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Abstract— Computing with words (CWW) proposed by
Zadeh is an useful paradigm to mimic the human decision-
making ability in a wide variety of physical and mental tasks.
To realize CWW, Mendel proposed a specific architecture called
perceptual computer, in which interval type-2 (IT2) fuzzy sets
(FSs) and perceptual reasoning (PR) method are adopted. The
PR method has been proved to have good properties (e.g. it can
output intuitive IT2 FSs) and has found several applications in
decision making. In this study, we focus on simplifying this
method by avoiding its α-cuts based inference process. We first
present a novel property for the inference of the PR method. We
observe from the property that, if the IT2 FSs in the consequents
of the IF-THEN rules are trapezoidal and have consistent
slopes, then the output IT2 FS will be strictly trapezoidal and
can be determined easily. In this case, the computation of the
PR method can be simplified. To achieve such simplification,
the trapezoidal IT2 FSs without consistent slopes should be
approximated by the slope-consistent trapezoidal IT2 FSs. This
issue is also studied in this paper by solving the constrained
linear-quadratic optimization problem. At last, examples are
given. The simplified PR method will be useful when the CWW
models are utilized in the modeling and/or control problems of
complex systems or multivariable dynamic systems.

I. INTRODUCTION

IN complex systems, e.g. the social systems and the
management systems, problems are usually described and

analyzed using natural language. Humans are used to reason-
ing and calculating on the basis of the premises expressed
by words or perceptions [1], [2]. To solve the modeling,
analysis, decision-making, evaluation and/or management
problems in complex systems, Zadeh [1], [2] proposed the
theory of Computing with Words (CWW). In CWW, the
operation objects are linguistic variables, i.e., the value of
the variable is the word or perception which can be modeled
by fuzzy sets (FSs). It is a necessary tool when the available
information is perception-based or not precise enough to use
numbers.

Since the appearance of CWW, lots of papers and books
have studied the theories and applications of CWW using
type-1 fuzzy sets (T1 FSs) [3]–[19]. Recently, Mendel [20]
claimed that the linguistic words should be modeled at least

Chengdong Li, Guiqing Zhang and Ming Wang are with the School of
Information and Electrical Engineering, Shandong Jianzhu University, Jinan
250101, P. R. China. e-mail: lichengdong@sdjzu.edu.cn.

Jianqiang Yi is with Institute of Automation, Chinese Academy of
Sciences, Beijing 100190, P. R. China.

This work is partially supported by National Natural Science Foun-
dation of China (61105077, 61273149, 61273326), the Excellent Young
and Middle-Aged Scientist Award Grant of Shandong Province of China
(BS2012DX026, BS2012DX018), the Natural Science Foundation of Shan-
dong Province of China (ZR2012FM019), and the Open Program from the
State Key Laboratory of Management and Control for Complex Systems
(20140102).

by interval type-2 fuzzy sets (IT2 FSs), as “words mean
different things to different people, and so are uncertain”.
Also, to realize CWW using IT2 FSs, in [21]–[24], Mendel
proposed a specific architecture called perceptual computer
(PC) and explored the functions of the encoder, CWW
engine, and decoder of the PC. The encoder transforms
linguistic perceptions into IT2 FSs according to the codebook
[21]–[24]. The CWW engine maps the input IT2 FSs from
the encoder into the output IT2 FS [21]–[24]. And then, the
decoder maps the output IT2 FS of the CWW engine into a
word in the codebook [21]–[25].

In the PC, the CWW engine is the core and can be
realized by different approximate reasoning method, e.g. the
perceptual reasoning (PR) method [26]–[28], the similarity-
based PR method [29] and the linguistic summarizations
[30]. The PR method was proved to have good property
that the output IT2 FS can resemble the shapes of the IT2
FSs in the codebook. That is to say, it can output intuitive
IT2 FSs. Because of this property, the PR method has
found lots of applications, such as investment judgment [21],
social judgment [31], weapon evaluation [32] and journal
publication judgment [33].

