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Abstract: This paper aims to propose a framework for manifold regularization (MR) based distributed semi-supervised learning
(DSSL) using single layer feed-forward neural network (SLFNN). The proposed framework, denoted as DSSL-SLFNN is based on the
SLFNN, MR framework, and distributed optimization strategy. Then, a series of algorithms are derived to solve DSSL problems. In
DSSL problems, data consisting of labeled and unlabeled samples are distributed over a communication network, where each node has
only access to its own data and can only communicate with its neighbors. In some scenarios, DSSL problems cannot be solved by central-
ized algorithms. According to the DSSL-SLFNN framework, each node over the communication network exchanges the initial paramet-
ers of the SLFNN with the same basis functions for semi-supervised learning (SSL). All nodes calculate the global optimal coefficients of
the SLFNN by using distributed datasets and local updates. During the learning process, each node only exchanges local coefficients
with its neighbors rather than raw data. It means that DSSL-SLFNN based algorithms work in a fully distributed fashion and are pri-
vacy preserving methods. Finally, several simulations are presented to show the efficiency of the proposed framework and the derived al-
gorithms.
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1 Introduction

Artificial neural networks (ANNs) play an important
role in machine learning (ML) and perform well in many
applications 3. Among many ANNs, the single layer
feed-forward neural network (SLFNN) attracts more at-
tention owing to its simple form and excellent perform-
anceld. Although the SLFNN algorithm is effective, the
training of the SLFNN algorithm is complicated because
of the large number of parameters. Thus, many research-
ers focus on feed-forward neural networks with random-
ized weights (FNNRW). Li and Wangl’ discuss the prac-
tical issues and common pitfalls of the random vector
functional-link (RVFL) built with a specific randomized
algorithm. The input weights and biases of RVFL are
randomly assigned and fixed during the training phase.
Wang and Lilfl propose a stochastic configuration net-
works (SCNs) learner model, which is incrementally gen-
erated by stochastic configuration (SC) algorithms. The
FNNRW attracts attention because of its simple configur-
ation, fast training speed, and good performance in re-
gression and classification tasks. Traditional algorithms
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based on SLFNN and FNNRW are supervised approaches,
where the labels of the training data are known.

In the real world, it is difficult or costly to get labeled
data. Therefore, some researchers have tried to make bet-
ter use of unlabeled data based on labeled data and pro-
posed many semi-supervised learning (SSL) algorithms.
The task of SSL is to learn mappings from datasets, in-
cluding labeled and unlabeled data. Up to now, SSL tech-
niques have been theoretically studied and well de-
veloped. Some SSL algorithms are based on the manifold
regularization (MR) theoryl™@. According to the MR
framework, training samples are assumed to be distrib-
uted on a low-dimension manifold, whose geometry only
depends on the input data including labeled and un-
labeled data. Correspondingly, many MR-based al-
gorithms have been derived[l9712l. Another kind of SSL al-
gorithm is based on the transductive learning (TL) the-
oryl1274 The TL theory is based on the principle of
structural risk minimization. Besides, there are also many
SSL methods, including generative modeling/!5], semi-su-
pervised support vector machine (S3VM)[0l co-training[!7,
and fuzziness theory!8].

