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Abstract: In the era of deep learning, modeling for most natural language processing (NLP) tasks has converged into several main-
stream paradigms. For example, we usually adopt the sequence labeling paradigm to solve a bundle of tasks such as POS-tagging, named
entity recognition (NER), and chunking, and adopt the classification paradigm to solve tasks like sentiment analysis. With the rapid
progress of pre-trained language models, recent years have witnessed a rising trend of paradigm shift, which is solving one NLP task in a
new paradigm by reformulating the task. The paradigm shift has achieved great success on many tasks and is becoming a promising way
to improve model performance. Moreover, some of these paradigms have shown great potential to unify a large number of NLP tasks,
making it possible to build a single model to handle diverse tasks. In this paper, we review such phenomenon of paradigm shifts in recent

years, highlighting several paradigms that have the potential to solve different NLP tasks.!
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1 Introduction

In the scope of this paper, a paradigm is a general
modeling framework or a distinct set of methodologies to
solve a class of tasks. For instance, sequence labeling is a
mainstream paradigm for named entity recognition
(NER). Different paradigms usually require different
formats of input and output, and therefore highly de-
pend on the annotation of the tasks. In the past years,
modeling for most NLP tasks has converged to several
mainstream paradigms, as summarized in this paper,
Class, Matching, SeqLab, MRC, Seq2Seq, Seq2ASeq, and
(M)LM.

Though the paradigm for many tasks has converged
and dominated for a long time, recent work has shown
that models under some paradigms also generalize well on
tasks with other paradigms. For example, the MRC and
Seq2Seq paradigms can also achieve state-of-the-art per-
formance on NER tasks(: 2, which were previously form-
alized in the sequence labeling (SeqLab) paradigm. Such
methods typically first convert the form of the dataset to
the form required by the new paradigm, and then use the
model under the new paradigm to solve the task. In re-
cent years, similar methods that reformulate a natural
language processing (NLP) task as another one have
achieved great success and gained increasing attention in
the community. After the emergence of pre-trained lan-
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guage models (PTMs)B0l, paradigm shifts have been ob-
served in an increasing number of tasks. Combined with
the power of these PTMs, some paradigms have shown
great potential to unify diverse NLP tasks. One of these
potential unified paradigms, (M)LM (also referred to as
prompt-based tuning), has made rapid progress recently,
making it possible to employ a single PTM as the univer-
sal solver for various understanding and generation
tasks[714],

Despite their success, these paradigm shifts scattering
in various NLP tasks have not been systematically re-
viewed and analyzed. In this paper, we attempt to sum-
marize recent advances and trends in this line of research,
namely paradigm shift or paradigm transfer.

This paper is organized as follows. Section 2 gives
formal definitions of the seven paradigms, and introduces
their representative tasks and instance models. Section 3
shows recent paradigm shifts that happened in different
NLP tasks. Section 4 discusses the designs and chal-
lenges of several highlighted paradigms that have great
potential to unify most existing NLP tasks. Section 5 con-
cludes with a brief discussion of recent trends and future
directions.

2 Paradigms in NLP

2.1 Paradigms, tasks, and models

Typically, a task corresponds to a dataset D =

1 A constantly updated website is publicly available at https:
//txsun1997.github.io/nlp-paradigm-shift.
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Fig. 1 Illustration of the seven mainstream paradigms in NLP

{X;, Vi}1. A paradigm is the general modeling frame-
work to fit some datasets (or tasks) with a specific format
(i.e., the data structure of x and )). Therefore, a task
can be solved by multiple paradigms by transforming it
into different formats. A paradigm can be used to solve
multiple tasks that can be formulated in the same format.
Moreover, a paradigm can be instantiated by a class of
models with similar architectures.

2.2 Seven paradigms in NLP

In this paper, we mainly consider the following seven
paradigms that are widely used in NLP tasks, i.e., Class,
Matching, SeqLab, MRC, Seq2Seq, Seq2ASeq, and
(M)LM. These paradigms have demonstrated strong dom-
inance in many mainstream NLP tasks. Fig.1 provides an
illustration of the seven paradigms. Sections 2.2.1-2.2.7
briefly introduce the seven paradigms and their corres-
ponding tasks and models.