To realize the fuzzy reasoning, the PR method should
compute different levels of α-cuts of the output IT2 FS using
the iterative Karnik-Mendel algorithms. By avoiding the α-
cut computations of the output IT2 FS, we can simplify
the computation process of the PR method. In this study,
this is realized by setting the consequent IT2 FSs in the
fuzzy IF-THEN rules to be trapezoidal and slope-consistent.
If such conditions can be satisfied, the output IT2 FS of the
CWW engine will also be trapezoidal, and its mathematical
expressions can be derived easily. In order to achieve this
simplification, the trapezoidal IT2 FSs without consistent
slopes need to be approximated by the slope-consistent
trapezoidal IT2 FSs. This issue is also studied in this paper
by transforming the approximation to a constrained linear-
quadratic optimization problem. To show the effectiveness
of the IT2 FSs’ approximation method, examples are finally
given. The simplified PR method will be useful when the
CWW paradigm is adopted as the modeling and/or control
tool to deal with some complex systems or multivariable
dynamic systems in which the number of fuzzy IF-THEN
rules is usually large and the computation always needs to
be done online.

The rest of this paper is organized as follows. Section
II introduces type-2 fuzzy sets and the perceptual reason-
ing method. Section III studies one novel property of the
perceptual reasoning method. Section IV presents how to
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construct the slope-consistent trapezoidal IT2 FSs for the
trapezoidal IT2 FSs without consistent slopes. Section V
gives an example to show the effectiveness of the IT2 FSs’
approximation method. Finally, conclusions are drawn in
Section VI.

II. TYPE-2 FUZZY SETS AND PERCEPTUAL REASONING
METHOD

This section briefly introduces the definition of type-2
fuzzy sets and the perceptual reasoning method.

A. Type-2 Fuzzy Sets

Fuzzy sets were introduced by Zadeh [34] in 1965 as an
extension of the classical notion of set. The FS with crisp
membership function (MF) is called type-1 (T1) FS, while
the FS with fuzzy membership MF is called type-2 FS (T2
FS). The T2 FS Ỹ can be characterized as [34], [35]

Ỹ =

∫
x∈X

µỸ (x)/x =

∫
x∈X

∫
u∈Jx⊆[0,1]

fx(u)/u
/
x, (1)

where µỸ (x) is the fuzzy MF grade of a generic element
x,
∫ ∫

denotes union over all admissible x and u, fx(u) is
the secondary MF and Jx is the primary membership of x
which is the domain of the secondary MF.

When the secondary grades of Ỹ all equal 1, the T2
FS becomes interval type-2 (IT2) FS. An IT2 FS Ỹ can
be completely depicted by its lower MF (LMF) µ

Ỹ
(x) and

upper MF (UMF) µỸ (x), i.e. [35]

µỸ (x) = [µ
Ỹ
(x), µỸ (x)]. (2)
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Fig. 1. An example of interval type-2 fuzzy sets

One example of IT2 FSs is depicted in Fig. 1. The α-cut
of the IT2 FS Ỹ is also depicted in this figure. For the IT2 FS
Ỹ , its α-cut consists of four end-points, which are denoted
respectively as ỸLl(α), ỸRr(α), ỸLr(α) and ỸRl(α).

Trapezoidal IT2 FSs shown in Fig. 2 are special cases
of general IT2 FSs. We can still depict trapezoidal IT2 FSs
using their LMFs and UMFs. A trapezoidal IT2 FS Ỹ can
be denoted by its LMF and UMF as [35], [36]

µỸ (x) =


x−a
b−a

a < x ≤ b
1 b < x ≤ c

d−x
d−c

c < x ≤ d
0 else

(3)
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0
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Fig. 2. Trapezoidal IT2 FS

