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Abstract:   Federated learning (FedL) is a machine learning (ML) technique utilized to train deep neural networks (DeepNNs) in a dis-
tributed way without the need to share data among the federated training clients. FedL was proposed for edge computing and Internet
of things (IoT) tasks in which a centralized server was responsible for coordinating and governing the training process. To remove the
design limitation implied by the centralized entity, this work proposes two different solutions to decentralize existing FedL algorithms,
enabling the application of FedL on networks with arbitrary communication topologies, and thus extending the domain of application of
FedL to more complex scenarios and new tasks. Of the two proposed algorithms, one, called FedLCon, is developed based on results
from discrete-time weighted average consensus theory and is able to reconstruct the performances of the standard centralized FedL solu-
tions, as also shown by the reported validation tests.
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1   Introduction

Federated  learning  (FedL)  is  a  specialized  branch  of

machine  learning  (ML)  developed  to  solve  problems  in

which, for privacy or security reasons, it is not possible to

gather the available data into a single knowledge base. In

such a  setting,  the  goal  of  a  FedL training process  is  to

let the clients of the federation cooperate by sharing their

knowledge, while avoiding any data exchange.

To actuate  this  knowledge-sharing  procedure,  the  in-

formation exchanged  among  the  clients  is  typically  lim-

ited  to  the  parameters  of  their  ML predictor  (e.g.,  deep

neural  networks  (DeepNNs)),  trained  on  their  locally

available  data.  A  model  averaging  procedure[1] is  then

typically  deployed  so  that  the  knowledge  of  the  clients

contained in the shared parameters can be propagated in-

to the rest of the federation.

Most of the FedL solutions rely on the availability of

a centralized server that collects all the data and coordin-

ates  the  entire  learning  process,  typically  consisting  of  a

model  averaging  procedure,  i.e.,  averaging  the  trainable

parameters  of  the  clients′ ML predictors.  This  architec-

ture allows for communication-efficient FedL solutions, as

the information exchanges occur only between clients and

the  server,  but  at  the  same time imposes  the  significant

design constraint  of  having a  centralized entity  that  has

to be trusted by the entire federation. The degree of trust

that the federation is required to have towards this cent-

ral entity  may  be  too  demanding  for  real-world  applica-

tions, such as in healthcare facilities: legal regulations and

commercial  agreements  often  even  prevent  all  kinds  of

data exchanges between two entities.

When dealing with a federation of critical institutions,

it  is  worth  studying  FedL  algorithms  that  are  able  to

cope  with  decentralized  federations  characterized  by

point-to-point client agreements (i.e., with sparse commu-

nication topologies), as depicted in Fig. 1. This work con-

siders such a scenario and thus will focus on the perform-

ance  and  convergence  aspects  of  the  algorithm that  will

be assured by the results of the consensus theory. It is ex-

pected  for  scenarios  of  this  kind  to  become  the  utmost

criticality in  the  future,  since  a  reserved  and  secure  in-

formation exchange is an enabling technology for fast re-

sponse  to  emergency  situations,  and  significantly  boosts

research cooperation opportunities among parties that are

interested/obliged not to share their data directly.

Besides the fact that the centralized server that over-

sees the FedL process must be trusted by the entire fed-

eration, it also represents a single point of failure, as the

federated entities  have  no  means  of  verifying  the  beha-
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viour of the server and do not communicate with one an-

other.

With these motivations, this work aims at developing

fully-decentralized  solutions  that  are  able  to  extend  the

FedL paradigm to a group of federated entities character-

ized by sparse and arbitrary communication agreements.

The highlights and main contributions of the work are as

follows:

1) The extension of standard FedL algorithms, and in

particular the original federated averaging (FedAvg)[1], to

a fully  decentralized  setting  that  does  not  require  a  co-

ordinating server.

2  The design of two decentralized FedL algorithms:

Decentralized federated averaging (DecFedAvg),  a  direct

decentralization of  FedAvg,  and  consensus-based  feder-

ated learning  (FedLCon),  a  more  complex  solution  de-

rived from discrete-time averaging consensus theory.

3)  FedLCon  relies  on  classic  results  from  consensus

theory,  originally  obtained  for  the  control  of  dynamical

systems,  that  enable  its  deployment  on  federations  with

arbitrary communication topologies – The topology, how-

ever,  impacts  the  communication  overhead  with  respect

to DecFedAvg.

4) The  FedLCon approach will  be  shown to  be  com-

patible with  any  FedAvg-like  algorithm,  making  it  suit-

able  to  seamlessly  decentralise  most  of  the  latest  results

from  the  literature,  such  as  federated  proximal

(FedProx)[2];  furthermore, FedLCon will  be proven to be

able to reconstruct  with arbitrary precision the perform-

ances reached by any standard federated approach.

5)  Validating  examples  are  discussed,  demonstrating

the applicability  and  performance  properties  of  the  pro-

posed algorithms in various standard settings.

The  operative  requirements  that  led  to  the  design  of

the proposed algorithms were identified in the scope of an

e-health project,  FedMedAI (federated medical  AI),  con-

ducted in  collaboration  with  the  Italian  National  Insti-

tute of Health.

The  remainder  of  the  paper  is  organized  as  follows.

