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Abstract: Structural neural network pruning aims to remove the redundant channels in the deep convolutional neural networks
(CNNs) by pruning the filters of less importance to the final output accuracy. To reduce the degradation of performance after pruning,
many methods utilize the loss with sparse regularization to produce structured sparsity. In this paper, we analyze these sparsity-train-
ing-based methods and find that the regularization of unpruned channels is unnecessary. Moreover, it restricts the network'’s capacity,
which leads to under-fitting. To solve this problem, we propose a novel pruning method, named MaskSparsity, with pruning-aware
sparse regularization. MaskSparsity imposes the fine-grained sparse regularization on the specific filters selected by a pruning mask,
rather than all the filters of the model. Before the fine-grained sparse regularization of MaskSparity, we can use many methods to get the
pruning mask, such as running the global sparse regularization. MaskSparsity achieves a 63.03% float point operations (FLOPs) reduc-
tion on ResNet-110 by removing 60.34% of the parameters, with no top-1 accuracy loss on CIFAR-10. On ILSVRC-2012, MaskSparsity
reduces more than 51.07% FLOPs on ResNet-50, with only a loss of 0.76% in the top-1 accuracy. The code of this paper is released at
https://github.com/CASIA-IVA-Lab/MaskSparsity. We have also integrated the code into a self-developed PyTorch pruning toolkit,

named EasyPruner, at https://gitee.com/casia_iva_engineer/easypruner.
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1 Introduction

Convolutional neural networks (CNNs) have demon-
strated great success on a variety of computer vision
tasks, such as image classification!l, detection?, and se-
mantic segmentationl8l. However, the increasing depth
and width of CNNs also lead to higher computing re-
source demands and excessive memory footprint require-
ments. Typically, the widely used ResNet modelsl4 have
millions of parameters, requiring billions of float point op-
erations (FLOPs), making it a great challenge to deploy
most state-of-the-art CNNs on edge devices. Network
pruning is an effective way to compress and accelerate
CNNs. It is attracting much attention from researchers.
It can remove the parameters in the deep CNNs and re-
duce the required FLOPs and memory footprint while
preserving the performance.

A typical scheme of network pruning consists of three
stages: 1) training an over-parameterized model normally;
2) pruning the model under a certain criterion; and
3) fine-tuning the pruned model to reduce the degrada-
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tion caused by pruning. Some of the existing network
pruning methods apply a sparsity training stage after
Step 1. These methods apply sparse regularization on the
filter weights of the convolution layersP ¢ or scaling
After
sparsity training, the corresponding filter weights or scal-

factorsl”> 81 of the batch normalization layers.
ing factors of unimportant channels are considered to be
near zero. Then, these channels could be safely pruned
without affecting the output values of the corresponding
layers too much. We call these methods sparsity-training-
based methods.

In sparsity-training-based methods, to obtain an ex-
pected sparse rate of the model, they adopt global sparse
regularization. However, in these methods, the weights of
important channels are regularized in the sparsity train-
ing stage, although they are preserved after pruning. It is
generally regarded that proper regularization achieves a
good result by avoiding over-fitting. However, the model
will be under-fitted when the regularization coefficient is
too large. Since the weights of important channels are
also regularized by sparse regularization, the magnitude
of these weights usually decays towards 0. This prevents
the coverage to a better local minimum of the network in
the sparsity training stage, which affects the final per-
formance of the fine-tuned pruned network. Since the net-
work starts from a bad initialization, it is difficult for the
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network to escape the bad local minimum. Moreover, the
sparse rate of the globally trained network is difficult to
control. This usually results in inconsistencies between
the sparse mask and the pruning mask if we want to
prune a model to a predefined FLOPs.