µ
Ỹ
(x) =


hỸ

x−a
b−a a < x ≤ b
1 b < x ≤ c

hỸ
d−x
d−c c < x ≤ d
0 else

(4)

where a, b, c, d, a, b, c, d satisfy the orders shown in Fig. 2.
For the trapezoidal IT2 FS Ỹ , its UMF and LMF are

respectively denoted as

µỸ (x) = µỸ (x, a, b, c, d) (5)
µ
Ỹ
(x) = µ

Ỹ
(x, a, b, c, d, hỸ ). (6)

B. Perceptual Reasoning Method

Suppose that the following type-2 fuzzy rule base is
adopted in the CWW engine:{

Ri : x1 = X̃i
1, · · · , xp = X̃i

p,→ y = Ỹ i
}M

i=1
, (7)

where X̃i
1, · · · , X̃i

p, Ỹ
i are IT2 FSs.

The PR method [26]–[28] utilizes the following two steps
to compute the output word Ỹ :

Step 1: Computing the firing strength of each rule
Suppose that the input words are X̃ = (X̃1, X̃2, ..., X̃p),

then, the firing strength of Rule i is an interval F i(X̃) =

[f i(X̃), f
i
(X̃)] , which can be calculated as

f i(X̃) = ∧pj=1

(
sup

xj∈Uj

µ
X̃j

(xj) ∧ µX̃i
j

(xj)
)
, (8)

f
i
(X̃) = ∧pj=1

(
sup

xj∈Uj

µX̃j
(xj) ∧ µX̃i

j
(xj)

)
. (9)

where Uj is the universe of discourse of the input variable
xj .

Step 2: Aggregating the fired rules by the linguistic
weighted average method

In the perceptual reasoning method [26]–[28], the lin-
guistic weighted average algorithm [33], [37] is adopted to
aggregate the consequents of the fired rules to obtain the
output word (IT2 FS), i.e.

Ỹ =

∑M
i=1 F

i(X̃)Ỹ i∑M
i=1 F

i(X̃)
(10)

where F i(X̃) is an interval, Ỹ i is the consequent IT2 FS
of Rule i. This equation can be computed through the α-
cuts method. Fig. 1 shows us an example on the α-cuts of
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the IT2 FS Ỹ . The α-cut of its UMF can be represented
as [ỸLl(α), ỸRr(α)], while the α-cut of its LMF can be
represented as [ỸLr(α), ỸRl(α)].

From the results in [26]–[28], the left-end and right-end
points of the α-cuts of the output IT2 FS can be computed
as

ỸLl(α) = min
∀fi∈[fi(X̃),f

i
(X̃)]

∑M
i=1 Ỹ i

Ll(α)f
i∑M

i=1 fi , α ∈ [0, 1],

ỸRr(α) = max
∀fi∈[fi(X̃),f

i
(X̃)]

∑M
i=1 Ỹ i

Rr(α)f
i∑M

i=1 fi , α ∈ [0, 1],

ỸLr(α) = min
∀fi∈[fi(X̃),f

i
(X̃)]

∑M
i=1 Ỹ i

Lr(α)f
i∑M

i=1 fi , α ∈ [0, hỸ ],

ỸRl(α) = max
∀fi∈[fi(X̃),f

i
(X̃)]

∑M
i=1 Ỹ i

Rl(α)f
i∑M

i=1 fi , α ∈ [0, hỸ ],

(11)

where hỸ = minMi=1 h
i, and hi = hỸ i is the height of the

LMF of the IT2 FS Ỹ i. These equations can be computed
by the Karnik-Mendel algorithm [35].

III. PROPERTY OF THE PERCEPTUAL REASONING
METHOD

When the CWW paradigm is adopted as the modeling
and/or control tool to deal with some complex systems or
multivariable dynamic systems, we usually face the large
number of fuzzy IF-THEN rules and the online computation
tasks, and sometimes we need to theoretically analyze system
performance or stability issues through mathematical expres-
sions. The PR method is on the basis of α-cuts of the IT2
FSs which makes it difficult to directly depict the output IT2
FS by exact mathematical expressions. However, if special
trapezoidal IT2 FSs are adopted in the consequent parts of
the fuzzy rules, we have the following property which shows
us how to compute the output word directly and makes us
avoid the computation of the output word’s α-cuts.

