hold.  Under  the
control  protocol  (3),  the  FOMAS  (1)  subject  to  the  optimization
problem (2) achieves the cluster consensus in an FXT  and converges to
the optimal solution of the problem (2) in an FXT , if the power-
law parameters  and  satisfy the following conditions:
 

α1 >
α2N1âµN

3µ−3
2 (nm(N −1))

µ−1
2

λ̌22
µ−1

2

, β1 >
β2âνN1(2nN)

1−ν
2

λ2
.

Proof: The proof can be divided into three parts.
Part I: Construct the following Lyapunov function:

 

V1(t) =
1
2

m∑
k=1

∑
i∈Vk

eT
i (t)ei(t)

ei(t) = xi(t)− xk(t) (i ∈ Vk) xk(t) =
∑

j∈Vk
x j(t)

rk−rk−1
where  and .

V1(t)The derivative of  is
 

V̇1(t) =
m∑

k=1

∑
i, j∈Vk

ai jeT
i (t)(α1sigµ(χ ji(t))+β1sigν(χ ji(t)))

+

m∑
k=1

∑
i∈Vk

∑
k′,k

eT
i (t)(α2sigµ(yi(t))+β2sigν(yi(t))). (4)

Next, each item in (4) will be handled.
By using the symmetry of an undirected network, Lemma 5 in [10]

and Lemma 2.2 in [11], one has
 

α1

m∑
k=1

∑
i, j∈Vk

ai jeT
i (t)sigµ(χ ji(t))

≤ −α1

2
(nN(N −1))

1−µ
2

m∑
k=1

[
2λ2

(
L

2
1+µ

kk

)
êT

k (t)êk(t)
] 1+µ

2

≤ −α1λ̌22µ(nN(N −1)m)
1−µ

2 V
1+µ

2
1 (t) (5)

êk(t) = (eT
rk−1+1(t),eT

rk−1+2(t), . . . ,eT
rk

(t))Twhere .
Similarly, we get

 

β1

m∑
k=1

∑
i, j∈Vk

ai jeT
i (t)sigν(χ ji(t)) ≤ −β1λ22νV

ν+1
2

1 (t). (6)

According to Lemmas 2.2−2.3 in [11], it yields
 

α2

m∑
k=1

∑
i∈Vk

∑
k′,k

eT
i (t)sigµ(yi(t))

≤ α2âµN
µ−1

m∑
k=1

∑
i∈Vk

n∑
l=1

|el
i(t)|

1+µ(N − (rk − rk−1))

≤ α2N1âµN
µ−1

2
1+µ

2 V
1+µ

2
1 (t). (7)

Meanwhile, by applying Lemmas 2.2−2.3 in [11], one gets
 

β2

m∑
k=1

∑
i∈Vk

∑
k′,k

eT
i (t)sigν(yi(t)) ≤ ξ4V

1+ν
2

1 (t). (8)

Submitting the above (5)−(8) into (4), we have

 

V̇1(t) ≤ −ξ1V
1+µ

2
1 (t)− ξ2V

1+ν
2

1 (t).

V1(t)
T1 T1

Based  on  Lemma  2.1  in  [11],  one  can  conclude  that  con-
verges to zero in an FXT  and  is estimated by
 

T1 ≤
2
ξ2

(
ξ2
ξ1

) 1−ν
µ−1
( 1

1− ν +
1
µ−1

)
. (9)

t ≥ T1 xi(t) = xk(t) i ∈ VkFurthermore, when ,  for .
t > T1 ui(t)Part  II:  According  to  the  above  analysis,  for ,  can  be

written as
 

ui(t) = −ς1sigµ(
∑
j∈Vk

∇ f j(xk(t)))−τ1sigν(
∑
j∈Vk

∇ f j(xk(t))). (10)

t > T1
According  to  (10),  the  agents  of  each  intra-cluster  have  the  same

dynamics. Therefore, for , the optimization problem (2) can be
written as
 

min
m∑

k=1

F̃k(xk(t)) =
m∑

k=1

∑
i∈Vk

fi(xk(t)). (11)