To address the problem mentioned above, we propose
a novel sparsity-training-based channel pruning approach,
MaskSparsity. Different from the previous sparsity-train-
ing-based methods that impose regularization on all chan-
nels of each layer, MaskSparsity imposes the regulariza-
tion only on the specific channels selected by the pruning
mask, which indicates the unimportant channels, as
shown in Fig.1. Through this mask, MaskSparsity can
realize the strong correlation between pruning and regu-
larization and carry out pruning-aware regularization. In
other words, we only impose regularization on the chan-
nels to be pruned and prune the channels where regulariz-
ation is applied. The perfect match between the sparse
channels and the pruning channels allows us to minimize
the impact of sparse regularization and maximize the ac-
curacy of the pruned networks.
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Fig.1 Visual comparisons between the previous sparsity-
training-based methods and the proposed MaskSparsity method.
MaskSparsity applies sparse regularization only on the scaling
factors of less-important channels.

Compared with the typical pruning methods that dir-
ectly prunes the unimportant channels, the MaskSparsity
can gradually push the unimportant parameters towards
zero in a long period of iterations during the sparsity
training stage. This prevents the model from a dramatic
change in structure or weight in the pruning stage. It is
regarded that the dramatic change may result in a cer-
tain amount of information loss, which is harmful to
restoring the accuracy of the model in the fine-tuning
stage.

To summarize, our main contributions are three-fold:

1) We analyze the previous sparsity-training-based

@ Springer

Machine Intelligence Research 20(1), February 2023

methods in the previous work, which simply impose L1
regularization on all channels of the model. We find out
the over-regularization problem on important channels.

2) We propose MaskSparsity to solve these problems
by more fine-grained sparsity-training.

3) The extensive experiments on two benchmarks
show the effectiveness and efficiency of MaskSparsity.

2 Related work

We mainly focus on the structural pruning methods in
this paper. In this section, we first review the closely re-
lated works, the sparsity-training-based structural prun-
ing methods. After that, we list other structural pruning
methods.

2.1 Sparsity-training-based pruning meth-
ods

To make the network adaptively converge to a sparse
structure and alleviate the damage of the pruning pro-
cess to the network’s output, some sparsity-training-based
pruning methods are proposed. There are mainly two cat-
egories of these methods according to the place where
sparse regularization is applied.

The first category of methods is the group-sparsity-
based methods that apply sparse regularization on the fil-
ter weights. Alvarez and SalzmannPl proposed using a
group sparsity regularizer to determine the number of
channels of each layer. Wen et al.lfl proposed a struc-
tured sparsity learning (SSL) method to regularize the
structure to obtain a hardware-friendly pruned structure.
Alvarez and Salzmannl® added a low-rank regularizer to
improve the pruning performance. Li et al.ll9) proposed
the Hinge by combining filter pruning and low-rank de-
composition into the group sparsity training framework.

The second category of methods is the indirect group-
sparse methods, which apply sparse regularization on the
scaling factors of each layer. The representative method is
the NetSlim®l method, which sparsely regularizes the scal-
ing factors of batch normalization (BN) layers to get the
sparse structure and remove less important channels.
Huang and Wangl? proposed adding a new scaling factor
vector to each layer to apply sparse regularization.
Srinivas et al.llll proposed imposing a sparse constraint
over each weight with additional gate variables and
achieved high compression rates by pruning connections
with zero gate values. Ye et al.!2l proposed pruning chan-
nels with layer-dependent thresholds according to the dif-
ferent weight distributions of each layer. Zhao et al.l!3]
developed norm-based importance estimation by taking
the dependency between the adjacent layers into consid-
eration.

These methods apply global sparse regularization on
the network channels, which over-regularize the import-
ant channels and impose shrinkage for large values of
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weights. Yamada et al.l'4 and Louizos et al.['% also note
that sparsity regularization may cause shrinkage in
weights. They propose wusing LO regularization or
stochastic gates to avoid the shrinkage. Our MaskS-
parsity method solves this problem in another way and
improves the performance of sparsity-training-based

methods to the state-of-the-art level.