To begin, let us denote the slopes of the trapezoidal IT2
FS Ỹ i in the consequent part of rule Ri as

kiLl , 1

Ỹ i
Ll(1)−Ỹ i

Ll(0)
,

kiRr , 1

Ỹ i
Rr(1)−Ỹ i

Rr(0)
,

kiLr , hi

Ỹ i
Lr(h

i)−Ỹ i
Lr(0)

,

kiRl , hi

Ỹ i
Rl(h

i)−Ỹ i
Rl(0)

.

(12)

Then, we have the following property:
Theorem 1: If the slopes of the consequent trapezoidal

IT2 FSs satisfy the following constraints: k1Ll = · · · = kMLl =
kLl, k1Rr = · · · = kMRr = kRr, k1Lr = · · · = kMLr = kLr,
and k1Rl = · · · = kMRl = kRl, then, the output word Ỹ is
still a trapezoidal IT2 FS, whose slopes are kLl(Ỹ ) = kLl,
kRr(Ỹ ) = kRr, kLr(Ỹ ) = kLr, kRl(Ỹ ) = kRl.

Proof: The proof of this Theorem is similar to that of
Theorem 3 in [38]. The only differences are that:

1) Theorem 3 in [38] is described in the dynamic form for
linguistic dynamic systems.

2) The IT2 FSs in Theorem 3 in [38] are trapezoidal IT2
fuzzy numbers whose LMFs’ heights are equal to 1 while the

trapezoidal IT2 FSs in this theorem are more general with
arbitrary LMFs’ heights.

Hence, we omit the proof of this theorem here. �
If the slopes of the consequent trapezoidal IT2 FSs satisfy

the constraints in Theorem 1, then, to determine the output
word Ỹ , we only need to compute its four vertexes ỸLl(0),
ỸRr(0), ỸLr(0), and ỸRl(0). There is no need to compute
the end points of the α-cuts of the output word.

In detail, for the output trapezoidal IT2 FS Ỹ , denoted
as µỸ (x) = µỸ (x, a, b, c, d), µỸ

(x) = µ
Ỹ
(x, a, b, c, d, hỸ ),

where a = ỸLl(0), a = ỸLr(0), d = ỸRl(0), and d =
ỸRr(0), its parameters can be computed respectively as

a = min
∀fi∈[fi(X̃),f

i
(X̃)]

∑M
i=1 aifi∑M
i=1 fi ,

b = a+ 1
kLl

,

d = max
∀fi∈[fi(X̃),f

i
(X̃)]

∑M
i=1 d

i
fi∑M

i=1 fi ,

c = d+ 1
kRr

,

a = min
∀fi∈[fi(X̃),f

i
(X̃)]

∑M
i=1 aifi∑M
i=1 fi ,

b = a+
hỸ

kLr
,

d = max
∀fi∈[fi(X̃),f

i
(X̃)]

∑M
i=1 difi∑M
i=1 fi ,

c = d+
hỸ

kRl
.

(13)

To simplify the PR method, the slopes of the trapezoidal
IT2 FSs need to satisfy the conditions in Theorem 1. For
ease of the following discussion, we first give the following
definition on the slopes of different IT2 FSs.

Definition 1: Trapezoidal IT2 FSs Ỹ 1, Ỹ 2, · · · , ỸM are
said to be slope-consistent if they satisfy the constraints in
Theorem 1, i.e. k1Ll = · · · = kMLl = kLl, k1Rr = · · · = kMRr =
kRr, k1Lr = · · · = kMLr = kLr, and k1Rl = · · · = kMRl = kRl.

