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 Dear Editor,

to

This letter deals with the output feedback stabilization of a class of
high-order nonlinear time-delay systems with more general low-order
and  high-order  nonlinearities.  By  constructing  reduced-order  obser-
ver,  based  on  homogeneous  domination  theory  together  with  the
adding  a  power  integrator  method,  an  output  feedback  controller  is
developed  guarantee the equilibrium of the closed system globally
uniformly asymptotically stable.

We consider high-order nonlinear time-delay systems as follows:
 

η̇i(t) = η
pi
i+1(t)+ϕi(t,η(t),η1(t−τ1(t)), . . . ,ηi(t−τi(t)))

i = 1, . . . ,n−1
η̇n(t) = upn (t)+ϕn(t,η(t),η1(t−τ1(t)), . . . ,ηn(t−τn(t)))
y(t) = η1(t) (1)
η(t) = [η1(t), . . . ,ηn(t)]T u(t) y(t)

i = 1, . . . ,n τi(t)
0 ≤ τi(t) ≤ εi εi pi ∈

R≥1
odd ≜ {

p
q ∈ R+ p ≥ q} ϕi C

ϕi(t,0,0) = 0 η(θ) =
ζ0(θ), ∀θ ∈ [−εM ,0] εM =max{ε1, . . . , εn} ζ0(θ)

C
i ∈ {1, . . . ,n} pi > 1

where ,  and  are the system state, con-
trol input and output respectively. For ,  is time-vary-
ing  delay  with ,  where  is  a  positive  constant; 

: p and q are odd integers, ;  is an unknown 
function  with .  The  system’s  initial  condition  is 

 with  and  being  a
specified  function.  System  (1)  is  called  as  high-order  system  if
there exists at least one  such that .

τi(t) = 0
ϕi ϕi

1
p j···pi−1

1
p j···pi−1

1
p j···pi−1

Particularly,  when ,  most  of  these  results  require  that  the
nonlinearity  satisfies  certain  restrictive  conditions,  that  is, 
depends on the output y, or the states in the bounding functions are of
an order equal to , or greater than , or less than ,
e.g., see [1]–[4] and the reference therein.

Recently, the restrictive condition was relaxed by [5]–[7], in which
the assumptions can be summarized as the following form:
 

|ϕi| ≤ c
i∑

j=1

(|η j(t)|νl j + |η j(t)|νu j ) (2)

νl j =
1

p j···pi−1
νu j =

r̄i+ω̄2
r̄ j

[ 1
p j···pi−1

,+∞) r̄1 = 1, r̄i+1 =
r̄i+ω̄2

pi

ω̄2 ≥ 0

where  low-order  and  high-order  are  some
ratios  of  odd  integers  in  with  and

.
τi(t) , 0For  high-order  nonlinear  systems  (1)  with ,  since  time-

delay is always encountered in many practical control systems and its
emergence  often  causes  instability  and  serious  deterioration  in  the
systems  performance,  many  attention  has  been  paid  on  the  control
design  of  time-delay  system  (1)  and  there  have  been  some  results

(0,+∞) 1
p j···pi−1

[ 1
p j···pi−1

,+∞)

achieved,  see [8]–[10] and  the  reference  therein.  However, [8] only
considered  high-order  nonlinearities, [9] only  had  an  order  in

, [10] allowed low-order to be  and high-order to take
any value in .

Based on the above discussion, an interesting problem is immedi-
ately  proposed:  For  high-order  nonlinear  time-delay  system  (1),
under the condition
 

|ϕi| ≤ c
i∑

j=1

(|η j(t)|νl j + |η j(t)|νu j

+ |η j(t−τ j(t))|νl j + |η j(t−τ j(t))|νu j ). (3)
νl j

νu j (0, 1
p j···pi−1

] [ 1
p j···pi−1

,+∞)
Is  it  possible  to  relax  condition  (3)  by  allowing  low-order  and
high-order  to  take  any  value  in  and ,
respectively?  Under  the  weaker  condition,  can  an  output  feedback
controller be designed for system (1)?