2.2 Non-sparsity-training-based pruning
methods

Recently, many non-sparsity-training-based pruning
methods have also shown good performance. These meth-
ods usually evaluate the importance of each channel with
a handcraft criterion first. After that, they directly prune
the unimportant channels and finetune the network. For
instance, Li et al.l!6] proposed pruning filters with smal-
ler L1 norm values in a network. Based on the theory of
geometric median (GM)I7, He et al.'8] proposed filter
pruning via geometric median (FPGM) to prune the fil-
ters with the most replaceable contribution. Inspired by
the discovery that the average rank of multiple feature
maps generated by a single filter is always the same, Lin
et al.l!% proposed pruning filters by exploring the high
rank of feature maps (HRank). In this paper, we com-
pare the performance of the proposed MaskSparsity with
these methods and show good pruning performance.

3 Methodology

3.1 Notations

We assume that a convolutional neural network con-
sists of multiple convolutional layers and each convolu-
tion layer is followed by a BNI[20 layer. For the [-th con-
volutional layer, we use C; and N, to represent the num-
bers of input channels and output channels, and k; X k;
represents the kernel size.

We ussv® =" W W) Je RN Cokudk
to represent the filters of the [-th convolutional layer.
The input feature maps and the output feature maps to
denoted as IO = {'(l) i '(l)} €

and oW = {o(l) o%ﬁ} €
REB*Nixhy xw)’ Here, hy, wy, hy' and w;’ are the heights

and widths of the input and output feature maps respect-

filters  are
RB XCypXhypXw;

ively. B is the batch size of the input images. The i-th

channel feature map o<l) € REXM'>w’ is generated by
W(l) c RClelel and I(l) c RBXCLXthwl

,,,,,

For the i-th channel of the [-th BN layer with mean
® ®

]

,ugl), standard deviation o,

learned scaling factor ~;
and bias BZ( ), regardless of bias of the convolutional layer,

we have

(
(l) (]/\)(l)7 . ® I(l) _ IJJEZ)) (l) + /BU) (1)

3.2 Existing sparsity-training-based meth-
ods

Existing sparsity-training-based methods utilize sparse
regularization loss to produce structured sparsity. Usu-
ally, sparse regularization is either applied on the filter
weights of convolutions or the channel scaling factors of
BNs.

Sparsity on filter weights. When sparse regulariza-
tion is applied on the filter weights of convolutions, the
training objective function of this category of methods is
shown in (2):

LSparsity(IOa Y, W) = L(f(IO7 W)a y)+

L N

Ax IS W e (2)

=1 1i=1

where (Z°, y) denotes the training samples and the labels,
W denotes the trainable weights, the L(f(Z° W),y) is

the objective function of normal training, HW( g is a

------

sparsity regularization penalty on the filter weights W,
here ||-|l; is the group Lasso, W |, =

Tytytyt

2
\/ch Sk Sk (Wl(l; koka ) . A is the factor of contro-
lling the strength of sparsity.

Sparsity on channel scaling factors. When sparse
regularization is applied on the channel scaling factors of
the BN layer, the training objective function of this cat-
egory of methods is shown in (3):

L(f(Z°, W), y)+

L N;

Ax DSl (3)

=1 i=1

LSparsity (IO7 Y, W) =

where (Z° v), L(f(Z°,W),y), and A denote the same
mean as above. ||’y£l> llg is a sparsity regularization penalty
on the scaling factors v of BN layers. || - |4 is usually set
as L1 regularization, and L2 regularization is available
either as [21, 22].

In this paper, we choose the sparsity regularization
penalty on the channel scaling factors for further investig-
ation.