In some applications, the trapezoidal IT2 FSs in the word
library may not be slope-consistent. In such case, we need
to find the approximated trapezoidal IT2 FSs with consistent
slopes for them.

IV. CONSTRUCTING SLOPE-CONSISTENT TRAPEZOIDAL
IT2 FSS

Below, we will give detailed discussion on constructing
slope-consistent trapezoidal IT2 FSs.

A. Problem Formulation

Suppose that the trapezoidal IT2 FSs Ỹ 1, · · · , ỸM in the
word library do not have consistent slopes. Then, we need
to find M most approximated slope-consistent trapezoidal
IT2 FSs Z̃1, · · · , Z̃M for Ỹ 1, · · · , ỸM . In other words, for
∀i, the trapezoidal IT2 FS Z̃i is an approximation of Ỹ i,
and, kLl(Z̃

1) = · · · = kLl(Z̃
M ) = kLl, kRr(Z̃

1) = · · · =
kRr(Z̃

M ) = kRr, kLr(Z̃
1) = · · · = kLr(Z̃

M ) = kLr, and
kRl(Z̃

1) = · · · = kRl(Z̃
M ) = kRl.

To construct the slope-consistent trapezoidal IT2 FSs, we
need to determine the parameters kLl, kRr, kLr, kRl, and
the four end-points Z̃i

Ll(0), Z̃
i
Lr(0), Z̃

i
Rl(0), Z̃

i
Rr(0) of Z̃i.

Below, we will study this issue in detail.
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To measure the distance of the trapezoidal IT2 FS Ỹ i and
its approximation Z̃i, we define the following metric, which
is an extension of the Eclidean distance

D(Ỹ i, Z̃i)

=

∫ 1

0

|Ỹ i
Ll(α)− Z̃i

Ll(α)|2dα+

∫ 1

0

|Ỹ i
Rr(α)− Z̃i

Rr(α)|2dα

+

∫ hi

0

|Ỹ i
Lr(α)− Z̃i

Lr(α)|2dα+

∫ hi

0

|Ỹ i
Rl(α)− Z̃i

Rl(α)|2dα

(14)

where hi is the height of the lower MF of the trapezoidal
IT2 FS Ỹ i and its approximation Z̃i.

In the same way, the distance between the trapezoidal IT2
FSs Ỹ 1, · · · , ỸM and their approximations Z̃1, · · · , Z̃M can
be computed as

D(Ỹ 1, · · · , ỸM , Z̃1, · · · , Z̃M ) =
M∑
i=1

D(Ỹ i, Z̃i). (15)

Through minimizing this measure under the constraints
on the slopes of the trapezoidal IT2 FSs, we can obtain one
reasonable approximation. In other words, the construction
of the slope-consistent trapezoidal IT2 FSs can be solved by
the following optimization problem [39]

min D(Ỹ 1, · · · , ỸM , Z̃1, · · · , Z̃M ),

s.t. kLl(Z̃
1) = · · · = kLl(Z̃

M ) = kLl,

kRr(Z̃
1) = · · · = kRr(Z̃

M ) = kRr,

kLr(Z̃
1) = · · · = kLr(Z̃

M ) = kLr,

kRl(Z̃
1) = · · · = kRl(Z̃

M ) = kRl

(16)

Below, we will show how to solve this optimization
problem.

B. Problem Transformation

To compute the distance measure in (15), we just need to
respectively compute

DLl =

M∑
i=1

∫ 1

0

|Ỹ i
Ll(α)− Z̃i

Ll(α)|2dα, (17)

DLr =
M∑
i=1

∫ hi

0

|Ỹ i
Lr(α)− Z̃i

Lr(α)|2dα, (18)

DRl =

M∑
i=1

∫ hi

0

|Ỹ i
Rl(α)− Z̃i

Rl(α)|2dα, (19)

DRr =
M∑
i=1

∫ 1

0

|Ỹ i
Rr(α)− Z̃i

Rr(α)|2dα. (20)

Let us take the computation of DLl for example.
Notice that

Ỹ i
Ll(α) =

1

kiLl

α+ Ỹ i
Ll(0), (21)

Z̃i
Ll(α) =

1

kLl
α+ Z̃i

Ll(0). (22)

where kiLl, Ỹ
i
Ll(0) are known, and kLl, Z̃i

Ll(0) are the
parameters need to be determined.