This  letter  will  substantially  solve  this  problem.  By  constructing
reduced-order observer, a global output feedback controller based on
the homogeneous domination theory and the adding a power integra-
tor  method is  developed to  guarantee  the  equilibrium of  the  closed-
loop system globally uniformly asymptotically stable.

R+

x = [x1, . . . , xn]T xt = x(t+ θ) ∥x∥ =
(
∑n

i=1 x2
i )

1
2 ∥xt∥C = sup−εM≤θ≤0 ∥x(t+ θ)∥ i = 1, . . . ,n x̄i ≜ [x1, . . . ,

xi]T ∈ Ri x̄i,t ≜ x̄i(t+ θ) f : Rn→ R C
C1 K
R+→ R+
K∞ K

Notations:  stands  for  the  set  of  all  the  nonnegative  real  num-
bers.  For  any  vector ,  denote , 

, . For , 

, . A function  is  if  it  is  continu-
ous and is  if it is continuously differential.  denotes the set of all
functions:  that are continuous, strictly increasing and van-
ishing at zero,  denotes the set of all functions that are of class 
and unbounded.

Problem statement: The purpose is to design an output feedback
controller for system (1) such that the closed-loop system is globally
uniformly asymptotically stable.

To achieve the purpose, the following assumptions are needed.
i = 1, . . . ,n γi

τi : R+→ R τ̇i(t) ≤ γi < 1
Assumption 1: For each ,  there is a positive constant 

such that  satisfies .
i = 1, . . . ,n c > 0

− 1∑n
l=1 p1···pl−1

< ω̄1 ≤ 0 p0 = 1 ω̄2 ≥ 0
Assumption  2:  For  each ,  there  are  constants ,

 with  and  such that
 

|ϕi| ≤ c
i∑

j=1

(
|η j(t)|

m̄i+ω̄1
m̄ j + |η j(t)|

r̄i+ω̄2
r̄ j

+ |η j(t−τ j(t))|
m̄i+ω̄1

m̄ j + |η j(t−τ j(t))|
r̄i+ω̄2

r̄ j

)
(4)

m̄i r̄iwhere  and  are defined as
 

m̄1 = r̄1 = 1, m̄i+1 =
m̄i + ω̄1

pi
, r̄i+1 =

r̄i + ω̄2

pi
. (5)

The following lemma is indispensable in deriving the main result.
Lemma 1 [11]: Consider system

 

ẋ = f (xt, t) (6)
x(t) ∈ Rn f : R×C→ Rnwhere  and .

f : R×C→ Rn R×
C Rn u,v,w : R+→ R+

u(s) v(s)
s > 0 u(0) = v(0) = 0

V : R×C→ R

Suppose that  given in (6), maps every  (bounded
set in ) into a bounded set in , and that  are con-
tinuous nondecreasing functions, where additionally  and  are
positive for , and . If there exists a continuous dif-
ferentiable functional  such that
 

u(∥ϕ(0)∥) ≤ V(t,ϕ) ≤ v(∥ϕ∥C)
and
 

V̇(t,ϕ) ≤ −w(∥ϕ(0)∥)
w(s) > 0

s > 0
lims→∞ u(s) =∞

then,  the  trivial  solution  of  (6)  is  uniformly  stable.  If  for
,  then  it  is  uniformly  asymptotically  stable.  In  addition,  if

, then it is globally uniformly asymptotically stable.
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Controller design: Introduce the following coordinate transforma-
tion:
 

xi(t) =
ηi(t)
Lλi
, i = 1, . . . ,n, v(t) =

u(t)
Lλn+1

(7)

then system (1) is transformed into
 

ẋi(t) = Lxpi
i+1(t)+ fi(t, x(t), x1(t−τ1(t)), . . . , xi(t−τi(t)))

i = 1, . . . ,n−1
ẋn(t) = Lvpn (t)+ fn(t, x(t), x1(t−τ1(t)), . . . , xn(t−τn(t)))
y(t) = x1(t) (8)

L ≥ 1 λ1 = 0, λi =
λi−1+1

pi−1
,

i = 2, . . . ,n+1 fi =
ϕi

Lλi

where  is  a  constant  to  be  determined, 
, .