2.2.1 Classification (Class)

Text classification, which is designating predefined la-
bels for text, is an essential and fundamental task in vari-
ous NLP applications such as sentiment analysis, topic
classification, spam detection, etc. In the era of deep
learning, text classification is usually done by feeding the
input text into a deep neural-based encoder to extract the
task-specific feature, which is then fed into a shallow clas-
sifier to predict the label, i.e.,

Y = Cls(Enc(X)). (1)
Note that ) can be one-hot or multi-hot (in which
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case we call multi-label classification). Enc(-) can be in-
stantiated as convolutional networks/!S], recurrent net-
worksll% or transformersl7. Cls(:) is usually implemen-
ted as a simple multi-layer perceptron following a pool-
ing layer. Note that the pooling layer can be performed
on the whole input text or a span of tokens.
2.2.2 Matching

Text matching is a paradigm to predict the semantic
relevance of two texts. It is widely adopted in many
fields, such as information retrieval, natural language in-
ference, question answering, and dialogue systems. A
Matching model should not only extract the features of
the two texts, but also capture their fine-grained interac-
tions. The Matching paradigm can be simply formulated
as

Y = Cls(Enc(X,, X)) (2)

where X, and A} are two texts to be predicted, ) can be
discrete (e.g., whether one text entails or contradicts the
other text) or continuous (e.g., the semantic similarity
between the two texts). The two texts are usually
encoded separately and then interact with each other[!8].
2.2.3 Sequence labeling (SeqLab)

The sequence labeling (SeqLab) paradigm (also re-
ferred to as sequence tagging) is a fundamental paradigm
modeling a variety of tasks such as part-of-speech (POS)
tagging, NER, and text chunking. Conventional neural-
based sequence labeling models are comprised of an en-
coder to capture the contextualized feature for each token
in the sequence, and a decoder to take in the features and
predict the labels, i.e.,
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Y1, 5 Yn = Dec(Enc(z1,- -+ ,zn)) (3)
where y1,---,yn are the corresponding labels of z1,---,
Zn. Enc() can be instantiated as a recurrent network[19
or a transformer encoderl'l. Dec(-) is usually implem-
ented as conditional random fields (CRF)[20.

2.2.4 MRC

The machine reading comprehension (MRC) paradigm
extracts contiguous token sequences (spans) from the in-
put sequence conditioned on a given question. It is ini-
tially adopted to solve MRC tasks, and then generalized
to other NLP tasks by reformulating them into the MRC
format. To keep comnsistent with prior work and avoid
confusion, we name this paradigm MRC, and distinguish
it from the task MRC. The MRC paradigm can be form-
ally described as follows:

Yk, Yert = Dec(Enc(&y, Xy)) (4)

where X, and X, denote passage (also referred to
context) and query, and Yk, - , Yk is a span from X, or
X,. Typically, Dec is implemented as two classifiers, one
for predicting the starting position and one for predicting
the ending position(21-23],
2.2.5 Sequence-to-sequence

The sequence-to-sequence (Seq2Seq) paradigm is a
general and powerful paradigm that can handle a variety
of NLP tasks. Typical applications of Seq2Seq include
machine translation and dialogue, where the system is
supposed to output a sequence (target language or re-
sponse) conditioned on an input sequence (source lan-
guage or user query). The Seq2Seq paradigm is typically
implemented by an encoder-decoder framework[24-27;

Y1, Ym :DeC(EHC(Z‘l,"' 733n)) (5)

Different from SeqLab, the lengths of the input and
output are not necessarily the same. Moreover, the de-
coder in Seq2Seq is usually more complicated and takes
as input at each step the previous output (when infer-
ence) or the ground truth (when training).

2.2.6 Sequence-to-action-sequence

Sequence-to-action-sequence (Seq2ASeq) is a widely
used paradigm for structured prediction. The aim of
Seq2ASeq is to predict an action sequence (also called
transition sequence) from some initial configuration ¢y to
a terminal configuration. The predicted action sequence
should encode some legal structure, such as a depend-
ency tree. The instances of the Seq2ASeq paradigm are
usually called transition-based models, which can be for-
mulated as

A = Cls(Enc(X),0) (6)

where A = a1, -, anm is a sequence of actions, C = co, -,

cm—1 is a sequence of configurations. At each time step,
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the model predicts an action a: based on the input text
and the current configuration c¢;—1, which can be
comprised of top elements in the stack, buffer, and
previous actions[28: 29,
2.2.7 (M)LM

Language modeling (LM) is a long-standing task in
NLP, which is to estimate the probability of a given se-
quence of words occurring in a sentence. Due to its self-
supervised fashion, language modeling and its variants,
e.g., masked language modeling (MLM), are adopted as
training objectives to pre-train models on a large-scale
unlabeled corpus. Typically, a language model can be
simply formulated as

zx = Dec(z1, -+, TK-1) (7)

where Dec can be any auto-regressive model such as recur-
rent networksB3%: 31 and transformer decoder32. As a
famous variant of LM, MLM can be formulated as

Z = Dec(Enc(%)) (8)

where Z is a corrupted version of = by replacing a portion
of the tokens with a special token [MASK], and Z denotes
the masked tokens to be predicted. Dec can be implem-
ented as a simple classifier as in bidirectional encoder
representations from transformers (BERT)B! or as an
auto-regressive transformer decoder as in bidirectional
and auto-regressive transformers (BART)[B3] and text-to-
text transfer transformer (T5)M.