Section  2  discusses  the  relevant  works  in  the  literature.

Section  3  provides  the  reader  with  some  background  on

FedL  and  discrete-time  weighted  consensus  theory.

Section 4 presents the two proposed algorithms. Section 5

validates the algorithms on two test  scenarios.  Section 6

draws the conclusions and presents possible future works. 

2   Related works

Contrary  to  standard  distributed  learning  solutions,

FedL does not envisage any coordinated split or redistri-

bution of the data and is specifically designed to analyze

data  partitioned  as  it  is,  i.e.,  close  to  its  sources.  FedL

was originally proposed as FedAvg in [1, 3] to address a

problem in  which a  group of  smartphones  cooperates  by

sharing their knowledge without disclosing any data from

their users.

Among  the  first  and  most  impactful  applications  of

FedL for the Internet of things (IoT)/edge computing set-

ting[4, 5], we mention mobile keyboard predictions[6–8] and

distributed  image  analytics/vision[9, 10].  For  its  privacy-

preserving properties, FedL has then been applied also in

scenarios in  which  organisations  and  institutions  cooper-

ate  to  analyze  complex  and  highly  confidential  data,  as

typical in the healthcare domain[11, 12], and has found new

applications in several  fields[13],  such as 3D connectivity-

based heterogeneous networks enabled by aerial drones[14]

and Industry 4.0[15].  More general architectures, designed

to  cope  with  federations  in  which  the  various  clients  do

not have a common data structure and/or feature space,

were proposed under the name of vertical FedL[16], where-

as the standard FedL setting,  that is  the one considered

in this work, has also been referred to as horizontal FedL.

Over the years,  several  improvements have been pro-

posed  from  the  original  formulation[17, 18], mainly  cover-

ing  aspects  related  to  privacy  and  security  enhance-

ments[19–22] to  prevent  direct  or  indirect  data  leak-

age[23–25], and  to  reduce  the  communication  cost  associ-

ated  with  distributed  training[26–29].  Nevertheless,  the

common  characteristic  that  all  the  algorithms  presented

in the literature share with the original formulation is the

ability to deal with data distributed over clients in a non-

independent and identically distributed (IID) and imbal-

anced way. The focus on such a setting is due to the dis-

tributed nature of the data sources that characterize the

 

Fig. 1     Architectures of federated learning systems: (a) Standard federated learning system with a secure server (left); (b) Example of a
decentralized FedL setting with bi-directional point-to-point communications (right).
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considered tasks,  as  they  are  often  geographically  dislo-

cated.  The  spatial  distribution  of  the  sources  is  paired

with different  local  data  distributions  and  a  high  vari-

ance in the number of the available samples.

The core of FedAvg and, in general, of FedL is a mod-

el averaging procedure, in which the DeepNNs trained by

the  federated  clients  on  their  locally  available  data  are

collected and averaged by a centralized server. After the

averaging, the server propagates the resulting DeepNN to

the federation clients. This procedure proved to be a suc-

cessful  strategy  for  massive  scenarios,  such  as  IoT/edge

computing systems, but may be limiting in other settings.

For instance, if the federation is constituted by a limited

number of  entities  with  no  computation  or  communica-

tion constraints  other  than the  requirement  of  not  shar-

ing any  data,  the  communication-efficiency  related  fea-

tures of  the  algorithm  may  be  removed  for  better  per-

formance  and  complete  decentralization.  We  mention

that the typical target use cases of FedL involve a private

service provider responsible for both data harvesting and

analysis, whereas  a  decentralized  setting  is  a  more  suit-

able  choice  for  situations  in  which  different  public  or

privately owned entities cooperate.

The removal of the centralized server has been already

investigated in the literature, as in [30], where a peer-to-

peer gossip algorithm was proposed to exchange portions

of the DeepNN weights among computing nodes with lim-

ited  bandwidth  and  improve  the  overall  communication

efficiency of the federation. A similar goal is  pursued Ji-

ang  and  Hu[31],  who  proposed  an  algorithm  based  on  a

partial  aggregation  of  the  gradients  produced  by  the

training  nodes.  Works  such  as  [32, 33]  investigated  how

blockchain  technology  may  be  used  in  the  FedL  sett-

ing[32]; proposed  a  specialized  privacy-preserving  block-

chain  (called  LearningChain)  to  sustain  a  decentralized

stochastic  gradient  descent  training  algorithm[33]; de-

veloped a FedL algorithm in which the averaged models

are collected  on  a  blockchain  after  a  decentralized  com-

mittee  of  computing  nodes  reaches  a  consensus  (i.e.,  an

agreement) regarding the validity of the updates received

from rest of the federation.

Contrary  to  the  cited  approaches,  this  paper  focuses

on developing a solution to attain the exact decentraliza-

tion  of  existing  FedL  algorithms,  enabling  the  seamless

deployment of such solutions in new scenarios and applic-

ations. The  algorithms  of  this  work  are  hence  not  dir-

ectly  related  to  the  design  of  new  distributed  training

procedures, but instead provide a framework for the com-

plete decentralisation of FedL algorithms.

For the  sake  of  presentation  clarity,  the  two  al-

gorithms  presented  in  this  work,  particularly  FedLCon,

were specialized for decentralizing the FedAvg algorithm.