ξ1 = x1Define ,
 

m1 = r1 = 1, mi+1 =
mi +ω1

pi
, ri+1 =

ri +ω2

pi
(9)

ω1 ω2

− 1∑n
l=1 p1···pl

< ω1 ≤ ω̄1 ≤ 0, ω2 ≥ ω̄2 ≥ 0
µ =maxi=1,...,n+1{ ri

mi
}

where  and  are both ratios of an even integer over an odd inte-
ger and satisfy , respectively.
Choose  and
 

V1 =
ξ

2−m2 p1+1
1

2−m2 p1 +1
+
ξ

2µ−r2 p1+1
1

2µ− r2 p1 +1

+
(n+1)L
1−γ1

w t

t−τ1(t)

(
ξ21(s)ds+ ξ2µ1 (s)

)
ds

+
nL

1−γ2

w t

t−τ2(t)

(
ξ21(s)ds+ ξ2µ1 (s)

)
ds. (10)

x∗2By choosing the appropriate virtual controller , (10) becomes
 

V̇1 ≤ −nL
(
ξ21 + ξ

2µ
1 + ξ

2
1(t−τ1(t))+ ξ2µ1 (t−τ1(t))

+ ξ21(t−τ2(t))+ ξ2µ1 (t−τ2(t))
)

+L
(
ξ

2−m2 p1
1 + ξ

2µ−r2 p1
1

)
(xp1

2 − x∗2
p1 ). (11)

Vn
x∗1, . . . , x

∗
n+1

Through  the  recursive  design  method,  the nth  function  and  a
series of virtual controllers  defined by
 

x∗1 = 0, x∗i = −βi−1

(
ξi−1 + ξ

mi−1ri
ri−1mi
i−1

)mi

ξi−1 = x
1

mi−1
i−1 − x

∗ 1
mi−1

i−1 , i = 2, . . . ,n+1 (12)
such that
 

V̇n ≤ −L
n∑

j=1

(
ξ2j + ξ

2µm j
r j

j + ξ2j (t−τ j(t))+ ξ
2µm j

r j

j (t−τ j(t))

+ ξ2j (t−τ j+1(t))+ ξ
2µm j

r j

j (t−τ j+1(t))
)

+L
(
ξ

2−mn+1 pn
n + ξ

(2µ−rn+1 pn )mn
rn

n

) (
vpn − x∗pn

n+1

)
τn+1(t) = 0 βi−1where ,  is a positive constant.

z2, . . . ,znIntroduce variables  as
 

xpi−1
i = (zi + li−1xi−1)

ri pi−1
ri−1 + (zi + li−1xi−1)

mi pi−1
mi−1 (13)

l1 ≥ 1, . . . , ln−1 ≥ 1where the gains  are constants to be determined. By
(13), one deduces that
 

żi = − li−1Lxpi−1
i − li−1 fi−1

+I−1
1,i pi−1xpi−1−1

i (Lxpi
i+1 + fi)(zi + li−1xi−1)−

ω1
mi−1 (14)

xn+1 = v,I1,i =
ri pi−1
ri−1

(zi + li−1xi−1)
ω2

ri−1
− ω1

mi−1 +
mi pi−1
mi−1

where .  Based  on
(13) and (14), the reduced-order observer is constructed
 

˙̂zi = −li−1Lx̂pi−1
i

x̂pi−1
i = (ẑi + li−1 x̂i−1)

ri pi−1
ri−1 + (ẑi + li−1 x̂i−1)

mi pi−1
mi−1 (15)

x̂i xi i = 2, . . . ,n x̂1 = x1where  is  the  estimate  of , , .  Using  the  cer-

tainty equivalence principle and (12), we obtain output feedback con-
troller of system (8)
 

v(t) = x̂∗n+1 = −βn

(
ξ̂n + ξ̂

mnrn+1
rnmn+1
n

)mn+1

ξ̂i = x̂
1

mi
i − x̂

∗ 1
mi

i , x̂∗1 = 0

x̂∗i+1 = −βi

(
ξ̂i + ξ̂

miri+1
rimi+1
i

)mi+1

, i = 1, . . . ,n. (16)

ei = zi − ẑi, i = 2, . . . ,nDefining  the  estimate  error  as ,  using  (14),
(15) yield
 