Though LM and MLM can be somehow different (LM
is based on auto-regressive while MLM is based on auto-
encoding), we categorize them into one paradigm,
(M)LM, due to their same inherent nature, which is es-
timating the probability of some words given the context.

2.3 Compound paradigm

In this paper, we focus mainly on fundamental
paradigms (as described above) and tasks. Nevertheless,
it is worth noting that more complicated NLP tasks can
be solved by combining multiple fundamental paradigms.
For instance, HotpotQAB4, a multi-hop question answer-
ing task, can be solved by combining Matching and
MRC, where Matching is responsible for finding relevant
documents, and MRC is responsible for selecting the an-
swer span(35,

3 Paradigm shift in NLP tasks

In this section, we review the paradigm shifts that oc-
cur in different NLP tasks: text classification, natural lan-
guage inference, named entity recognition, aspect-based
sentiment analysis, relation exaction, text summarization,
and parsing. Table 1 provides a summary of paradigm
shifts.

@ Springer
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3.1 Text classification

Text classification is an essential task in various NLP
applications. Conventional text classification tasks can be
well solved by the Class paradigm. Nevertheless, its vari-
ants, such as multi-label classification, can be challenging,
in which case Class may be sub-optimal. To that end
Yang et al. 371 propose to adopt the Seq2Seq paradigm to
better capture interactions between labels for multi-label
classification tasks.

In addition, the semantics hidden in the labels cannot
be fully exploited in the Class paradigm. Chai et al.[3l
and Wang et al.57l adopt the Matching paradigm to pre-
dict whether the pair-wise input (X, L,) is matched,
where X is the original text and L, is the label descrip-
tion for class y. Though the semantic meaning of a label
can be exactly defined by the samples that it is associ-
ated with, incorporating prior knowledge of the label is
also helpful when training data is limited.

With the rise of pre-trained language models (LMs),
text classification tasks can also be solved in the (M)LM
paradigm(® 79, By reformulating a text classification task
into a (masked) language modeling task, the gap between
LM pre-training and fine-tuning is narrowed, resulting in
improved performance when training data is limited.

3.2 Natural language inference

Natural language inference (NLI) is typically modeled
in the Matching paradigm, where the two input texts
(Xa, Xp) are encoded and interact with each other, fol-
lowed by a classifier to predict the relationship between
them[!8]. With the emergence of powerful encoders such as
BERTBI, NLI tasks can be simply solved in the Class
paradigm by concatenating the two texts as one. In the
case of few-shot learning, NLI tasks can also be formu-
lated in the (M)LM paradigm by modifying the input,
e.g., “X,7 [MASK], X,”. The unfilled token [MASK] can
be predicted by the MLM head as Yes/No/Maybe, cor-
responding to Entailment/Contradiction/Neutrall"9l.

3.3 Named entity recognition

NER is also a fundamental task in NLP. NER can be
categorized into three subtasks: flat NER, nested NER,
and discontinuous NER. Traditional methods usually
solve the three NER tasks based on three paradigms, respec-
tively, i.e., SeqLabl1? 58] Class[5% 60, and Seq2ASeql58; 611,

Fu et al.3% and Yu et al.[2] solve flat NER and nes-
ted NER with the Class paradigm. The main idea is to
predict the label for each span in the input text. This
paradigm shift introduces the span overlapping problem:
The predicted entities may overlap, which is not allowed
in the flat NER. To handle this, Fu et al.?% adopt a
heuristic decoding method: For these overlapped spans,
only keep the span with the highest prediction probabil-
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ity.

Li et al.lll propose to formulate flat NER and nested
NER as an MRC task. They reconstruct each sample in-
to a triplet (X, Qy, Xspan), where X is the original text,
Q, is the question for the entity y, and Xspar is the an-
swer. Given the context, question, and answer, the MRC
paradigm can be adopted to solve this. Since there can be
multiple answers (entities) in a sentence, an index match-
ing module is developed to align the start and end in-
dexes.