The  reason  behind  this  choice  is  twofold:  Many  of  the

newer algorithms available in the literature, such as Fed-

Prox[2], are derived from it; most of the latest results re-

lated  to  communication  efficiency  and  privacy  in  FedL,

like  those  discussed  in  [17, 27],  are  typically  compliant

with any algorithm that shares the same structure of Fe-

dAvg. Nevertheless,  we  mention  that  the  FedLCon  al-

gorithm may be specialized to decentralise other FedL al-

gorithms,  provided  that  they  require  the  presence  of  a

centralised model averaging procedure that is replaced by

a  so-called  consensus  round,  as  it  will  be  clarified  in

Section 4.2 and in Remark 2.

Consensus  is  a  fundamental  paradigm  of  multi-agent

systems, in  which  a  set  of  communicating  systems  ex-

change  information  (e.g.,  their  internal  state  and  sensor

readings) over a communication topology to estimate/con-

trol variables of interest (see, e.g., [34, 35] and the refer-

ences therein). As many fundamental problems over net-

works can be reduced to an underlying consensus frame-

work for  multi-agent  systems  (including  opinion  dynam-

ics[36],  formation  control[37] and  synchronization  of  the

electric  power  grid[38]), FedLCon  can  be  seen  as  a  con-

sensus problem, as the clients in the federation aim at ob-

taining a common DeepNN, able  to solve the given task

by combining their local information. 

3   Background
 

3.1   Background on federated learning

i ∈ I

wi

Di = {(αn, βn), n ∈ {1, · · · , | Di |}}

D =
⋃

i Di

| wi |=| wj | i, j ∈ I

Let I be the set of N clients. Considering client ,

let  be the vector of trainable parameters/weights of its

DeepNN and let  be

the  dataset  containing  its  available  input-output  pairs.

We denote the total data available as , and we

assume that the clients share the same DeepNN architec-

ture,  implying that  the cardinality of  the weight vectors

is the same, i.e.,  for all .

i

li((αn, βn) | wi)

Di

αn ∈ Di

βn

In  the  federation,  the  client  is  trained  to  minimize

the so-called loss function  over the entire

dataset . Loss functions are used to quantify the qual-

ity of the output produced by DeepNNs when given as in-

put  the  generic  against  the  corresponding

ground-truth value  (e.g., typical choices for loss func-

tions are mean squared error  for  regression tasks or  cat-

egorical cross-entropy for classification ones).

By setting

Li(wi) = Li(Di | wi) =

1

| Di |
∑

(αn,βn)∈Di

li((αn, βn) | wi)

i

Di

w∗

as the loss function of the client  over its entire dataset

, the goal of the federation is then to find the optimal

vector of parameters  that, when shared by all clients,

solves  the  minimization  problem  with  the  joint  cost

function defined as[39]
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w
L(w) :=

∑
i∈I

piLi(w)

pi =| Di | / | D |with .

D

∇L(w)

∇L(w)

∇Li(wi)

In the standard ML setting, a centralized system dir-

ectly deals with the optimization (2):  The availability of

the  whole  enables  the  computation  of  the  gradient

.  Instead,  in  the  distributed  setting,  the  gradient

 has  to  be  estimated  starting  on  the  gradients  of

the clients .

Di D

E[Li(w)] = L(w)

Li(w) L(w)

∇Li(wi)

∇L(w)

In standard (non-federated) distributed learning, data

can be distributed arbitrarily by a centralized entity over

the clients. The typical assumption for this distribution is

that the datasets  are IID with respect to , implying

.  In  practice,  under  this  assumption,

 provides  a  good  approximation  of [1] and  the

locally  computed  gradients  can  be  averaged  to

reconstruct .

Li(w)

L(w)

On the contrary, in the federated setting, such IID hy-

pothesis cannot be assumed,  as  the training data is  pro-

cessed  without  any  redistribution,  and  could

provide  an  arbitrarily  bad  approximation  of .  For

this  reason,  in  the  original  FedL algorithm,  FedAvg[1, 3],

McMahan et al. proposed a round-based iterative proced-

ure for model averaging.

Di

FedAvg is divided into two main phases, which are re-

peated iteratively.  In the first  phase (local  training),  the

server selects a subset of clients that update the weights

of  their  DeepNNs  by  training  on  their  local  dataset 

with a gradient descent update rule:

w̃i(t) = wi(t− 1)− η∇Li(wi(t− 1))

0 < η < 1 w̃i(t)

i

t

wi(0) = w0, ∀i ∈ I

where  is  the  learning  rate,  and  is  the

locally updated1 weight vector of the DeepNN of agent 

at time-step . We mention that, in the FedL setting, it is

typically assumed that all clients share a common initial

weight vector, i.e., [1].

w̃i w(t)

In the second phase (centralized averaging), the serv-

er  collects  the s,  computes  the  weight  vector  as

the weighted average:

w(t) =
∑
i∈I

piw̃i(t)

w(t)and propagates the weight vector  to all the clients:

wi(t) = w(t), ∀ i ∈ I.