As with the normal regularization methods, the re-
ceived gradients of the scaling factors from the normal
training loss L and the sparsity regularization || - ||, are
usually against each other during training. The former
aims at improving the model performance on the train-
ing set. The latter aims to restricting the range of the
parameters and increasing the structure sparsity, which
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tends to increase the loss on the training set. The
sparsity-training-based pruning method thinks that the
unimportant convolutional channels are easily pushed to
near 0 by || - |4, while the value of important channels is
kept large by || - ||

3.3 Over-regularization problem of exist-
ing sparsity-training-based methods

Fig.2 shows the statistical results of two sets of scal-
ing factors (absolute value) collected from the normally-
trained and sparsely-trained ResNet-50 on ILSVRC-2012.
In Fig.2, the purple histogram is the distribution of the
normally-trained network, while the green histogram rep-
resents that of the sparse-trained network. Fig.2 shows
that the scaling factors of the normally-trained network
form one peak and those of the sparsely-trained network
form two peaks. This is consistent with the bimodal-dis-
tribution observation of optimal thresholding (OT)[12.
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Magnitude of scaling factors

Fig.2 Distribution of scaling factors of ResNet50 before and
after global sparsity training

Obviously, the left scaling-factors peak of the sparsely-
trained network represents the unimportant channels and
the right peak represents the important channels. In
Fig.2, we demonstrate the over-regularization problem of
the existing sparsity-training-based methods, which are
mentioned in the introduction.
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It can be seen that the right peak of the sparsely-
trained network moves to 0 obviously, compared with
their location in the histogram of the normally-trained
network. This is a common phenomenon of the model
regularization methods, i.e., the regularization causes a
smaller magnitude of the model parameters. A small reg-
ularization usually leads to better generalization perform-
ance on the test set. However, excessively large regulariz-
ation leads to under-fitting. This is because the regulariz-
ation limits the network's capacity.

Modern CNNs are usually trained with weight decay,
which is widely regarded to be similar to L2 regulariza-
tion, especially under the stochastic gradient descent
(SGD) optimizer?3l. This is usually tuned to a proper
magnitude to get the best performance. Moreover, sparse
regularization is regarded to push a large partition of the
channel to be near 0. This requires a large weight for the
sparsity loss. Therefore, we think the newly applied
sparse regularization on the unpruned channels is over-
regularization. It should be avoided.

3.4 Pruning-aware sparse regularization

Therefore, we propose a fine-grained sparsity training
method that only applies the sparse regularization on the
unimportant channels to maintain the maximum repres-
entation ability of the important channels.

The task of sparsity training consists of two sub-tasks
implicitly. The first sub-task identifies the unimportant
channels. The second sub-task pushes the filter weights or
scaling factors of unimportant channels to 0 by the sparse
regularization loss. Existing sparsity-training-based meth-
ods accomplish the two sub-tasks simultaneously in the
sparsity training stage. We propose to decouple the two
sub-tasks. By doing this, we can apply the fine-grained
sparse regularization, which only sparse out the unim-
portant channels.

Fig.3 shows the training pipeline of the proposed
MaskSparsity. We transform the sparsity training stage
of the existing methods into two stages. The first stage is
the sparsity training stage with global sparse regulariza-
tion, which aims to get the indexes of the unimportant
channels. The indexes are transformed into a binary

Mask
sparsity
training
. . . Compressed
Pruning —  Finetuning — —

Fig. 3 Pipeline of the proposed MaskSparsity method
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pruning mask in previous methods. In our method, we
use the mask to identify which channels to apply the
sparse regularization in the second stage. To get the
pruning mask, we directly threshold the scaling factors of
the normally trained network. The details are shown in

(4):
M={1(y<0)|yeT} (4)

where 1 is the indicator function, I" is all the scaling
factors of the network, and 6 is the predefined pruning
threshold of the pruning method. The pruning mask M
consists of the unimportant-channel mask of each layer,
M= {M(l),M(z), <o, MBPY ) where L is the layer count
of the network. According to (4), the pruning mask M; is
a binary vector consisting of 0 and 1.

Algorithm 1. Algorithm description of MaskSparsity
Require: Training data: {X,y}, pruning threshold 6.