Although SLFNN based supervised learning (SL) and
SSL algorithms can be used to solve many problems in
practice, there are many scenarios in which data cannot
be centrally dealt with. For example, personal informa-
tion and commercial secrets cannot be shared due to pri-
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vacy protection. In addition, nodes in a wireless sensor
network (WSN) can only transfer limited information due
to bandwidth limitation. Data in these scenarios are sep-
arately stored over communication networks and cannot
be shared, where traditional centralized algorithms can-
not be applied. Thus, several distributed SSL (DSSL) al-
gorithms have been proposed. Avrachenkov et al.l!9 pro-
pose two asynchronously distributed approaches for
graph-based SSL. The first approach is based on stochast-
ic approximation and the second one uses the random-
ized Kaczmarz algorithm. Chang et al.29 provide an er-
ror analysis for DSSL with kernel ridge regression based
on a divide-and-conquer strategy. Shen et al.2!l propose
two frameworks for distributed semi-supervised metric
learning using the diffusion and alternating direction
method of multipliers (ADMM) strategies. Scardapane et
al.[2l investigate the problem of learning a semi-super-
vised support vector machine (SVM) with distributed
data over a network of interconnected agents and pro-
pose a DSSL algorithm based on the in-network success-
ive convex approximation (NEXT) framework. Fieri-
monte et al.23] propose the D-LapRLS algorithm based on
the kernel method and distributed average consensus
(DAC) strategy. Moreover, they applied two techniques,
namely the random projection and the nonlinear trans-
formation, to calculate the global Euclidean distance mat-
rix (EDM) with transformed data. Giiler et al.[4 propose
a kernel based privacy-aware DSSL algorithm by defin-
ing a metric that quantifies the number of candidate
samples that are consistent with shared data. Among
these kernel-based DSSL algorithms, the D-LapRLS al-
gorithm performs best. However, it needs to calculate the
global EDM with respect to total samples, which cost
much time. In order to solve DSSL problems and over-
come the drawback of kernel based DSSL algorithms, we
redesigned the model and proposed the D-LapWNN al-
gorithm in our previous work(?l, inspired by [26-28]. It is
based on the MR framework and the zero gradient sum
(ZGS) strategy. Considering distributed data split by at-
tributes or vertically partitioned data, we proposed the
ADMM and MR based DSS-RVFL algorithm in [29].

In this paper, we extend our previous works and nov-
elly propose a DSSL framework using SLFNN and dis-
tributed optimization strategies (DOS) such as the ZGS,
ADMM, DAC, diffusion least mean square (DLMS), etc.
We denote the proposed framework as DSSL-SLFNN.
This framework takes advantage of SLFNN and DOS.
According to the proposed framework, each node over the
communication network is assigned an individual SLFNN
with the same structure and exchanges local information
with its neighbors. The convergence of the proposed
framework is guaranteed by the corresponding DOS. Fur-
thermore, we derive a series of DSSL algorithms from the
DSSL-SLFNN framework by using different SLFNNs and
DOSs. The task of DSSL-SLFNN is to calculate the glob-
ally optimal coefficients of SLFNN in a distributed man-
ner. During the learning process, each node only ex-
changes local coefficients with its neighbors rather than
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the raw data. It means that the DSSL-SLFNN frame-
work is able to preserve privacy. Moreover, the learning
results of these DSSL-SLFNN based algorithms are
proved to be similar to the centralized algorithm using
SLFNN with all training samples over the network. The
main contribution of this paper is to novelly propose a
privacy-preserving DSSL framework, which is based on
the MR theory but not necessary to estimate the global
EDM.

The contributions of this paper are summarized as
follows.

1) This paper proposes a novel DSSL framework us-
ing MR and SLFNN, denoted as the DSSL-SLFNN
framework, to quickly solve DSSL problems. Then, a
series of DSSL algorithms are derived based on the pro-
posed framework.

2) The DSSL-SLFNN framework overcomes the com-
mon drawback of the kernel method based DSSL al-
gorithm, which requires to calculate the global EDM with
respect to the total data over the communication network.

3) The algorithms derived from the DSSL-SLFNN
framework work in a fully distributed fashion and avoids
sharing original or sensitive data. It means that the pro-
posed DSSL-SLENN framework is fully distributed and
privacy-preserving.

The rest of this paper is organized as follows. At first,
some preliminaries are introduced in Section 2. Then, in
Section 3, we formulate the DSSL problem and propose a
novel DSSL framework using SLFNN. Section 4 provides
some numerical simulations to verify the efficiency of the
proposed algorithms. Finally, conclusions are drawn in
Section 5.

Notation. R stands for the real number set. x € R"
represents an n x 1 real-value vector. A € R"*"™ denotes
an n X n size real-value matrix. AT is the transpose of
the matrix A. || - || stands for the Euclidean norm. V f de-
notes the gradient of the function f.