ėi = − li−1L(xpi−1
i − x̂pi−1

i )− li−1 fi−1

+I−1
1,i pi−1xpi−1−1

i (Lxpi
i+1 + fi)(zi + li−1xi−1)−

ω1
mi−1 . (17)

Define
 

Ui =
mi−1

2−ω1
e

2−ω1
mi−1
i +

w ẑi+li−1 xi−1

zi+li−1 xi−1

(
s

2µ−ri pi−1
ri−1

− (zi + li−1xi−1)
2µ−ri pi−1

ri−1

)
ds, i = 2, . . . ,n. (18)

T =
∑n

i=1 Ui +VnChoose , then
 

Ṫ ≤ − L
4

n∑
j=1

(
ξ2j + ξ

2µm j
r j

j

)
−L

(
22− 2µ

rn−1

(
2

mn pn−1
mn−1 −1

)

× l
2mn pn−1

mn−1+mn pn−1
n−1 − c1

)(
e

2
mn−1
n + e

2µ
rn−1
n

)

−L
n−1∑
j=2

(
2

2− 2µ
r j−1

(
2

m j p j−1
m j−1 −1

)
l

2m j p j−1
m j−1+m j p j−1

j−1 − c2

)

×
e 2

m j−1

j + e
2µ

r j−1

j

+ c3L1−ν
( n∑

j=2

(
e

2
m j−1

j + e
2µ

r j−1

j

)

+

n∑
j=1

(
ξ2j + ξ

2µm j
r j

j

))
(19)

c1,c2,c3where  are some appropriate positive constants.
l1, . . . , ln−1By determining  and L as

 

ln−1 = max
{(

(c1 +1)
(
2

mn pn−1
mn−1 −1

)−1

×2
2µ

rn−1
−2

) mn−1+mn pn−1
2mn pn−1

,1
}

li = max
{(

(c2 +1)
(
2

mi+1 pi
mi −1

)−1

×2
2µ
ri
−2

) mi+mi+1 pi
2mi+1 pi

,1
}
, i = n−2, . . . ,1

L > max
{
(8c3)

1
ν ,1

}
.

Inequality (19) becomes
 

Ṫ ≤ −L
8

n∑
j=1

(
ξ2j + ξ

2µm j
r j

j

)
− 7L

8

n∑
j=2

e 2
m j−1

j + e
2µ

r j−1

j

 . (20)

Then, we get the output feedback controller of system (1) with the
form
 

u(t) = −Lλn+1 v(t) = −βnLλn+1

(
ξ̂n + ξ̂

mnrn+1
rnmn+1
n

)mn+1

ξ̂i = x̂
1

mi
i − x̂

∗ 1
mi

i , x∗0 = 0

x̂∗i = −βi−1

(
ξ̂i−1 + ξ̂

mi−1ri
ri−1mi
i−1

)mi

, i = 1, . . . ,n (21)

x̂2, . . . , x̂nwhere  are observed by
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˙̂zi = −li−1Lx̂pi−1
i

x̂pi−1
i = (ẑi + li−1 x̂i−1)

ri pi−1
ri−1 + (ẑi + li−1 x̂i−1)

mi pi−1
mi−1 . (22)

Main  result: By  the  above  design,  the  following  stability  is
obtained.

Theorem 1: If Assumptions 1 and 2 hold for system (1), the output
feedback controller (21) and (22) guarantees that

[−εM ,+∞)
1) All the solutions of the closed-loop system (1), (21) and (22) are

well defined on .
η = 02) The equilibrium  of the closed-loop system is globally uni-

formly asymptotically stable.