E

B

We  report  the  pseudo-code  for  FedAvg  (see  Algori-

thm 1), showing an implementation where the clients per-

form  local  training  epochs  using  mini-batch  gradient

descent with a batch size of . In the code, it is assumed

for simplicity that all clients participate in the averaging

procedure.

Even if several variants of FedL algorithms have been

developed (e.g., [2, 17]), most of the solutions available in

the literature share with FedAvg both the centralized set-

ting and the two-phases approach. 

3.2   Background discrete-time weighted
consensus

Consensus  algorithms  denote  protocols  distributively

implemented  among  communicating  dynamical  systems

(agents)  that  allow  each  agent′s  state  estimation  to

evolve to  a  common  value  that  takes  the  name  of  con-

sensus value.

N

A = (aij) ∈ N×N aij = 1

i j 0

O = (oij) ∈ N×N oii =
∑

j aij

L = O −A P = (pi) ∈
N×N pi

i

Representing  the  consensus  network  as  a  graph  in

which the nodes are the  clients connected by a set of

edges,  it  is  possible  to  define  the  following matrices:  the

adjacency  matrix ,  with  if  an

edge connects clients  and  and  otherwise; the out-de-

gree diagonal matrix , with 

computed as the clients′ out-degrees; the Laplacian mat-

rix  and  the  diagonal  matrix 

,  with  representing the  weight  given to  the  cli-

ent .

Algorithm 1. FedAvg[1]

1) SERVER UPDATE

t = 1, · · · , T2) for each communication round  do

3) select a subset of clients for the averaging procedure

i4) for all selected client  do

5) CLIENT UPDATE

w̃i i6) receive  from client 

7) end for

w(t) =
∑

i piw̃i(t)8) set 

w wi(t) = w(t), ∀i9) propagate  in the federation ( )

10) end for

11) CLIENT UPDATE

e E12) for each local epoch  from 1 to  do

b Di13) for each mini-batch  from  do

wi(t− 1) ← wi(t− 1)− η∇Li(b | w(t− 1))14)

15) end for

16) end for

w̃i(t) = wi(t− 1)17) set 

w̃i(t)18) return  to the server

xi(t) i t

Ni

Let  be the state of agent  at time-step , and let

 be  its  set  of  neighbors.  Under  the  hypothesis  of  a

strongly connected  undirected  consensus  graph  and  un-

der the following discrete-time update rule:

xi(t+ 1) = xi(t) +
ε

pi

∑
j∈Ni

aij(xj(t)− xi(t))

E

Di

1 Actually,  in  practice,  the  local  weight  update  is  performed

iteratively  over  training  epochs  using  a  variation  of  gradient

descent (mini-batch gradient descent) that splits  into a set of

mini-batches. Equation (3) exemplifies the update rule with E =

1  and  over  the  complete  dataset,  whereas  the  pseudo-codes

report the mini-batch multi-epoch version of the algorithms.
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ε

ε < i∈I(pi/oii)

xi

by  assuming  that  the  sampling  time  is  such  that
[40, 41],  the  clients  reach  a  consensus

value in their  states  that coincides  with the weighted

average of their initial conditions:

x̄ =

∑
i∈I pixi(0)∑

i∈I pi
.

The convergence of the agents follows the dynamics of

the  discrete-time  system  (6)  that  can  be  equivalently

written in matrix form[41] as

xi(t+ 1) = Hpx(t)

Hp = I − εP−1Lwith .

99

nε

From  (8),  starting  from  the  well-known  definition  of

dominant time constant for a discrete-time linear time-in-

variant system and its settling time[42], it follows that the

agents  will  reach  convergence,  with  precision  of ,

after a number of steps :

nε = 5
i∈I

⌈ −1

(| λi(Hp) |)
⌉

λi(Hp) i

Hp �·�
1 ta ≈ nε × ε

where  is the -th eigenvalue different from 1 of the

matrix  and  denotes  the  ceiling  function  of  its

argument, with a resulting -settling time . 

4   Decentralized federated learning

This section presents the two algorithms developed for

decentralized  federated  learning:  A  decentralized  version

of FedAvg in Section 4.1 and an algorithm based on dis-

crete-time weighted average consensus in Section 4.2. 

4.1   Decentralized federated averaging

Algorithm 2. DecFedAvg

1) DECENTRALIZED FEDERATED TRAINING

t = 1, · · · , T2) for all communication rounds  do

i ∈ I3) for all clients  do

e4) for each local epoch  from 1 to E do

b Di5) for each mini-batch  from  do

wi(t− 1) ← wi(t− 1)− η∇Li(b | w(t− 1))6)

7) end for

8) end for

w̃i(t) = wi(t− 1)9) set 

wi(t)10)  update  according to (10)

11) end for

12) end for

As discussed,  FedAvg  was  tailored  to  minimize  com-

munication costs  (e.g.,  by limiting the number of  clients

exchanging  their  models  at  each  communication  round).

It was designed for IoT/edge computing settings, as most

of its evolutions (see, e.g., [2, 4, 5, 18]).