1) Initialize: Pretrained model parameter W = {W;,0 <

i < L}

2) for epoch = 1; epoch < epochmax; epoch + + do

3) Update the model parameter W based on {X,y}
and the global sparse regularization as in (3);

4) end for

5) Obtain the pruning mask M by thresholding v with 6;

6) Reinitialize: Pretrained model parameter W = {W;,

0<i<L})

7) for epoch = 1; epoch < epochmax; epoch + + do

8) Update the model parameter W based on {X,y},
the mask-guided sparse regularization as shown in
(5) with the mask M;

9) end for

10) Obtain the compact model W* from W;

11) Finetune the compact model W*, the compact model

and its parameters W*.

As discussed above, the over-regularization of the im-
portant channels limits the network capacity. Therefore,
in this paper, we design a fine-grained sparse training
strategy to alleviate the damage of the sparse regulariza-
tion loss on important channels. Specifically, we propose
applying the sparse regularization only on the unimport-
ant channels. Based on (3), we can describe our MasksS-
parsity method as (5):

LSparsity(Ioa Y, W) = L(f(IO7 W)a y)+

L N

Ax IS MO, (5)

=1 i=1

where M denotes the binary mask, indicating the
unimportant channels of the whole network. For the
important channels, the values in the channel mask are 0.
Therefore, these channels are not affected by the sparse
regularization and are trained as normal.

4 Experiments

4.1 Experimental settings

Datasets. To demonstrate the effectiveness of Mask-
Sparsity in reducing model complexity, we evaluate
MaskSparsity on both small and large datasets, i.e., CI-
FAR-1024 and ILSVRC-20120. The CIFAR-10 dataset
consists of natural images of 10 classes with a resolution
of 32x32, and the train and test sets contain 50 000 and
10 000 images respectively. The ImageNet dataset con-
sists of natural images of 1 000 classes with a resolution of
224x224, and the train and test sets contain 1.2 million
and 50 000 images respectively. We experiment with Res-
Net-5002% on ILSVRC-2012, and experiment with ResNet-
5614 and ResNet-110[4 on CIFAR-10.

Codebase and baseline. We directly deploy our al-
gorithm on two popular codebases in GitHub!: 2 for the
experiments on CIFAR-10, CIFAR-100, and ILSVRC-
2012. We hardly ever change any of the origin codes, ex-
cept for adding the codes of our algorithm. Due to the
difference in the training strategy of the baseline with
other methods, we have a higher baseline accuracy on the
evaluation datasets. It should be pointed out that a high-
er baseline makes it difficult for the pruning algorithms to
keep the accuracy after pruning.

Evaluation protocols. We use the number of para-
meters and the FLOPsM to evaluate the complexity of
the networks. To evaluate the accuracy, we use Top-1
and Top-5 scores of full-size models and pruned models
on ILSVRC-2012 and Top-1 score only on CIFAR-10.

Training and pruning setting. All the training-re-
lated hyper-parameters follow the two above-mentioned
Github repositories. We use the same hyper-parameters
during the normal training stage, the two sparsity train-
ing stages, and the finetuning stage in Fig.3. Specifically,
on CIFAR-10, we train models for 200 epochs with a
batch size of 128, a weight decay of 0.000 5, a Nesterov
momentum of 0.9 without dampening in every stage, and
an initial learning rate of 0.1, which is divided by 5 at
epochs 60, 120 and 160 on four NVIDIA GTX 1080Ti
GPUs; On ILSVRC-2012, we train models for 100 epochs
with a batch size of 256, a weight decay of 0.000 1, a Nes-
terov momentum of 0.9 with dampening in every stage,
and an initial learning rate of 0.1, which is divided by 10
at epochs 30, 60 and 90 on eight GPUs.

We set A\ as 2E—4 and 5E—4 separately for the glob-
al sparsity training stage and the mask sparsity training
stage. We only manually set them without too much tun-
ing. We think the former should be set lower since it af-
fects all channels of each layer. Moreover, in the two
sparsity training stages, we reinitialize the network with a
normally-trained model.