If we denote k̃iLl = 1
ki
Ll

, k̃Ll = 1
kLl

, biLl = Ỹ i
Ll(0), and

b̃iLl = Z̃i
Ll(0), then we have

Ỹ i
Ll(α) = k̃iLlα+ biLl, (23)

Z̃i
Ll(α) = k̃Llα+ b̃iLl. (24)

And, to determine kLl, Z̃i
Ll(0), we can firstly determine k̃Ll

and b̃iLl.
From (23) and (24), we have∫ 1

0

|Ỹ i
Ll(α)− Z̃i

Ll(α)|2dα

=

∫ 1

0

[(k̃iLlα+ biLl)− (k̃Llα+ b̃iLl)]
2dα

=
1

3
k̃2Ll + k̃Llb̃

i
Ll + (̃biLl)

2 + piLlk̃Ll + qiLlb̃
i
Ll + riLl, (25)

where 
piLl = − 2

3 k̃
i
Ll − biLl,

qiLl = −k̃iLl − 2biLl,

riLl = 2
3 k̃

i
Ll + k̃iLlb

i
Ll + (biLl)

2.

(26)

Hence, from (17) and (25), we can derive that

DLl =www
T
LlQLlwwwLl +RT

LlwwwLl + cLl (27)

in which

wwwLl = [k̃Ll, b̃
1
Ll, b̃

2
Ll, · · · , b̃MLl ]

T,

QLl =



M
3

1
2

1
2 · · · 1

2
1
2 1 0 · · · 0

1
2 0 1

. . . 0
...

...
. . . . . .

...
1
2 0 0 · · · 1

 ,

RLl =
[∑M

i=1 p
i
Ll, q

1
Ll, q

2
Ll, · · · , qMLl

]T
.

(28)

where wwwLl is a vector of the parameters to be determined in
Z̃1
Ll, · · · , Z̃M

Ll which represent the left sides of the UMFs of
the IT2 FSs Z̃1, · · · , Z̃M .

In the same way, define the parameters to be determined
in Z̃1

Lr, · · · , Z̃M
Lr as the vector wwwLr, the parameters to be

determined in Z̃1
Rl, · · · , Z̃M

Rl as the vector wwwRl, and the
parameters to be determined in Z̃1

Rr, · · · , Z̃M
Rr as the vector

wwwRr, i.e. 
wwwLr = [k̃Lr, b̃

1
Lr, b̃

2
Lr, · · · , b̃MLr]

T,

wwwRl = [k̃Rl, b̃
1
Rl, b̃

2
Rl, · · · , b̃MRl]

T,

wwwRr = [k̃Rr, b̃
1
Rr, b̃

2
Rr, · · · , b̃MRr]

T.

(29)

Similarly, we can derive the following equations: DLr = wwwT
LrQLrwwwLr +RT

LrwwwLr + cLr,
DRl = wwwT

RlQRlwwwRl +RT
RlwwwRl + cRl,

DRr = wwwT
RrQRrwwwRr +RT

RrwwwRr + cRr,
(30)

where QLr,RLr, cLr,QRl,RRl, cRl,QRr,RRr, cRr can be
obtained as the derivations of QLl,RLl, cLl in DLl and are
omitted here.
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From previous discussion, the distance measure
D(Ỹ 1, · · · , ỸM , Z̃1, · · · , Z̃M ) can be computed as

D(Ỹ 1, · · · , ỸM , Z̃1, · · · , Z̃M )

=DLl +DLr +DRl +DRr = wwwTQwww +RTwww + c, (31)

where

www = [wwwT
Ll,www

T
Rr,www

T
Lr,www

T
Rl]

T,

Q =


QLl

QRr

QLr

QRl

 ,
R = [RT

Ll,R
T
Rr,R

T
Lr,R

T
Rl]

T,
c = cLl + cRr + cLr + cRl.