ξ
Proof:  1)  Under  (21),  system (1)  can  be  equivalently  transformed

into a -system
 

ξ̇i(t) = φi(t, ξ(t), ξ1(t−τ1(t)), . . . , ξi(t−τi(t)),
ξ1(t−τ2(t)), . . . , ξi−1(t−τi(t)),u(t)) (23)

φi(·) : R+ ×Rn ×Ri ×Ri−1 ×R→ R C1

φi(t,0,0,0,0) = 0 Z = [ξ1, . . . , ξn,e2, . . . ,en]T

Z(t)
[−εM , tM) tM

where  is  a  function  with
.  Define ,  by  the  exis-

tence and continuation of the solution, the solution  is defined on
 with  being infinite or not.

T (Z) C1It  is  obvious  that  is ,  positive  definite  and  radially
unbounded.

η(t) [−εM ,+∞)

T (Z) − L
8
∑n

j=1(ξ2j + ξ
2µm j

r j

j )− 7L
8

∑n
j=2(e

2
m j−1

j + e
2µ

r j−1

j )

K∞ π2(·) π3(·)

Then,  we  show  that  is  well  defined  on .  Noticing

that  and  the  term 
on  the  right-hand  side  of  (20)  are  positive  definite  and  radially
unbounded, one can find  functions  and  such that
 

T (Z) ≤ π2(∥Z∥), Ṫ (Z) ≤ −π3(∥Z∥). (24)
π1(∥Z∥) K∞ δ > 0

β = β(δ) β > δ > 0 π2(δ) ≤ π1(β) ∥Z0(θ)∥C < δ
θ ∈ [−εM ,0] π1(∥Z∥) ≤ T (Zt(θ)) ≤ T (Z0(θ)) ≤
π2(∥Z0(θ)∥C) ≤ π1(β) ∀t ∈ [0, tM) ∥Z(t)∥ ≤ β

t ∈ [−εM , tM) tM Z(t)
[−εM ,+∞) η(t)

Since  is a  function, for any , one can always find
a  with  such  that .  If ,

,  and  (24)  yield 
, ,  which  means  that  for

any . Hence,  is not an escape time, i.e.,  is well
defined on , so is .

tM = +∞
Z = 0

x∗i (ξi−1) ξi−1 x∗i (0) = 0

η = 0

2)  Since ,  according  to  (24)  and  Lemma  1,  the  equilib-
rium  is  globally  uniformly  asymptotically  stable.  Since

 is continuous on  and , by (22) and the globally
uniformly asymptotic  stability  of  system (17)  and (23),  it  is  easy to
prove that  the  equilibrium  of  the  closed-loop system (1),  (21)
and (22) is globally uniformly asymptotically stable. ■

Numerical example: Consider a simple system
 

η̇1 = η
21
19
2

η̇2 = u+
η

17
23
1 sinη1

3
+

ln(1+ |η1|
21
19 )

2(1+η2
2)
+
η

17
23
1 (t− 1

2 sin2 t)

3

+
η

21
19
1 (t− 1

2 sin2 t)

2(1+η2
2(t− 1

2 cos2 t))
y = η1. (25)

Following  the  design  procedure,  a  direct  but  redundant  computa-
tion  leads  to  an  output  feedback  controller  of  system  (25)  with  the
form:
 

u = −L
40
21 β2

(
ξ̂2 + ξ̂

21
17
2

) 17
23

ξ̂2 = x̂
23
19
2 +β

23
19
1

(
x1 + x

23
19
1

)
x̂

21
19
2 = (ẑ2 + l1x1)

21
23 + (ẑ2 + l1x1)

21
19

˙̂z2 = −l1Lx̂
21
19
2 (26)

β1 = 2.68, β2 = 600, l1 = 30, L = 3where .
η1(θ) = 0.001 η2(θ) = −0.002, ẑ2(θ) =By choosing the initial values , 

−0.05, θ ∈ [− 1
2 ,0], Fig.  1 verifies  the  effectiveness  of  the  control

scheme.

Conclusion: This letter addresses the global output feedback stabi-
lization  of  high-order  nonlinear  time-delay  systems  with  more  gen-
eral low-order and high-order nonlinearities.
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Fig. 1. The response of the closed-loop system (25) and (26).
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