2 Preliminaries

In this section, some definitions of SLFNN are intro-
duced in Section 2.1. Then, some distributed optimiza-
tion strategies are introduced in Section 2.2.

2.1 Single layer feed-forward neural net-
works

In the study of ANN, the research of SLFNN plays a
very important role. SLENN contains many kinds of neural
networks such as wavelet neural network (WNN)[27, 30
radial basis function network (RBFN)BL 32 and random
vector functional link network (RVFLN)[2l. The general
model of an SLFNN is given in the following form:
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where v, denotes the [-th neuron or basis function, L is
the number of hidden neurons, and w; is the coefficient or
weight of neuron [. Coefficients of neurons are trained by
using a dataset S = {(zi, %)}, with x; € R* and
y € R,i=1,--- , N, € represents the training error.

The forms of basis functions in different SLFNN mod-
els are quite different. WNN is a class of ANN that com-
bines the classic ANN and wavelet analysis. In the WNN
model, ¥i(z) = \/%w(:c @ b
tion. Here, a; € Ry and b; € R? are called dilation and
translation parameters, respectively.

) is the wavelet basis func-

RBFN is widely used because of its universal approx-
imation and faster learning speed. In RBFN, the basis
functions depend on the distance between the input vec-
tor and the core vector, which is defined as ;(x) =
¥(||x — ¢i|]). Here, ¢; € R* is a reference vector denoted
as the [-th center or core.

In the traditional fully connected ANN, the initial val-
ues of many parameters have little influence on the accur-
acy of the algorithm, especially the weight between the
input layer and the hidden layer, namely input weight.
For FNNRW, (x)=1(ajx —b) with a; € R and
b; € R are randomly chosen.

The frequently-used basis functions of the SLFNNs
mentioned above are expressed in Table 1.

The goal of training an SLFNN is to find proper coef-
ficients to minimize the training error e, which is equival-
ent to minimizing the following expression:

T=3 3w F@)? + 3w ()

where A > 0 is the coefficient of the regularization term.
Expression (2) can be rewritten in the matrix form as

T =gl — Hul* + 5 wl? (3)
where y = [y1,- - ,yn]", w = [w1, -+ ,wr]", and
1 (1) (1)
H =
Pi(zn) Yr(en) |,

Thus, the optimal coefficient vector can be easily ob-
tained by

w = (H"H+ ) 'H"y (4)
where I}, denotes the L order identity matrix.
2.2 Distributed optimization strategies

There are many DOS wused for calculating global

Table 1 Basis functions and the corresponding formulations of
different types of SLENN

Type Basis function Formulation
sin(27x) — sin(7wx
Shannon w(z) = Sn@r2) = sin(re)
T
Wayvelet Morlet z?

P(x) = cos(bx)e” 2z

N

2

)= (1—a2)e T

Mexican hat

22

Gaussian w(x) —e 202
Radial Multi quadric P(z) = (22 + 0—2)%
Thin plate spline P(x) = 22 In(z)
Sigmoid ¥(x) :
12moi: Tr) = —
Other lL+e®
Sine P(x) = sin(z)

optimums of optimization problems in distributed scenes,
such as distributed average consensus (DAC)B3] zero
gradient sum (ZGS)BY, alternating direction method of
multipliers (ADMM)B3, diffusion least mean square
(DLMS) 30 and such likel22].

1) Distributed average consensus: The DAC strategy
is an iterative network protocol that is designed to com-
pute the global average of the local measurement vector!33.
For a V nodes network, the k-th iteration of node i is
shown as

(k) = Z]_Vzl Cija;(k—1). (5)

It has been proved in [33] that if the network is con-
nected and the connectivity matrix C' is chosen appropri-
ately, the iterative sequence (5) converges to the global
average. It means that

lim (k) = %Zjv:lmj(o),\ﬁ:m,... V. (6)

k—+oo

In order to ensure convergence in the case of undirec-
ted and connected networks(33, C is given by

1 e
PR ifj eN;
Cij = d; e (7)
1- fi=
it ifi =3
0, otherwise

where d; represents the degree of node j and d denotes
the maximum degree of all nodes in the graph G.