(32)

in which www is the vector of the parameters to be determined
for Z̃1, · · · , Z̃M , and c is a constant.

The approximations Z̃1, · · · , Z̃M are trapezoidal IT2 FSs
too. So, the vertexes of these IT2 FSs still need to satisfy
the following constraints:

Z̃i
Ll(0) ≤ Z̃i

Ll(1),

Z̃i
Rr(1) ≤ Z̃i

Rr(0),

Z̃i
Lr(0) ≤ Z̃i

Lr(h
i),

Z̃i
Rl(h

i) ≤ Z̃i
Rl(0),

Z̃i
Ll(1) ≤ Z̃i

Rr(1),

Z̃i
Ll(h

i) ≤ Z̃i
Lr(h

i),

Z̃i
Lr(h

i) ≤ Z̃i
Rl(h

i),

Z̃i
Rl(h

i) ≤ Z̃i
Rr(h

i),

Z̃i
Ll(0) ≤ Z̃i

Lr(0),

Z̃i
Rl(0) ≤ Z̃i

Rr(0),
i = 1, 2, · · · ,M

⇔



k̃Ll ≥ 0,

k̃Rr ≤ 0,

k̃Lr ≥ 0,

k̃Rl ≤ 0,

k̃Ll + b̃iLl ≤ k̃Rr + b̃iRr,

k̃Llh
i + b̃iLl ≤ k̃Lrh

i + b̃iLr,

k̃Lrh
i + b̃iLr ≤ k̃Rlh

i + b̃iRl,

k̃Rlh
i + b̃iRl ≤ k̃Rrh

i + b̃iRr,

b̃iLl ≤ b̃iLr,

b̃iRl ≤ b̃iRr,
i = 1, 2, · · · ,M

(33)

where hi = hZ̃i = hỸ i . We should set the height of
trapezoidal IT2 FS Z̃i to be the height of Ỹ i.

Obviously, the above inequality constraints are linear and
can be rewritten as the following matrix form

Awww ≤ 0. (34)

From above discussion, the construction of the slope-
consistent trapezoidal IT2 FSs can be transformed to the
following constrained linear-quadratic optimization problem{

min
www

wwwTQwww +RTwww + c

s.t. Awww ≤ 0
(35)

C. Algorithm

From above discussion, we can use the algorithm shown in
Fig. 3 to construct the slope-consistent trapezoidal IT2 FSs.

After solving the constrained linear-quadratic optimization
problem, we can get the approximation Z̃i for Ỹ i as{

µZ̃i(x) = µZ̃i(x, b̃
i
Ll, k̃Ll + b̃iLl, k̃Rr + b̃iRr, b̃

i
Rr),

µ
Z̃i(x) = µ

Z̃i(x, b̃
i
Lr, k̃Lrh

i + b̃iLr, k̃Rlh
i + b̃iRl, b̃

i
Rl, h

i)

(36)
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Fig. 3. The algorithm for constructing the slope-consistent trapezoidal IT2
FSs

V. EXAMPLE AND DISCUSSIONS

This section first gives an example to verify the effective-
ness of the proposed algorithm. And then, discussions will
be made.