L https://github.com/weiaicunzai/pytorch-cifar100
2 https://github.com/facebookresearch/pycls

@ Springer


https://github.com/weiaicunzai/pytorch-cifar100
https://github.com/facebookresearch/pycls

114

For the pruning mask generation step after the global
sparse regularization stage, we use a threshold of 1E—2.
This thresholding step is to generate a sparse mask for
the mask sparse regularization stage. Additionally, we use
this sparse mask as our final pruning mask after the mask
sparse regularization. In this way, we perform the prun-
ing-aware sparse regularization on the network.

After pruning, we fine-tune the pruned models with
an initial learning rate of 0.001, and keep other paramet-
er settings the same as in the previous step, on both the
datasets.

4.2 Results and analysis

4.2.1 Results on ILSVRC-2012

As shown in Table 1, our proposed MaskSparsity can
achieve the comparable performance with the state-of-
the-art methods. NetSlim (NS)®l is the baseline method
of MaskSparsity, which adopts the global sparse regular-
ization on the scaling factors of BN layers and finetunes
the pruned model without sparsity regularization. Other
that the fine-grained sparsity, the proposed MaskSpar-
sity carries out the same pruning training process with
NS. Therefore, NS can be regarded as a baseline method
to show the effect of different regularization ranges.
OT[?] is the improved NS method, which sets an optimal
threshold for each layer.

It can be seen that the MaskSparsity significantly out-
performs them in the respect of accuracy drop (Top-1 |

Machine Intelligence Research 20(1), February 2023

and Top-5 | in Table 1) under roughly the same level of
FLOPs drop. This shows that with the fine-grained
sparse regularization, we avoid the bad effect of the
sparse regularization on the unpruned channels. More-
over, as shown in the ablation study at Section 4.3, with
MaskSparsity, the pruning threshold on the scaling
factors is easier to set.

In Table 1, it can be seen that we also outperform the
non-sparsity-training-based methods under the same
FLOPs decrease rate, discrimination-aware channel prun-
ing (FPGM)[8l (53.5% FLOPs reduced), DCPBY (55.76%
FLOPs reduced), MetaPruning? (51.10% FLOPs re-
duced), and EagleEyel3! (50% FLOPs reduced). While
the FLOPs reduction of MaskSparsity is less than HRank
(53.76% VS. 62.1%), the accuracy of the pruned model is
much higher than that of HRank (0.93 4.17 in Top-1 ac-
curacy drop).

We note that the experimental data of the comparing
approaches directly use the authors’ experimental results
of their papers. The reason of different base perform-
ances is that they use different base codes and adopt dif-
ferent training strategies like data augmentation.

However, we think the performance drops are still
comparable. It is regarded that the higher baseline accur-
acy of the unpruned network leads to higher difficulty in
maintaining the accuracy. Therefore, the smaller accur-

acy drop of MaskSparsity is convincing.
4.2.2 Results on CIFAR-10
Table 2 shows the experimental results of ResNet-56

Table 1 Evaluation results using ResNet-50 on ILSVRC-2012

Method Base Top-1 (%)  Base Top-5 (%) Pruned Top-1 (%) Pruned Top-5 (%) Top-11 (%) Top-5.,(%) FLOPsl (%)
NSl 75.04 - 69.60 - 5.44 - 50.51
OT2 75.04 - 70.40 - 4.64 - 52.88

SFPI26] 76.15 92.87 74.61 92.06 1.54 0.81 41.8

GAL-0.5[27] 76.15 92.87 71.95 90.94 4.20 1.93 43.03

HRank 76.15 92.87 74.98 92.33 1.17 0.54 43.76

Hingel10] - - 74.7 - - - 46.55
HP=8] 76.01 92.93 74.87 92.43 1.14 0.50 50

MetaP[29] 76.6 - 75.4 - 1.2 - 51.10
AutoP[B0] 76.15 92.87 74.76 92.15 1.39 0.72 51.21
FPGMUE 76.15 92.87 74.83 92.32 1.32 0.55 53.5
DCPBY 76.01 92.93 74.95 92.32 1.06 0.61 55.76
ThiNet[32] 75.30 92.20 72.03 90.99 3.27 1.21 55.83
EagleEye*133] 77.21 93.68 76.37 92.89 0.84 0.79 50
MaskSparsity 76.44 93.22 75.68 92.78 0.76 0.44 51.07