Yan et al.l2l use a unified model based on the Seq2Seq
paradigm to solve the three types of NER subtasks. The
input of the Seq2Seq paradigm is the original text, while
the output is a sequence of span-entity pairs, for instance,
“Barack Obama (Person) US (Location)”. Due to the ver-
satility of the Seq2Seq paradigm and the great power of
BARTB3], this unified model achieved state-of-the-art per-
formance on various datasets spanning all three NER
subtasks.

3.4 Aspect-based sentiment analysis

Aspect-based sentiment analysis (ABSA) is a fine-
grained sentiment analysis task with seven subtasks, i.e.,
aspect term extraction (AE), opinion term extraction
(OE), aspect-level sentiment classification (ALSC), as-
pect-oriented opinion extraction (AOE), aspect term ex-
traction and sentiment classification (AESC), pair extrac-
tion (Pair), and triplet extraction (Triplet). These sub-
tasks can be solved using different paradigms. For ex-
ample, ALSC can be solved by the Class paradigm, and
AESC can be solved using the SeqLab paradigm.

ALSC is to predict the sentiment polarity for each
target-aspect pair, e.g., (LOCI, price), given a context,
e.g., “LOC1 is often considered the coolest area of Lon-
don”. Sun et al.[4?] formulate such a classification task in-
to a sentence-pair matching task, and adopt the
Matching paradigm to solve it. In particular, they gener-
ate auxiliary sentences (denoted as Squz) for each target-
aspect pair. For example, Sque for (LOCI, price) can be
“What do you think of the price of LOC1?”. The auxi-
liary sentence is then concatenated with the context as
(Sauz, X), which is then fed into BERTE! to predict the
sentiment.

Mao et al.43l adopt the MRC paradigm to handle all
of the ABSA subtasks. In particular, they construct two
queries to sequentially extract the aspect terms and their
corresponding polarities and opinion terms. The first
query is “Find the aspect terms in the text.” Assume
that the answer (aspect term) predicted by the MRC
model is AT, then the second query can be constructed as
“Find the sentiment polarity and opinion terms for AT
in the text.” Through such dataset conversion, all ABSA
subtasks can be solved in the MRC paradigm.

Yan et al.#4 solve all ABSA subtasks with the
Seq2Seq paradigm by converting the original label of a

@ Springer
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subtask into a sequence of tokens, which is used as a tar-
get to train a Seq2Seq model. Take the triplet extraction
subtask as an example, for the input sentence, “The
drinks are always well made and the wine selection is
fairly priced ”, the output target is constructed as “drinks
well made Positive wine selection fairly priced Positive”.
Equipped with BARTB3! as the backbone, they achieved
competitive performance on most ABSA subtasks.

Recently, Li et al.[4l propose formulating ABSA sub-
tasks in the (M)LM paradigm. In particular, for the in-
put text X, and the aspect A and opinion O of interest,
they construct a consistency prompt, and a polarity
prompt as The A is O? [MASK)]. This is [MASK], where
the first [MASK] can be filled with yes or no for consist-
ent or inconsistent A and O, and the second [MASK] can
be filled with sentiment polarity words.

3.5 Relation extraction

Relation extraction (RE) has two main subtasks: rela-
tion prediction (predicting the relationship r of two giv-
en entities s and o conditioned on their context) and
triplet extraction (extracting the triplet (s,r,0) from the
input text). The former subtask is solved mainly with the
Class paradigml46: 631 while the latter subtask is often
solved in the pipeline style that first uses the SeqLab
paradigm to extract the entities and then uses the Class
paradigm to predict the relationship between the entities.
Recent years have seen paradigm shifts in relation extrac-
tion, especially in triplet extraction.

Zeng et al.l*8] solve the triplet extraction task with the
Seq2Seq paradigm. In their framework, the input of the
Seq2Seq paradigm is the original text, while the output is
asequenceoftriplets {(r1, s1,01), -+ , ("n, Sn, 0n) }. The copy
mechanism(®4 is adopted to extract entities from the text.

Levy et al.l47 address the RE task via the MRC
paradigm by generating relation-specific questions. For
instance, for relation educated_at(s,0), a question such
as “Where did s graduate from?” can be crafted to query
an MRC model. Moreover, they demonstrate that formu-
lating the RE task with MRC has a potential for zero-
shot generalization to unseen relation types. Furthermore,
Li et al.l5% and Zhao et al.l56 formulate the triplet extrac-
tion task as multi-turn question answering and solve it
with the MRC paradigm. They extract entities and rela-
tions from the text by progressively asking the MRC
model with different questions.