Constructing the following Lyapunov function:
 

V2k(t) =
1
2

(F̃k(xk(t))− F̃k(x∗k))2

x∗kwhere  is the optimal solution of the problem (11).
V2k(t)Based on (11), the derivative of  is as follows:

 

V̇2k(t) = (F̃k(xk(t))− F̃k(x∗k))∇T F̃k(xk(t))ẋk(t)

≤ − (F̃k(xk(t))− F̃k(x∗k))[ς1n
1−µ

2 ∥∇F̃k(xk(t))∥µ+1
2

+τ1∥∇F̃k(xk(t))∥ν+1
2 ]. (12)

x∗k
F̃k(xk(t))− F̃k(x∗k) > 0 ∇F̃k(x∗k) = 0

Because  is  the  optimal  solution  of  the  problem  (11),  there  is
 and . Therefore,

 

F̃k(xk(t))− F̃k(x∗k) =
1
2

(xk(t)− x∗k)T∇2F̃k(η1)(xk(t)− x∗k)

≥
ϵk
2

(xk(t)− x∗k)T (xk(t)− x∗k) (13)

ϵk =mini∈Vk {ϵi} η1 = x∗k +ϑ1(xk(t)− x∗k) 0 < ϑ1 < 1
F̃k(x∗k)− F̃k(xk(t)) ≥ ∇T F̃k(xk(t))(x∗k − xk(t)), η2 =

xk(t)+ϑ2(x∗k − xk(t)) 0 < ϑ2 < 1

where ,  with . Fur-
thermore,  where 

 with . Therefore,
 

F̃k(xk(t))− F̃k(x∗k)

≤ 1
ϵk
∥∇F̃k(xk(t))∥22 +

1
2

(F̃k(xk(t))− F̃k(x∗k)). (14)

Combined with (13) and (14), one has
 

∥∇F̃k(xk(t))∥22 ≥
ϵk
2

(F̃k(xk(t))− F̃k(x∗k)). (15)

Introducing (15) into (12), it yields
 

V̇2k(t) ≤ −ς1n
1−µ

2 ϵ
1+µ

2
k 2

1−µ
4 V

3+µ
4

2k (t)−τ1ϵ
1+ν

2
k 2

1−ν
4 V

3+ν
4

2k (t).

F̃k(xk(t))
F̃k(x∗k) T2k T2k

From Lemma 2.1 in [11],  one can obtain that  converges
to  in an FXT , and an upper bound of  is
 

T2k ≤
4

τ1ϵ
1+ν

2
k 2

1−ν
4

(
τ12

µ−ν
4

ς1n
1−µ

2 ϵ
µ−ν

2
k

) 1−ν
µ−ν
( 1

1− ν +
1
µ−1

)
. (16)

T̂2 =maxk=1,2,...,m{T2k} T2 = T1 + T̂2Part III: Let , . We get that
 

lim
t→T2

m∑
k=1

∑
i∈Vk

∇ fi(xi(t)) =
m∑

k=1

∇F̃k(x∗k(t)) = 0n.

T2∑m
k=1
∑

i∈Vk fi(xi(t))
t→ T2

T2

Invoking Lemma 1 in [8], there exists an FXT  such that the dif-
ferentiable  convex  function  can  attain  the  mini-
mum value as . According to Parts I−III and Definition 1, the
agents in the FOMAS (1) converge to the optimal value of the prob-
lem (2) within an FXT . ■

Remark 4:  In the protocol (3),  the consensus control  protocol and
the  optimization  control  protocol  are  designed  respectively  accord-
ing to a piecewise idea. This ensures that the FOMAS (1) in a coop-
erative-competitive network not only obtains the FXT consensus but
also realizes the FXT optimization.