2) Alternating direction method of multipliers: The
ADMM strategy proposed in [35] is an optimization pro-
cedure, that breaks the optimization problem into sub-
problems that are easier to handle. It focuses on solving
optimization problems with variables a € RP' and
z € RP2, shown as
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{min f(x) +g(2) (8)
st. Az+Bz+c¢=0

where f and ¢ are convex functions, A € RPXP1
B € RP*P2 and ¢ € RP.
To solve the optimization problem (8), we rewrite the

expression as the following augmented Lagrangian form:

Fo(x,z,7) =f(x) + 9(2)
r' (Az 4+ Bz +¢) (9)

+ §||As + Bz +c|*+

where p > 0 is a tunable parameter and r € R? is the
Lagrange multipliers vector.

In order to solve the problem (8), the iteration proced-
ure of the ADMM strategy is given by

@(k + 1) =arg min{F, (@(k), 2(k), r(k))}
z(k + 1):argmzin{]-'p(a:(k +1),z(k),r(k))} (10)
r(k+1)=r(k)+p(Ax(k+1)+Bz(k+1)+c).

3) Zero gradient sum: The ZGS strategy is proposed
to solve unconstrained, separable, convex optimization
problems over undirected networks ~with fixed
topologies4. Consider a non-constrained distributed op-
timization problem that consists of a series of simple sub-

problems. The formulation is given by

ot = argmwin f(z) = argmzin Zz‘;l fi(x) (11)

where f; is a twice continuously differentiable and
strongly convex function.

In our previous work[?% 27 the ZGS strategy has been
developed as the following form:

Vii(®i(k+1)) = Vfi(xi(k)) =
VZKM aij(z;(k) — zi(k)) (12)
(IIZ(O) = :131'*

where v > 0 is a tunable parameter, a;; is the element of
the weighted adjacency matrix A corresponding to the
graph G, and N; denotes the neighbor index set of node 1.

4) Diffusion least mean square: The DLMS strategy is
proposed for adaptation and learning over networks[36l. It
is used to solve problems like (11). The iteration of the
DLMS strategy is given by

pi(k) = mi(k) — a(k )Vfi(-’m( )

13
i(k+1) Z Cijbi(k (13)
where x;(0) is usually chosen as 0 or a random vector
and a(k) is a step-size sequence.

Here, a(k) € (0,1), >3 a(k) = 0o, and > 5, a(k)? <
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oo. According to [22], a(k) can be chosen as

Qo

k)= —°2 14
where a and § are positive tunable parameters.
3 Framework for distributed semi-

supervised learning

This section contains three parts. Firstly, we reformu-
late the DSSL problem in Section 3.1. Then, we propose a
novel DSSL  framework and derive three DSSL al-
gorithms in Section 3.2.

3.1 Problem formulation

Consider the distributed situation of SSL problems,
which is illustrated in Fig.1. All of the training data, in-
cluding labeled and unlabeled samples, are separately dis-
tributed on V different nodes over the communication
network. Here, we only care about undirected and con-
nected networks.

Corresponding to the definition of the dataset in SSL,
a dataset in DSSL problems can be described as

'C<

Si =

i=1 7

(sfush)

97
Il
-

1

where S! = {( ],yj)};V;1 stands for the labeled samples,
Sl = {m}‘}j:/l represents the unlabeled data, and N; =
N} + N denotes the number of training samples of node
i, respectively, i =1,--- | V.

In the distributed case, the goal of DSSL is to obtain
globally optimal parameters using distributed data.
However, as shown in Fig.1, each node has only access to
its own data and the parameters transmitted by neigh-
boring nodes. For each node, the SSL problem is just a
centralized problem. Thus, the following global loss func-
tion is defined by accumulating the local loss function:

- 2, A 2
7= (5 Hw = wi]* + S lhwl

1=1

N Ty TF 7.
+ 2w H, LZHZw)
(15)

where A; and 7, are positive parameters. For simplicity,
=Av=Xand g =---=ny =1n.