Recently, Han et al.[¥9 formulat the RE task as an
MLM task using logic rules to construct prompts with
multiple sub-prompts. By encoding prior knowledge of en-
tities and relations into prompts, their proposed model,
prompt tuning with rules (PTR), achieve state-of-the-art
performance on multiple RE datasets.

3.6 Text summarization
Text summarization aims to generate a concise and
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informative summary of large texts. There are two differ-
ent approaches to solving the text summarization task:
extractive summarization and abstractive summarization.
Extractive summarization approaches extract the clauses
of the original text to form the final summary, which usu-
ally lies in the SeqlLab paradigm. In contrast, abstractive
summarization approaches usually adopt the Seq2Seq
paradigm to directly generate a summary conditioned on
the original text.

McCann et al.38] reformulate the summarization task
as a question answering task, where the question is
“What is the summary?”. Since the answer (i.e., the
summary) is not necessarily comprised of the tokens in
the original text, traditional MRC models cannot handle
this. Therefore, the authors developed a Seq2Seq model
to solve the summarization task in such a format.

Zhong et al.Bl propose to solve the extractive sum-
marization task in the Matching paradigm instead of the
SeqLab paradigm. The main idea is to match the se-
mantics of the original text and each candidate summary,
finding the summary with the highest matching score.
Compared to traditional methods of extracting sentences
individually, the matching framework enables the sum-
mary extractor to work at a summary level rather than a
sentence level.

Aghajanyan et al.bZ formulate the text summariza-
tion task in the (M)LM paradigm. They pre-train a
BART-style model directly on large-scale structured
HTML web pages. Due to the rich semantics encoded in
the HTML keywords, their pre-trained model is able to
perform zero-shot text summarization by predicting the
(title) element given the (body) of the document.

3.7 Parsing

Parsing (constituency parsing, dependency parsing, se-
mantic parsing, etc.) plays a crucial role in many NLP
applications such as machine translation and question an-
swering. This family of tasks is to derive a structured
syntactic or semantic representation from a natural lan-
guage utterance. Two commonly used approaches for
parsing are transition-based methods and graph-based
methods. Typically, transition-based methods lie in the
Seq2ASeq paradigm, and graph-based methods lie in the
Class paradigm.

By linearizing the target tree-structure to a sequence,
parsing can be solved in the Seq2Seq paradigml56, 67-69]
the SeqlLab paradigmP% 7072 and the (M)LM parad-
igmP3l. In addition, Gan et al.5l employ the MRC
paradigm to extract the parent span given the original
sentence as the context and the child span as the ques-
tion, achieving state-of-the-art performance on depend-
ency parsing tasks across various languages.

3.8 Trends of paradigm shift

To intuitively depict the trend of paradigm shifts, we
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draw a Sankey diagram? in Fig. 2. We track the develop-
ment of the NLP tasks considered in this section, along
with several additional common tasks such as event ex-
traction. When a task is solved using a paradigm that is
different from its original paradigm, some of the values of
the original paradigm are transferred to the new
paradigm. In particular, for each NLP task of interest, we
collect published papers that solve this task from 2012 to
2021 and denote the paradigm used in 2012 as the origin-
al paradigm of this task. Then we track the paradigm
shifts in all the tasks with the same original paradigm
and count the number of tasks that observed paradigm
shifts until 2021. For each paradigm, we denote N as the
total number of tasks that branched out to new
paradigms. Assume that the initial value of each
paradigm is 100, and the transferred value for each out-
branch is defined as 100/(N + 1). Therefore, each branch
in Fig.2 indicates a task that shifted its paradigm.
Table 2 lists the source data of Fig. 2.

As shown in Fig.2, we find that: 1) The frequency of
paradigm shifts has been increasing in recent years, espe-
cially after the emergence of pre-trained language models
(PTMs). Therefore, to fully utilize the power of these
PTMs, a better way is to reformulate various NLP tasks
into the paradigms that PTMs are good at. 2) More and
more NLP tasks have shifted from traditional paradigms
such as Class, SeqLab, and Seq2ASeq, to paradigms that
are more general and flexible, i.e., (M)LM, Matching,
MRC, and Seq2Seq, which will be discussed in Section 4.