In scenarios where communication costs are negligible

(e.g., in healthcare facilities cooperation),  the main com-

munication  constraints  are  related  to  the  presence  of

point-to-point  communications  among  the  clients  and  to

the unavailability of a centralized server. A natural choice

is then to develop a decentralized version of FedAvg, i.e.,

of  (3)–(5).  A  direct  decentralization  of  FedAvg  would

consist of using (3) and the following equation:

wi(t) =
1

| Di |
(
| Di | w̃i(t) +

∑
j∈Ni

| Dj | w̃j(t)
)
, ∀ i ∈ I

| Di |=| Di | +∑
j∈Ni

| Dj |with . If the graph is complete

(i.e., all clients are neighbours of each other), substituting

(4)  into  (5)  yields  that  (3)  and  (10)  are  equivalent  to

(3)–(5).

t w̃i(t)

wi(t)

w̃j(t)

j ∈ Ni ∪ {i}
| Dj |

i

j

Equation  (10)  states  that,  at  every  communication

round ,  the  clients  exchange  the  weights  of  their

locally trained DeepNNs with their neighbours. Each cli-

ent  then  updates  the  vector  by  computing  a

weighted  average  of  the  collected  vectors ,  with

 (including  its  own vector),  with  weights  set

as the cardinality  of the clients′ data. In general, ar-

bitrary weights can be attributed to the clients, e.g., de-

pending on the in/out-degree of the nodes in the federa-

tion graph or reflecting the trust level that client  has in

client .

The pseudo-code  for  the  decentralized  FedAvg  al-

gorithm  (DecFedAvg)  is  reported  (see  Algorithm  2)  to

improve the clarity of the presentation.

t

wi(t)

t wi(t)

Remark 1. The proposed decFedAvg algorithm does

not utilize  any  information  on  the  communication  net-

work topology. Also, we note that the proposed distribu-

tion of (3)–(5),  for its  simplicity,  can in principle be ap-

plied  to  any FedL algorithm with  the  same structure  as

FedAvg. However,  the  convergence  results  of  such  al-

gorithms typically  rely  on the  propagation of  a  common

averaged DeepNN into the federation. Hence, the conver-

gence of the decentralized versions is not guaranteed, as,

in  general,  at  each  communication  round ,  the  various

 are different. In the FedAvg case, (3) and (10) yield

that,  at  each ,  the  various ,  and  consequently  the

performance of the clients, may differ significantly. 

4.2   Consensus-based decentralized feder-
ated learning

Algorithm 3. FedLCon

1) DECENTRALIZED FEDERATED TRAINING

t = 1, · · · , T2) for all communication rounds  do

i ∈ I3) for all clients  do

e 1 E4) for each local epoch  from  to  do

b Di5) for each mini-batch  from  do

wi(t− 1) ← wi(t− 1)− η∇Li(b w(t− 1))6) |
7) end for

8) end for
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w̃i(t) = wi(t− 1)9) set 

10) end for

wi(t)11) update  via a CONSENSUS ROUND

12) end for

13) CONSENSUS ROUND

nε14) Compute  according to (9) depending on the topo-

 logy

xi(0) = w̃i(t) i ∈ I15) Set  for all clients 

k = 0, · · · , nε − 116) for  do

i ∈ I17) for all clients  do

xi18) update  according to (11)

19) end for

20) end for

wi(t) = xi(nε) i ∈ I21) set  for all clients 

wi(t)

xi(t)

To  overcome  the  main  limitation  of  the  DecFedAvg

algorithm,  i.e.,  the  lack  of  convergence  guarantees,  we

propose a novel consensus-based algorithm. In fact,  even

if the  clients  considered  in  the  FedL setting  are  not  dy-

namical systems, there are similarities between the frame-

work for FedL and the one for discrete-time weighted av-

erage consensus. By interpreting the weights  of the

federated clients as the states  of a set of agents seek-

ing  consensus  (see  Section  3.2),  we  propose  to  combine

(3)–(5) and (6) as described below.

t w̃i

wi(t)

k

nε

nε

xi(0) = w̃i(t) i ∈ I

k = 0, · · · , nε − 1

At  each  communication  round ,  the s are  com-

puted by the  same (3)  used in  standard FedL solutions.

Differently from the DecFedAvg algorithm, the update of

the weight vectors  is not performed by (10) but in-

volves  a  consensus  round.  Let  be  the  consensus  round

index  and  recall  that  is the  number  of  iterations  re-

quired  to  reach  consensus  within  the  round.  Then,  to

reach consensus  the  federated  clients  exchange  informa-

tion  times,  starting  from  the  initial  values

, for all . The following iteration rule is

executed for :

xi(k + 1) = x(k) +
ε

| Di |
∑
j∈Ni

aij

(
xj(k)− xi(k)

)

εwith  chosen as in Section 3.2.

Due to the structure of the update rule (11), which is

the  same  as  (6),  for  the  consensus-based  convergence

properties presented in Section 3.2 and discussed in [40, 41],

one observes that the states of the federation clients con-

verge towards the value

xi(nε) ≈
∑

i | Di | w̃i(t)

| D | , ∀ i ∈ I

xi w(t)

i.e., at the end of the communications (when consensus is

reached among the federated clients), the proxy variables

 approximate  the  weights  computed  by  the

centralized FedL case with (4). Setting

wi(t) = xi(nε)

t

t nε

the procedure can be repeated starting from the training

of (3) for all the communication rounds . Note that each

communication  round  now  yields  information

exchanges since it involves a consensus round.