Numerical  example: Consider  the  FOMAS (1)  with  5  agents,  its
agents  can  be  divided  into  two  clusters,  and  the  communication
topology  among the  agents  is  shown in Fig. 1.  The  local  cost  func-
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fi(xi(t)) = 2/3(xi1(t)− i)2 +1/3(xi2(t)+ i/2)2

xi = (xi1, xi2), i = 1,2, . . . ,5
tion  of  each  agent  is ,
where .  The  optimization  problem  is
expressed as 

min
2∑

k=1

Fk(x̂k(t)) =
2∑

k=1

∑
i∈Vk

fi(xi(t))

s.t. (Lkk ⊗ In)x̂k(t) = 0, k = 1,2.

(17)

x1(0) = (1,−1/2) x2(0) = (−1,1) x3(0) = (3,1) x4(0) = (−1,3)
Case  1:  Choose  the  initial  values  of  the  above  system  as

, , ,  and

x5(0) = (0,2)
µ = 1.2 ν = 0.5 α2 = β2 = 0.5 ς1 = 6 τ1 = 5

λ̌2 = λ2 = 1 α1 = 2.5428 β1 = 3.243 ξ1 = 2.5079 ξ2 =
1.4142 T1 = 2.3639 T2 = 11.5786

. The parameters in the control protocol (3) are selected
as , , ,  and .  By calculation,
one  has , , , , 

,  and .

x1(0) = (10,−5) x2(0) = (−10,10) x3(0) = (20,10) x4(0) = (−10,30)
x5(0) = (0,20)

T1 = 2.3639 T2 = 11.5786
µ

T̄1 6.5953
T̄1 > T1

Case  2:  Choose  the  initial  values  of  the  above  system  as
, , , 

and .  The parameters  taken in the control  protocol  (3)
are the same as those in Case1. Two settling times are computed as

 and .  The control  protocol  (3)  is  degraded
to the finite-time control by removing the terms with the power of .
For  finite-time  control,  its  settling  time  is  estimated  as .
Obviously, , which shows that our result is more effective.

Figs. 2 and 3 show  the  trajectories  of  the  system  states  and  the
objective functions under  the control  protocol  (3)  for  the above dif-
ferent  initial  value  conditions.  The  optimization  problem  (17)  is
solved,  and Fig. 4 shows  the  corresponding  trajectories  under  the
finite-time  control.  Clearly,  the  convergence  speeds  of  the  trajecto-
ries  in Fig. 3 are  faster  than  those  in Fig. 4.  In  addition,  combining
with Figs. 2 and 3,  the  settling  time  of  the  FOMAS  (2)  does  not
change when the initial states change.

 

0 2 4 6 8 10 12
−1

0
1
2
3
4
5

(a)
Time (s)

x i1
(t)

x11(t)
x21(t)
x31(t)
x41(t)

T1
T2

x51(t)

0 2 4 6 8 10 12
Time (s)

x i2
(t)

0 2 4 6 8 10 12
Time (s)

F i
(x

i(t
))

−2
−1

0
1
2
3

x12(t)
x22(t)
x32(t)
x42(t)

T1
T2

x52(t)

(b)

0
10
20
30
40
50

F1(xi(t))
F2(xi(t))
F2(x2

*)
F1(x1

*)

(c) 
Fig. 2. Case 1 trajectory under the control protocol (4). (a) and (b) Trajectories of the agents; (c) Trajectories of the objective function.
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Fig. 3. Case 2 trajectory under the control protocol (4). (a) and (b) Trajectories of the agents; (c) Trajectories of the objective function.
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Fig. 4. Case 2 trajectory under the finite-time control protocol. (a) and (b) Trajectories of the agents; (c) Trajectories of the objective function.
 

Conclusion: In this letter, a piecewise power-law control protocol
has  been  proposed  for  FOMASs.  It  has  been  proved  by  Lyapunov
stability  theory  that  the  FXT  cluster  optimization  problem  of  the
FOMASs can be solved. Our future work will consider the FXT clus-
ter optimization problem of higher-order MASs.
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