4 Potential unified paradigms in NLP

Some of the paradigms have demonstrated the poten-
tial ability to formulate various NLP tasks into a unified
framework. Instead of solving each task separately, such
paradigms provide the possibility that a single deployed
model can serve as a unified solver for diverse NLP tasks.
The advantages of a single unified model over multiple
task-specific models can be summarized as follows:

1) Data efficiency. Training task-specific models
usually requires large-scale task-specific labeled data. In
contrast, the unified model has shown its ability to
achieve considerable performance with much less labeled
data.

2) Generalization. Task-specific models are hard to
transfer to new tasks, whereas the unified model can gen-
eralize to unseen tasks by formulating them into proper
formats.

3) Convenience. The unified models are easier and
cheaper to deploy and serve, making them favorable as
commercial black-box APIs.

In this section, we discuss the following general

2 Sankey diagram is a visualization used to depict data flows.
Our sankey diagram is generated by http://sankey-diagram-gener-

ator.acquireprocure.com.
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paradigms that have the potential to unify diverse NLP
tasks: (M)LM, Matching, MRC, and Seq2Seq.

4.1 (M)LM

Reformulating downstream tasks into an (M)LM task
is a natural way to utilize the pre-trained LMs. The ori-
ginal input is modified with a pre-defined or learned
prompt with some unfilled slots, which can be filled by
the pre-trained LMs. Then the task labels can be derived
from the filled tokens. For instance, a movie review
“I love this movie” can be modified by appending a
prompt as “I love this movie. It was [MASK]”, in which
[MASK] may be predicted as “fantastic” by the LM.
Then the word “fantastic” can be mapped to the label
“positive” by a verbalizer. Solving downstream tasks in
the (M)LM paradigm is also referred to as prompt-based
learning. By fully utilizing the pre-trained parameters of
the MLM head instead of training a classification head
from scratch, prompt-based learning has demonstrated
great power in few-shot and even zero-shot settings[76l.

1) Prompt

The choice of prompt is critical for the performance of
a particular task. A good prompt can be i) Manually
designed. Brown et al.l5: 7 8] manually craft task-specific
prompts for different tasks. Though it is heuristic and
sometimes non-intuitive, hand-crafted prompts have
already achieved competitive performance on various few-
shot tasks. ii) Mined from corpora. Jiang et al.["" con-
struct prompts for relation extraction by mining sen-
tences with the same subject and object in the corpus.
iii) Generated by paraphrasing. Jiang et al.'7 use
back translation to paraphrase the original prompt into
multiple new prompts. iv) Generated by another pre-
trained language model. Gao et al.l generate prompts
using T5M since it is pre-trained to fill in missing spans in
the input. v) Learned by gradient descent. Shin et
al.[l% automatically construct prompts based on gradient-
guided search. If the prompt is not necessarily discrete, it
can be optimized efficiently in the continuous space. Re-
cent works(ll, 12 78801 have shown that continuous
prompts can also achieve competitive or even better per-
formance.

2) Verbalizer

The design of the verbalizer also has a strong influ-
ence on the performance of prompt-based learningl?. A
verbalizer can be i) Manually designed. Schick and
Schiitzel”l manually design verbalizers for different tasks
and achieved competitive results. However, it is not al-
ways intuitive for many tasks (e.g., when class labels do
not directly correspond to words in the vocabulary) to
manually design proper verbalizers. ii) Automatically
searched on a set of labelled data by minimizing some
objective, such as negative log likelihoodl? 10, 12, 81]_ jii)
Constructed and refined with knowledge basels2.
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3) Parameter-efficient prompt tuning

Compared with fine-tuning, where all model paramet-
ers need to be tuned for each task, prompt-based tuning
is also favorable in its parameter efficiency. A recent
studyl’3] has demonstrated that tuning only the prompt
parameters while keeping the backbone model paramet-
ers fixed can achieve a comparable performance with
standard fine-tuning when models exceed billions of para-
meters. Due to the parameter efficiency, prompt-based
tuning is a promising technique for the deployment of
large-scale pre-trained LMs. In traditional fine-tuning,
the server has to maintain a task-specific copy of the en-
tire pre-trained LM for each downstream task, and the
inference has to be performed in separate batches. In
prompt-based tuning, only a single pre-trained LM is
required, and different tasks can be performed by modify-
ing the inputs with task-specific prompts. Besides, inputs
from different tasks can be mixed in the same batch,
making the service highly efficient. In the case of ex-
tremely large PTMs, due to their small intrinsic dimen-
sionalities, the prompt can be optimized with derivative-
free optimization methods(!4, which encourages a novel
scenario, namely Language-Model-as-a-Service (LMaaS).