The  resulting  consensus-based  distributed  federated

learning  algorithm  (FedLCon)  is  reported  as  a  pseudo-

code (see Algorithm 3) in the same form as the two previ-

ous cases.

nε

Remark  2. Contrary to  DecFedAvg,  FedLCon  ap-

proximates the  exact  decentralization of  the  original  Fe-

dAvg  algorithm,  as  at  the  end  of  each  communication

round (i.e., after the  steps of the consensus round), the

weights  of  all  the  clients  converge  to  the  same  values.

This consideration has two consequences:

1) The proposed consensus-based solution can be dir-

ectly  applied  to  any  FedAvg-like  algorithm  available  in

the  literature,  as  it  is  transparent  from  the  model-aver-

aging  point  of  view and its  implementation details  (e.g.,

privacy-preserving features and complex weighting criter-

ia for the various clients);

2) As  the  consensus  round  is  transparent  to  the  Fe-

dAvg  algorithm,  different  consensus  algorithms  can  be

used to exploit the communication and/or topology prop-

erties of  the  application  scenarios  (e.g.,  multi-hop  dis-

crete-time consensus).

nε

nε

Hp

L

Remark 3. The introduction of the consensus round

(and its  information exchanges) constitutes a commu-

nication overhead  and  the  main  limitation  of  the  pro-

posed algorithm. In fact, from (9), one may note how 

is influenced by the eigenvalues of the matrix , which

in turn  depends  on  the  communication  network  Lapla-

cian matrix . We mention that,  in  general,  such eigen-

values do not depend directly on the number of clients in

the federation  and  instead  capture  the  topology  con-

nectivity  level,  meaning  that  the  scalability  of  FedLCon

is mostly affected by the number of links available in the

communication  topology  and  their  positioning.  In  order

to reduce the impact of the communication overhead, one

may apply  to  the  information  exchanges  over  the  con-

sensus network some of the latest solutions for communic-

ation efficiency that have been designed for the standard

FedL  setting  (e.g.,  gradient/model  compression  approa-

ches  in  [27, 28, 43, 44];  the  approach  in  [45], where  cli-

ents  evaluate  the  contribution  of  their  training  before

joining the data exchange;  or transfer  learning solutions,

as they envisage the exchange of only a small portion of

the overall model). Nevertheless, in scenarios in which the

time  for  data  transmission  is  limited  and/or  non-negli-

gible with respect to the training time, one may consider

employing DecFedAvg  at  the  cost  of  a  performance  de-

gradation.

Remark 4. From the point of view of the federation

client, both  DecFedAvg  and  FedLCon  involve  compar-

able computations, that are negligible when compared to

the  training  process.  In  fact,  the  amount  of  operations

(unrelated to  the  training)  conducted  in  a  communica-
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nε

tion  round  by  a  client  in  a  DecFedAvg-based  federation

increases linearly with its number of neighbours, whereas

FedLCon  repeats  the  same  amount  of  computations 

times due to the consensus round. 

5   Simulations

60

This section  reports  on  the  test  simulations  per-

formed to validate the proposed approaches and to assess

their differences in two different settings. We utilized the

MNIST  (modified  National  Institute  of  Standards  and

Technology  database)  dataset[46] (one  of  the  most  used

benchmark  solutions  in  the  ML  literature,  also  used  in

the original FedL paper[1]), distributed among the clients

in two different ways, as will  be described in the follow-

ing  subsections.  The  MNIST dataset  consists  of  a  set  of

60 K+10 K labeled  images  of  handwritten  digits  (from  0

to 9), where the last 10 K images are used as a test data-

set to evaluate the performance of DeepNNs trained over

the first  K training data samples.

N = 6

ε = 0.99 i∈I(| Di | /oii)
nε = 5

nε = 10 nε = 25

L

oii ε

nε

We tested our algorithms on four different topologies

with  clients: A complete graph, two sparse topolo-

gies – a circle and a star one – and a fairly connected ran-

dom topology  with  9  links.  Additionally,  we  included  in

all  our  tests  a  centralized  benchmark  implementing  the

standard FedAvg algorithm that involves the presence of

a coordinating server. For our consensus-based algorithm,

we  set  for  each  federation ,

leading  to  for  the  complete  and  circle  topologies,

 for the random one and  for the star to-

pology  (for  the  evaluation  of  (9),  we  mention  that  the

Laplacian  matrix  may  be  trivially  obtained  from  the

graphs in Fig. 2). Note that  and, consequently,  vary

depending on the  topology.  The topologies  were  selected

so that the proposed algorithms will have to deal with in-

formation flows of different natures and characteristics to

better assess their limits and adaptability properties. The

amount  of  communication  overhead  that  FedLCon  has

compared to DecFedAvg depends on the different values

of .