The above loss function can be rewritten as
J = ZY:1 Ji, where [J; is the local loss function. For

node ¢, the local loss function 7; is known. The global loss

we set Ay = - --

function J is a measure of the computational model for
all nodes using distributed data. However, it is agnostic
for any node.

Since the training data are distributed over the com-
munication network, minimizing the loss function (15) is
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—

O Node

Ej Labeled data
Ej Unlabeled data

SLFNN
— Link

Fig.1 An illustration of the communication network, where node 1 and node 4 are the neighbors of node 3. Each node is individually

assigned an SLFNN with the same basis functions.

equivalent to solving the optimization problem given by

v /1 A
min Y0 (5 Hiws =yl + Sllwil*+

g’w;rHiTiiHiwi)a (16)

st wy=w;,4,5=1,---,V.

The optimization problem (16) cannot be solved dir-
ectly by traditional centralized methods. Thus, our task
is to calculate the global optimal coefficient vector w”*
defined as

w" =argmin, cgr J. (17)

3.2 DSSL-SLFNN framework and derived
algorithms

The optimization problem (17) is a distributed optim-
ization problem, which cannot be directly solved because
it contains distributed data. However, it can be solved by
using DOSs, such as ZGS, ADMM, DLMS, etc.

When changing the regular terms or norms in prob-
lem (17), some DOSs may not work. For example, the
ZGS strategy achieves a high convergence speed but re-
quires the local loss function J; to be twice continuously
differentiable and strongly convex. On the other hand,
the ADMM strategy does not require the local loss function
to be differentiable, but the calculation is time-consuming.

Therefore, we summarize the existing algorithms and
propose a novel DSSL-SLFNN framework on the basis of
the SLENN, MR-based SSL framework, and DOS meth-
ods. First, the flow chart of the DSSL-SLFNN frame-

work is illustrated in Fig.2. Then, we derive it into a
series of DSSL algorithms.

1) ZGS based DSSL algorithm: According to our pre-
vious work, the global loss function (15) can be regarded
as the sum of the local loss function of node i as follows:

I Distributed data
§=US8=U(S/usy

Fig.2 Flow chart of the proposed DSSL-SLFNN framework
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Ji = %|‘H;w—y£’|2+%wTH?-iiHiw+%Hw||2 (18)

which is a twice continuously differentiable and strongly

convex function.

Denoting w; (k) as w;, the partial derivative of J;(k)

with respect to w;(k) is given by
VT (w;) = (H;TH;+7;H? LH,-HIL)wﬁH;Ty;. (19)

Thus, we have the following expression:

VIi(wi(k + 1)) = VIi(wi(k)) =
(HT +nHTLiH, 4+ ML) (wi(k+1) — wi(k). (20)

According to the ZGS strategy, the extended al-
gorithm is defined as

wi(k+1) = 7(H§TH} +nHTLH; + )\IL) x

Z aij (w](k) — wz(k‘)) + w; (k) (21)

JEN;

w;(0) = w;.

where a;; is an element of the adjacency matrix A.

The pseudo-code of the ZGS-DSSL algorithm is shown
in Algorithm 1.

Algorithm 1. ZGS-DSSL

1) Initialize SLFNN and parameters

)
2) for i € V do
3) Calculate Hi[, H; and L;
4) Qi<+ H{"H}+nHL:H; + \
5 wi(0) « Q; 'H{'y}
6) end
7) for k+ 0to K —1do
8) foricV do
9) w; (k+1)wi(k)+y Q. E aj (w; (k) —wi(k))
10) end IEN
11) end
12) w* + w1 (K)

13) return w*

Remark 1. According to our previous work[?, the
convergence of this kind of algorithm is ensured by the
Lyapunov theory. It can be easily derived that w;(k) con-

verges to w™ if the communication network is undirected

and connected, and the parameter 0 < v < mln{ & )(:)2}
Here, A2 > 0 is the smallest nonzero eigenvalue of the
Laplacian matrix £, ¢ = Amax(£), 8 = min,, ev{Amin(Q:)}
and  © = max,,cv{Amax(Qi)} with Qi = H/ Hj+
nHIL,H; + M.