4.2 Matching

Another potential unified paradigm is Matching, or
more specifically, textual entailment (a.k.a. natural lan-
guage inference). Textual entailment is the task of pre-
dicting two given sentences, premise and hypothesis:
Whether the premise entails the hypothesis, contradicts
the hypothesis, or neither. Almost all text classification
tasks can be reformulated as a textual entailment task["

@ Springer

2017 2018 2019 2020 2021

Sankey diagram depicts the trend of paradigm shifting and unifying in natural language processing tasks. In Section 3.8, we

75, 83, 84 For example, a labeled movie review {x: I love
this movie, y: positive} can be modified as {x: I love this
movie [SEP| This is a great movie, y: entailment}. Simil-
ar to pre-trained LMs, entailment models are also widely
accessible. Such universal entailment models can be pre-
trained LMs that are fine-tuned on some large-scale an-
notated entailment datasets such as the multi-genre nat-
ural language inference (MultiNLI) dataset%. In addi-
tion to obtaining the entailment model in a supervised
fashion, Sun et al.[¥6] show that the next sentence predic-
tion head of BERT, without training on any supervised
entailment data, can also achieve competitive perform-
ance on various zero-shot tasks.

1) Domain adaptation

The entailment model may be biased to the source do-
main, resulting in poor generalization to target domains.
To mitigate the domain difference between the source
task and the target task, Yin et al."5l propose the cross-
task nearest neighbor module that matches instance rep-
resentations and class representations in the source do-
main and the target domain, such that the entailment
model can generalize well to new NLP tasks with limited
annotations.

2) Label descriptions

For single-sentence classification tasks, the label de-
scriptions for each class are required to be concatenated
with the input text to be predicted by the entailment
model. Label descriptions can be regarded as a kind of
prompt to trigger the entailment model. Wang et al.[57]
show that hand-crafted label descriptions with minimum
domain knowledge can achieve state-of-the-art perform-
ance on various few-shot tasks. Nevertheless, human-writ-
ten label descriptions can be sub-optimal, Chai et al.l30]
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Table 2 Source data of Fig. 2. We only list the first work for each paradigm shift.

Year Task Original paradigm Shifted paradigm Paper
2015 Parsing Seq2ASeq Seq2Seq [56]
2016 Parsing Seq2ASeq (M)LM [53]
2017 Relation extraction Class MRC [47]
2018 Text summarization SeqLab Seq2Seq [38]
2018 Parsing Seq2ASeq SeqLab [70]
2018 Natural language inference Matching Seq2Seq [38]
2018 Text classification Class Seq2Seq [38]
2018 Relation extraction Class Seq2Seq (48]
2019 Sentiment analysis Class Matching [42]
2019 Natural Language inference Matching Class [3]
2020 Named entity recognition SeqLab Class [62]
2020 Named entity recognition SeqLab MRC 1]
2020 Text summarization SeqLab Matching [51]
2020 Event extraction Class MRC [73]
2020 Event extraction Class SeqLab [74]
2020 Text classification Class Matching [75]
2020 Text classification Class (M)LM [5]
2020 Question answering MRC (M)LM [5]
2020 Machine translation Seq2Seq (M)LM [5]
2020 Natural language inference Matching (M)LM [5]
2021 Named entity recognition SeqLab Seq2Seq [2]
2021 Named entity recognition SeqLab (M)LM [40]
2021 Sentiment analysis Class MRC [43]
2021 Sentiment analysis Class Seq2Seq [44]
2021 Sentiment analysis Class (M)LM [7]
2021 Parsing Seq2ASeq MRC [55]

utilize reinforcement learning to generate label descrip-
tions.

3) Comparison with prompt-based learning

In both paradigms ((M)LM and Matching), the goal is
to reformulate the downstream tasks into the pre-train-
ing task (language modeling or entailment). To achieve
this, both of them need to modify the input text with
some templates to prompt the pre-trained language or en-
tailment model. In prompt-based learning, the prediction
is conducted by the pre-trained MLM head on the
[MASK] token, while in matching-based learning, the pre-
diction is conducted by the pre-trained classifier on the
[CLS] token. In prompt-based learning, the output predic-
tion is over the vocabulary, such that a verbalizer is re-
quired to map the predicted word in vocabulary into a
task label. In contrast, matching-based learning can
simply reuse the output (Entailment/Contradiction/
Neutral, or Entailment/NotEntailment). Another benefit
of matching-based learning is that one can construct pair-
wise augmented data to perform contrastive learning,
achieving a further improvement of few-shot performance.