A. Example

Consider three trapezoidal IT2 FSs Ỹ 1, Ỹ 2, Ỹ 3 as shown
in Fig. 4 (grey areas) with the following UMFs and LMFs:

Ỹ 1 :

{
µỸ 1(x) = µỸ 1(x, 0, 1, 3, 4)
µ
Ỹ 1(x) = µ

Ỹ 1(x, 0.5, 1, 2.5, 3, 0.8)

Ỹ 2 :

{
µỸ 2(x) = µỸ 2(x, 3, 5, 5.5, 7.5)
µ
Ỹ 2(x) = µ

Ỹ 2(x, 4, 5, 5, 6.5, 0.7)

Ỹ 3 :

{
µỸ 3(x) = µỸ 3(x, 6, 7, 9, 10)
µ
Ỹ 3(x) = µ

Ỹ 3(x, 7, 8, 9, 9.5, 0.6)

Using the proposed algorithm, the constructed slope-
consistent trapezoidal IT2 FSs Z̃1, Z̃2, Z̃3 have the following
UMFs and LMFs:

Z̃1 :

{
µZ̃1(x) = µZ̃1(x,−0.17, 1.17, 2.83, 4.17)
µ
Z̃1(x) = µ

Z̃1(x, 0.31, 1.19, 2.29, 3.21, 0.8)

Z̃2 :

{
µZ̃2(x) = µZ̃2(x, 3.33, 4.67, 5.83, 7.17)
µ
Z̃2(x) = µ

Z̃2(x, 4.12, 4.88, 5.35, 6.15, 0.7)

Z̃3 :

{
µZ̃3(x) = µZ̃3(x, 5.83, 7.17, 8.83, 10.17)
µ
Z̃3(x) = µ

Z̃3(x, 7.17, 7.83, 8.90, 9.60, 0.6)

The constructed IT2 FSs Z̃1, Z̃2, Z̃3 are also shown in Fig.
4 using dotted areas. From this figure, we can observe that
the approximated IT2 FSs are trapezoidal and have consistent
slopes.
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Fig. 4. Trapezoidal IT2 FSs without and with consistent slopes

B. Discussion

In applications, if the word library is manually con-
structed, the slope-consistent trapezoidal IT2 FSs can be
easily achieved. Sometimes, the IT2 FSs in the word library
are obtained by data-driven method. Such IT2 FSs are
usually not slope-consistent. In this case, we should use this
algorithm to modify or approximate them. One thing to be
mentioned is that only the IT2 FSs in the consequents of the
fuzzy rules, rather than all the IT2 FSs in the word library,
need to be modified. This can be done separately before the
running of the perceptual reasoning process so that it does
not burden or complicate the reasoning process.

As shown in [27], when all IT2 FSs are trapezoidal, the
PR output is approximately trapezoidal, so we can compute
α = 0 and α = 1, and then connect them to obtain
the complete trapezoidal IT2 FS. This is effective enough
for decision-making or judgement problems, as the percep-
tual reasoning will run only once in such applications and
this approximation error will not be large. However, when
we adopt the CWW paradigm to model complex dynamic
systems (e.g. the linguistic dynamic systems proposed in
[9], [10]), the perceptual reasoning will run recursively, so
the approximation error will be transported and can not
be predicted and controlled. Using the proposed method,
errors will occur before the reasoning and can be eliminated
through mapping the output trapezoidal IT2 FS to the original
word in the library.

VI. CONCLUSIONS

This paper studied how to simplify the reasoning of the
PR method by avoiding the α-cuts computation of the output
word. First, we gave a novel property of the PR method,
which shows that trapezoidal output II2 FSs can be obtained
if trapezoidal IT2 FSs with consistent slopes are adopted
in the consequent parts of the fuzzy IF-THEN rules. Then,
we explored how to derive slope-consistent trapezoidal IT2
FSs from trapezoidal IT2 FSs without consistent slopes. We
found that this approximation problem can be transformed as
a constrained linear-quadratic optimization problem which
can be solved by popular optimization algorithms. An ex-
ample was also given to show how to obtain the slope-
consistent trapezoidal IT2 FSs. In the future, we will apply
the simplified PR method to construct the linguistic dynamic
systems for some real-world complex applications.
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