2) ADMM based DSSL algorithm: According to the
ADMM strategy, we rewrite the optimization problem
(16) as the following form:
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. Lrg T 2, A 2

min > (Gl Hiw -yl + 5w+

st. wi—z=0,i=1,---,V.

We rewrite the loss function (15) as
J :ZV (1|‘le — y‘”2 Dwl HY L Hw+

i=1 2 7 3 1 3 7 7 K3 7

A

Szl + 2w = 2 + v (wi = 2)). (23)

According to the ADMM strategy, the optimization
problem (23) can be rewritten as

wi+1) =argmin { 3 || Hwi— !+ o =2 (0) [+
(k) (w; — 2(k)) + 1 w!H]'L: le}
z(k+1):argmin{z_ )

2224 23 o+ 1)1
ri(k+1)= i(k)+7(wi(k+ 1) — z(k+1)).

v ra(k) ™ (wi(k + 1)—2)+

(24)
Thus, the ADMM based algorithm is described as

wi(k+1) = (H"H! + nH L, H; + \IL) ' x
(H"yi —ri(k) +7z(k)) (25)
25
z(k+1)= ﬁ(mwrf)

ri(k+1) = ri(k) + y(wi(k + 1) — z(k + 1))

1
where w;(0) is a random vector, w = v ZYZI wi(k+1)

and 7 = %ZLI r;(k), which can be calculated using the
DAC strategy.

The pseudo-code of the proposed ADMM-DSSL al-
gorithm is shown in Algorithm 2.

Algorithm 2. ADMM-DSSL

1) Choose the proper SLENN and parameters

2) Initialize z(0) and 7;(0) to O

)
)
3) for i € V do
4) Calculate Hi[, H,; and L,
5 Q.+ H/YH!+nHIL,H, + )\,
6) end
7) for k< 0 to K — 1 do
8) foriecV do
9  wi(k+1)+ Q; (HICiggi — ri(k) +vz(k))
10) end
11) W<+ + SV wi(k + 1) using the DAC strategy
12) 7+ & Z:/:l r;(k) using the DAC strategy
13) z(k+1) + 53 (yw +7)
14) foricV do
15) 7k +1)  ri(k) + y(wi(k +1) — 2(k+ 1))
16) end
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17)  if|lw(k) — z(k)|| < € then
18) break
19) end
20) end
21) w* + 2(K)

22) return w”*

Remark 2. Compared with the ZGS-DSSL algorithm,
the ADMM-DSSL algorithm consumes more time owing
to two extra DAC steps. However, the ADMM strategy
has a low limit on the sub-optimization function, namely
convex rather than twice continuously differentiable and
strongly convex. From this point of view, the ADMM-
DSSL algorithm is more flexible and ordinary.

3) DLMS based DSSL algorithm: Similar to the defini-
tions in the ZGS based DSSL algorithms, the local loss
function and its derivation are described in expressions

(18) and (19), respectively. When we denote «a(k)=

(kiiol)l; and § = 1 in the DLMS strategy expressed in (13),

the DLMS based DSSL algorithm is given by

oi(k) = wik) — 177

AL ) w; (k) — Hnyﬁ) (26)

! (5 () — 4 (k)

((HTH!+nHT LHi+

wi(k+1)=¢z‘(k)+m N,
where w;(0) = 0.

The pseudo-code of the DLMS-DSSL framework is
shown in Algorithm 3.

6
7) for k< 0to K —1do

) end
)

8) for i € V do
)

9) 61(k) - wi(k) 15 (Quuwi(k) — HYTy)

10) wi(k+1) ¢ (k) + 17— Djen; (65(R) = i(k))
11) end

12) end

13) w* + w1 (K)

14) return w”

Remark 3. Compared with the ZGS-DSSL algorithm,
the requirements for optimization functions of the DLMS-
DSSL algorithm are more flexible, but the convergence
speed is lower. In contrast, compared with the ADMM-
DSSL  algorithm, the DLMS-DSSL costs more time.
Therefore, the DSSL algorithm should be selected reason-
ably according to the actual situation.