However, matching-based learning requires large-scale hu-
man-annotated entailment data to pre-train an entail-
ment model, and domain difference between the source
domain and target domain needs to be handled. Besides,
matching-based learning can only be used in understand-
ing tasks, while prompt-based learning can also be used
for generation[!1: 12].

4.3 MRC

MRC is also an alternative paradigm to unify various
NLP tasks by generating task-specific questions and
training an MRC model to select the correct span from
the input text conditioned on the questions. Take NER as
an example, one can recognize the organization entity in
the input “Google was founded in 1998” by querying an
MRC model with “Google was founded in 1998. Find
organizations in the text, including companies, agen-
cies and institutions” as in [1]. In addition to NER, the
MRC framework has also demonstrated competitive per-
formance in entity-relation extractionl5] coreference res-
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olution®7), entity linking[88l, dependency parsingl®, dia-
log state trackingl®l, event extractionl™ 9 aspect-based
sentiment analysis/43], etc.

The MRC paradigm can be applied as long as the task
input can be reformulated as context, question, and an-
swer. Due to its universality, McCann et al.3¥ proposed
decaNLP to unify ten NLP tasks, including question an-
swering, machine translation, summarization, natural lan-
guage inference, sentiment analysis, semantic role la-
beling, relation extraction, goal-oriented dialogue, se-
mantic parsing, and commonsense pronoun resolution in a
unified QA format. However, different from previously
mentioned works, the answer may not appear in the con-
text and question for some tasks of decaNLP, such as se-
mantic parsing. Therefore, the framework is strictly not
an MRC paradigm.

Comparison with prompt-based learning. It is
worth noticing that the designed question can be analog-
ous to the prompt in (M)LM. The verbalizer is not neces-
sary for MRC since the answer is a span in the context or
question. The predictor, MLM head in the prompt-based
learning, can be replaced by a start/end classifier as in
traditional MRC models or a pointer network as in [38].

4.4 Seq2Seq

Seq2Seq is a general and flexible paradigm that can
handle any task whose input and output can be recast as
a sequence of tokens. Early work38 has explored using
the Seq2Seq paradigm to simultaneously solve different
classes of tasks. Powered by recent advances of sequence-
to-sequence pre-training, such as masked sequence to se-
quence pre-training (MASS)O T5M, and BARTE, the
Seq2Seq paradigm has shown great potential in unifying
diverse NLP tasks. Paolini et al.l%2 use T5M4 to solve
many structured prediction tasks, including joint entity
and relation extraction, nested NER, relation classifica-
tion, semantic role labeling, event extraction, coreference
resolution, and dialogue state tracking. Yan et al.[2 44 use
BARTB3, equipped with the copy networkl®4, to unify all
NER tasks (flat NER, nested NER, discontinuous NER)
and all ABSA tasks (AE, OE, ALSC, AOE, AESC, Pair,
Triplet), respectively.

Comparison with other paradigms. Compared
with other unified paradigms, Seq2Seq is particularly
suited for complicated tasks such as structured predic-
tion. Another benefit is that Seq2Seq is also compatible
with other paradigms such as (M)LM4 33 MRCBSI etc.
Nevertheless, what comes with its versatility is its high
latency. Currently, most successful Seq2Seq models are in
an auto-regressive fashion, where each generation step de-
pends on the previously generated tokens. Such sequen-
tial nature results in inherent latency at inference time.
Therefore, more work is needed to develop efficient
Seq2Seq models through non-autoregressive methodsl93; 94,
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early exitingl®, or other alternative techniques.

5 Conclusions

Recently, prompt-based tuning, which is to formulate
some NLP tasks into an (M)LM task, has exploded in
popularity. They can achieve considerable performance
with much less training data. In contrast, other potential
unified paradigms, i.e., Matching, MRC, and Seq2Seq,
are under-explored in the context of pre-training. One of
the main reasons is that these paradigms require large-
scale annotated data to conduct pre-training, especially
Seq2Seq is notorious for being data-hungry.

Nevertheless, these paradigms have their advantages
over (M)LM: Matching requires less engineering, MRC is
more interpretable, and Seq2Seq is more flexible to
handle complicated tasks. Besides, by combining with
self-supervised pre-training (e.g., BARTEP3 and T54)), or
further pre-training on annotated data with existing lan-
guage model as initialization (e.g., [57]), these paradigms
can achieve competitive performance or even better per-
formance than (M)LM. Therefore, we argue that more at-
tention is needed for the exploration of more powerful en-
tailment, MRC, or Seq2Seq models through pre-training
or other alternative techniques.
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