32 64 3× 3

2× 2 0.25

128 0.5

10

E = 2

32

In  this  work,  we  used  for  all  clients  a  convolutional

neural  network  constituted  by  two  convolutional  layers

with  and  filters of size , respectively, followed

by a  maxpooling layer with a dropout of  and a

dense layer of  neurons with a dropout of . All the

activation functions were set as rectified linear units (Re-

LUs), save for the output layer that was constituted by a

dense layer of  neurons with a softmax activation func-

tion,  as  common  in  multi-label  classification  tasks.  The

resulting  DeepNN  has  about  1.2 M  trainable  parameters

(weights).  The  optimizer  employed  for  the  training  was

Adam, with an initial learning rate of 0.01. All the feder-

ation clients trained locally for 2 epochs (  in the al-

gorithm pseudo-codes), i.e., at each training step the cli-

ents  train  twice  over  their  entire  dataset,  with  a  mini-

batch size of . All the other parameters and the initial-

ization are the standard ones from Keras 2.4.0.

i = 1

For  the  sake  of  presentation,  in Figs.3–8 of this  sec-

tion,  for  the  decentralized  algorithms,  only  the  accuracy

curves for the first client of the federation (i.e., ) av-

eraged over 10 runs, as the behaviour shown by the oth-

ers is equivalent. Table 1 reports the main characteristics

of the three simulations performed, briefly reporting their

main results. 

5.1   Test 1.A (MNIST): One missing class
per client

i

i (i− 1)

In this test, the MNIST dataset was split into 6 parts

and  distributed  to  the  clients  so  that  client ,  provided

with  about  10 K  data  samples,  had  no  samples  of  the

class  (i.e., the -th digit). The purpose of this test

is to demonstrate how the algorithms perform on a fairly

even data distribution compared to the standard, central-

ized, FedAvg solution involving a server.

1

Fig. 3 reports the  accuracy  evolution  versus  the  com-

munication rounds  for  the  DecFedAvg algorithm of  Sec-

tion 4.1. The picture shows how the lines for the central-

ized (FedAvg) and the complete topologies perfectly over-

lap,  as  expected  from  (3)  and  (10).  Minor  performance

drops (less than ) are observed for the sparser topolo-

gies, i.e., the circle and star ones.

0.2

nε

Fig. 4 reports  the  behaviour  of  a  federation  governed

by the  FedLCon  algorithm.  In  this  case,  the  perform-

ances  achieved  with  all  the  topologies  –  including  the

sparser ones – converge towards the performance reached

by  the  centralized  solution  within  errors  of  less  than

. The drawback of FedLCon is that it requires a sig-

nificantly  higher  communication  overhead  (  informa-

tion exchanges  per  communication  round  versus  one  ex-

change for DecFedAvg).

In  this  first  simulation,  both  algorithms  performed

well due to the balanced data distribution that makes the

local updates  of  DecFedAvg  comparable,  from  a  know-

ledge discovery  point  of  view,  to  the  global  ones  recon-

 

 
Fig. 2     Considered federation topologies
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structed by FedLCon. The fact that the topology did not

affect the performance of any algorithm significantly sug-

gests that the data distribution allows all agents to solve

a good portion  of  the  task  independently  of  their  neigh-

bours′ contribution. In the following test,  we aim to dis-

cover  whether  the  two  algorithms  continue  to  perform

similarly on harder tasks. 

5.2   Test 1.B (CIFAR-10): Transfer learn-
ing with IID-data

This test was designed to assert the scalability of the

algorithms  and  to  highlight  their  seamless  integration

capabilities  with  more  complex  tasks  such  as  transfer

learning. In this test, we analyze the well known CIFAR-

10  (Canadian  Institute  For  Advanced  Research  –  10)[47]

by applying transfer learning to the VGG19 (Visual Geo-

metry Group – 19)[48] neural network trained for ImageN-

et[49].  As  customary  with  transfer  learning  tasks,  our

DeepNN was constituted by the pre-trained VGG19 com-

bined with a stack of fully connected layers of 1 024, 512

nε = 20

and  256  neurons.  For  this  simulation,  we  considered  a

federation of 20 clients, depicted in Fig. 5 ( ). The

entire dataset was distributed uniformly to the clients.

 
 

 
Fig. 5     Random federation topology of 20 clients

 
As in the previous case,  thanks to the balanced data

distribution,  from Fig. 6 we can  note  how  both  al-

gorithms  perform  similarly,  with  a  slight  advantage  of

FedLCon that  is  able  to  reconstruct  from the very start

the  performance  of  FedAvg  whereas  DecFedAvg  slightly

lags behind. This slower increase rate for the accuracy of

DecFedAvg is most likely due to the fact that a client ob-

tains  information  (knowledge)  only  from  its  neighbours:

This may be too limiting in complex tasks, as more com-

munication rounds are required to gather knowledge from

the entire federation. FedLCon, on the other hand, at the

end of  each consensus round, ensures that all  clients are

provided with the same information, in the form of hav-

ing the same DeepNN approximated by the entire federa-

tion.

In the following test, we will demonstrate how DecFe-

dAvg  is  also  substantially  more  sensitive  to  unbalanced

data  distributions  among  clients,  whereas  FedLCon,

thanks  to  its  consensus-based  update  protocol,  shows  a

significantly more robust behaviour. 