4 Simulations

In this section, we will apply the algorithms proposed
in this paper to different datasets, introduced in Table 2,
to verify the effectiveness of these algorithms. First, some
simulation results using the proposed algorithms are
shown in Section 4.1. Then, we analyze the parameters of
these DSSL algorithms in Section 4.2.

The training data consisting of labeled and unlabeled
samples are averagely allocated to each node over the

Table 2 Description of the datasets used in simulations

Algorithm 3. DLMS-DSSL Dataset Instance Feature Type Source

1) Choose the proper SLFNN and parameters 2-Moon 10 000 2 Cla Artificial

2) Initialize w(0) to 0 SinC 10 000 1 Reg Artificial

3) for i€V do ~ Concrete 1027 8 Reg UCI repository

4) Calculate H!, H; and L;

5) Q. HZITHZ[ i UHF-EZHZ Y WDBC 569 30 Cla UCI repository
Network with 5 nodes Network with 20 nodes Network with 35 nodes

Network with 80 nodes

Network with 95 nodes

Network with 110 nodes

Network with 125 nodes

Fig. 3 Topologies for communication networks of different sizes, where the number of nodes ranges from 5 to 125
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communication networks. For simplicity, we only con-
sider the connected and undirected networks with differ-
ent kinds of topologies shown in Fig. 3.

The proposed framework is used to solve distributed
problems, whose goal is to achieve the effect of central-
ized learning. Therefore, it focuses on how to realize dis-
tributed semi-supervised learning rather than specific
SLENN. Moreover, all the following simulations are re-
peated ten times for verification.

4.1 Simulation results

The derived DSSL algorithms are applied to the data-

6 T T T T . . . T
-+~ ADMM-WNN
5 H —=ZGS-WNN
DLMS-WNN

-o- Centralized WNN

Classification error (%)
w

5 20 35 50 65 80 95 110 125
Nodes of network
(a) Classification error using WNN

6bpr—m——————————————
—~+ADMM-RBFN | .
3 f| -+ ZGS-RBFN po .
DLMS-RBFN
4 1| -o-Centralized RBFN 1

Classification error (%)
w

Nodes of network
(b) Classification error using RBFN

6 : : : . . . T
~E ADMM-FNNRW
5 H-—=ZGS-FNNRW 8
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Fig. 4 Classification error of the derived algorithms with the
dataset of “2-Moon” using different SLENNs
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sets illustrated in Table 2 over the communication net-
works with different topologies shown in Fig.3. The simu-
lation results are shown in Figs.4—-7. In addition, we list
the results running in the 5-node network from Fig.4 and
compare the derived DSSL algorithms with the central-
ized SLFNNs, LapRLS, and D-LapRLS algorithms, listed
in Table 3. The parameters used in these algorithms are
listed in Table 4.

The simulation results show that the proposed DSSL-
SLFNN framework and the derived DSSL algorithms are
efficient enough in many applications with different data-
sets. Fig.4 shows that the proposed DSSL algorithms
achieve the similar accuracy compared with the central-
ized SLFNNs. Furthermore, the ZGS based DSSL al-
gorithms perform worse compared with the other two al-
gorithms. Table 3 shows that the kernel-based al-
gorithms and centralized SSL algorithms using different
SLFNNs are time-consuming due to the large-scale Lapla-
cian matrix calculation.

Table 3 Classification error and training time of the dataset
“2-Moon” using the proposed DSSL algorithms and the D-
LapRLS algorithm on the 5 nodes communication network

shown in Fig. 3

SLFN DOS Classification error Time (s)

ADMM  3.65E-02(£2.18E-02) 1.41E+400(+3.37E-01)

ZGS  3.99E-02(£2.55E-02) 4.24E-02(46.45E-03)

WNN
DLMS  3.64E-02(42.23E-02) 8.18E-02(42.54E-02)
Central 3.13E-02(£2.03E-02) 4.12E+02(+5.22E+01)
ADMM  8.90E-04(+£8.42E-04) 1.93E+400(+4.49E-01)
ZGS  2.25E-03(£2.5TE-03) 4.48E-02(+3.99E-03)

RBFN
DLMS  2.74E-03(+3.68E-03) 4.83E-01(+7.66E-02)
Central 2.10E-04(42.07E-04) 4.09E+02(%7.95E+01)
ADMM  8.90E-04(+8.42E-04) 2.07E+00(+4.23E-01)
ZGS  7.94E-02(%6.39E-02) 4.68E-02(%3.72E-03)

FNNRW
DLMS  9.25E-02(%6.71E-02) 3.89E-01(+£5.42E-02)
Central  6.85E-02(16.33E-02) 4.14E+02(£6.65E+01)
D-LapRLS 1.05E-03(+1.48E-03) 8.27E+02(+7.26E401)

Kernel

LapRLS 1.05E-03(£1.48E-03) 4.17E+02(42.57E+01)

Table 4 Parameters used in the derived DSSL algorithms in the
experiment section

SSL SSL ADMM ZGS DLMS

Dataset A n vy v a0
SinC 1073 1074 10-3 10—4 1073
2-Moon 10-* 107° 1073 10—° 1072

Concrete 10—4 10—95 104 10—4 103
WDBC 10-3  10~4 10—3 104 10—2
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Fig. 5 Performance of the derived algorithms with the dataset of “SinC”

4.2 Parameter analyses

In this part, we analyze the influence of the tunable
parameters on the performance of the proposed al-
gorithms. The proposed algorithms in this paper use
many parameters including common parameters like A, 7,
and specific parameters like 7, p, and «ap. For conveni-
ence, these parameters are treated as global parameters in
this paper shared among the communication network
nodes. The cost of parameter exchange is avoided, which
can simplify the implementation of the proposed al-

gorithms.

The influence of parameters v and p on the ZGS
based and ADMM based DSSL algorithms have been
analyzed similarly in [25] and [29], respectively. Thus, we
will not analyze these two parameters repeatedly. As for
the parameter oo used in the DLMS-DSSL algorithm, we
set the value from 107> to 1 and applied it to different
communication networks. The result is shown in Fig.8.
Then, we analyzed the influence of the accuracy of the
centralized SSL algorithms on the parameters A and 7.
The results, shown in Fig.9, imply that the SSL al-
gorithms perform better with the decrease of A and 7.

In order to analyze the influence of the ratio of labeled
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Fig. 8 Influence of initial values of the parameter o on the
performance of the DLMS-DSSL algorithm using the “WDBC”
dataset

data on the performance of the centralized and proposed
distributed SSL algorithms, we applied the proposed al-
gorithms on the benchmark datasets with different
labeled samples by setting a different ratio of labeled
samples. The results are shown in Fig.10. As the results
shown, all centralized and distributed SSL algorithms
perform better when the ratio of labeled samples is in-
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Log (MSE)

Fig.9 Log (MSE) of regression on the “Concrete” dataset using
the centralized RBFN, varying the parameters A and n during
the iteration process.
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Fig. 10 Influence of the ratio of labeled samples on the
performance of SSL algorithms using the “Concrete” dataset

creased. However, when the labeled samples are in-
creased to a certain proportion, the improvement of the
SSL algorithms will become inconspicuous.

5 Conclusions

This paper proposes a novel DSSL framework for solv-
ing SSL problems in distributed scenes, denoted as the
DSSL-SLEFNN framework. By decomposing a DSSL prob-
lem into a series of subproblems on SSL with consensus
constraints, we reformulate DSSL problems as distrib-
uted optimization problems that DOS can solve over
communication networks.

Then, we derive a series of DSSL algorithms from the
DSSL-SLFNN framework. According to these DSSL al-
gorithms, each node over the communication network
shares the SLFNN with the initial parameters and has
only access to its own data. Besides, these nodes can ex-
change local information iteratively. During the learning
process of the proposed DSSL algorithms, the estimated
coefficients of the local SLFNN are exchanged between
neighbors at every iteration.

Finally, some future work is to generalize the commu-
nicating networks into the case of directed or time-vary-
ing networks, which are more practical in applications.
Another important task to perform is to design finite-

time distributed learning algorithms.
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