5.3   Test 2 (MNIST): Four random classes
per client

1, 2, 3, 4

In this test, the MNIST dataset is distributed so that

each client has access only to four digits, with each client

having between 7.5 K and 8.5 K data samples. In particu-

lar,  client  1  had  digits ,  client  2  had  digits

 

Table 1    Summary of the simulations

Test Objective Data set Nodes Results summary

1.A Validate the proposed algorithms
against FedAvg

MNIST, balanced 6 DecFedAvg and FedLCon perform well and similarly to
the centralised case (FedAvg).

1.B Test the scalability of the
algorithms on a bigger network

CIFAR-10, IID 20 FedLCon manages to reconstruct the performance of
FedAvg, while we observe that the performance of
DecFedAvg degrades slightly.

2 Test the algorithms on non-IID
data distributions

MNIST, non-IID 6 DecFedAvg fails to converge on sparse topologies,
FedLCon is unaffected and successfully obtains the same
performances of the centralized case.

 

 

 
Fig. 3     Test 1.A: Accuracy evolution over communication
rounds for the DecFedAvg algorithm
 

 

 
Fig. 4 Test 1.A: Accuracy evolution over communication
rounds for the FedLCon algorithm
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0, 2, 8, 9 3 3, 4, 5, 6

0, 7, 8, 9 5 1, 2, 7, 9 6

1, 3, 4, 6

,  client  had  digits ,  client  4  had  digits

, client  had digits  and client  had di-

gits . The  goal  is  to  evaluate  the  algorithm per-

formance  with  data  distributions  that  are  significantly

different among the clients.

With  the  DecFedAvg  algorithm, Fig. 7 highlights,  as

expected, that also, in this test, the plots of the central-

ized and the complete topologies overlap. However, Fig.7

shows that the algorithm struggles with the unfavourable

data distribution,  as  it  achieves  significantly  lower  per-

formances with the sparser star and circle topologies. It is

worth  noting  that,  from  the  very  first  communication

round,  the  various  topologies  have  different  accuracy

levels: This is due to the local nature of the algorithm –

each client  exchanges  information  only  with  its  neigh-

bours  –  with  no  convergence  guarantee,  meaning  that

each client has a different DeepNN.

 
 

 
Fig. 7     Test 2: Accuracy evolution over communication rounds
for the DecFedAvg algorithm.
 

We also  observe  that  in  this  case  the  accuracy  ob-

tained  with  the  random topology  is  surprisingly  close  to

the one obtained with the centralized one. In general, the

DeepNNs  of  a  federation  controlled  by  (3)  and  (10)  do

not  converge  to  the  DeepNN  of  the  centralized  case.

However, depending on the data distribution, it may hap-

pen  (as  depicted  in Fig. 7)  that  sparser  connectivity

graphs lead to a well-performing DeepNN.

2

wi

Fig. 8 reports the accuracy curves for a federation con-

trolled by  FedLCon.  The  accuracy  evolution  is  practic-

ally  equivalent  with  all  topologies,  with  a  performance

drop  of  less  than  compared  to  the  centralized  case.

This  result  is  in  line  with  the  nature  of  the  consensus-

based  communication  protocol,  as  at  the  beginning  of

each training phase,  all  the  various  clients  have at  their

disposal  the  same common values  for  their s  (save  for

1slight deviations due to the usage of the  settling time

in (9)), independently from the communication topology.

  

 
Fig. 8     Test 2: Accuracy evolution over communication rounds
for the FedLCon algorithm.
 

We observe that, in this scenario, the communication

overhead of FedLCon allowed the federation to reach sat-

isfactory  performances  on  arbitrary  topologies,  whereas

the  simpler  DecFedAvg  algorithm  failed  the  task  on

sparser  communication  graphs  where  the  local  nature  of

the updates  prevents  the  information  from  being  ex-

changed correctly over the federation, causing the clients

not to generalize correctly. 

6   Conclusions and future works

This  paper  presented  two  decentralized  federated

learning (FedL) algorithms, the former (DecFedAvg), ob-

tained as a direct decentralization of the original FedL al-

gorithm, FedAvg, and the latter (FedLCon), obtained on

the ground  of  results  from  discrete-time  average  con-

sensus  theory.  As  shown  by  simulations,  the  proposed

consensus-based  algorithm  is  an  enabler  to  deploy  FedL

solutions on arbitrary topologies at the expense of higher

communication  overhead.  On  the  contrary,  DecFedAvg

proved to be a reasonable approximation of  FedLCon in

scenarios  in  which  data  is  distributed  more  uniformly

over  the  clients  and  the  communication  topology  is  not

sparse.

Decentralized FedL solutions are of crucial interest for

small-scale federations of collaborating companies, such as

healthcare facilities, that may be prevented from joining a

centralized  federation,  e.g.,  due  to  privacy  regulations.

The  proposed  consensus-based  solution  is  then  relevant

also considering  that,  in  such  scenarios,  the  communica-

tion overhead is not a key performance indicator as, e.g.,

in IoT scenarios. In this direction, FedLCon represents a

solution that is able to be seamlessly applied to almost all

FedAvg-like FedL algorithms.

On-going and future  work is  aimed at  using the pro-

posed consensus-based approach to tailor solutions to spe-

cific  use  cases,  in  the  first  place  considering  healthcare

federations,  in  line  with the  objectives  of  the  FedMedAI

project. 
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