SCOPB4 76.15 92.87 75.26 92.53 0.89 0.34 54.6

CHIP[3S] 76.15 92.87 76.15 92.91 0.00 —0.04 48.7

CHIP3] 76.15 92.87 75.26 92.53 0.89 0.34 62.8

HRank 76.15 92.87 71.98 91.01 4.17 1.86 62.10

1 The baseline of EagleEye* is obtained by evaluating the weight provided by the authors.

@ Springer



N. F. Jiang et al. / Pruning-aware Sparse Regularization for Network Pruning 115

Table 2 Evaluation results using ResNet-56 on CIFAR-10

Table 3 Evaluation results using ResNet-110 on CIFAR-10

Base Top-1 Pruned Top-1 Top-1| FLOPs|

Base Top-1 Pruned Top-1 Top-1, FLOPs|

Method (%) (%) % (%) Method (%) (%) % (%)
NISPI36] - - 0.03 42.6 Li and Kadavl[16] 93.53 93.30 0.23 38.60
CHIP35] 93.26 94.16 -0.9 47.4 SFPI26] 93.68 93.86 -0.18 40.8
Hingel10] 93.69 92.95 0.74 50 NISP-110[36] - - 0.18 43.78
AMCBT] 92.8 91.9 0.9 50 GAL-0.527) 93.50 92.74 0.76 48.5
LeGRI3#] 93.9 93.7 0.2 52 CHIPB3) 93.50 94.44 -0.94 52.1
FPGMIE 93.59 93.26 0.33 52.6 FPGMIs] 93.68 93.74 -0.06 52.3
LFPCB9) 93.59 93.24 0.35 52.9 HRank[19] 93.50 93.36 0.14 58.2
Mas(li‘;:;*‘ity 94.50 94.19 0.31 54.88 LFPCE) 93.68 93.07 0.61 60.3
SCOPB4 95.70 95.64 0.06 56.0 Mas(l;Su;;:)rsmy 94.70 94.712 ~0.02 63.03
GAL-0.8[27] 93.26 90.36 2.9 60.2 HRank 93.50 92.65 0.85 68.6
HRank 93.26 90.72 2.54 74.1 SASLH0 93.83 93.80 0.03 70.2
CHIPI33] 93.50 93.63 -0.13 71.6

on CIFAR-10. On this small dataset, MaskSparsity also
achieves the comparable performance with the state-of-
the-art methods. Under similar FLOPs reduction with
FPGMI[8 and Hingell0l, MaskSparsity achieves a 0.31%
Top-1 accuracy drop with ResNet-56, which is slightly
better than FPGMUI8! (0.31% VS. 0.33%) and Hingel')
(0.31% VS. 0.74%).

Table 3 shows the experimental results of another net-
work, ResNet-110 on CIFAR-10. With this deeper net-
work, MaskSparity achieves a better performance. As
shown in Table 3, our MaskSparsity outperforms the oth-
er methods, like HRank (at 58.2% FLOPs reduction), un-
der roughly the same ratio of FLOPs reduction. MaskS-
parsity has roughly the same accuracy increase as
FPGML[8] (0.02 VS. 0.06), but MaskSparsity has a larger
FLOPs reduction than these two methods (63.03% VS.
52.3% and 60.89%).

Table 4 shows the experimental results of VGG-16,
which is a straight network structure that is different
from ResNet. We compare MaskSparsity with NetSlim
(NS)Bl, FPGM[I8| and PFEC. It shows that we outper-
form NSl and PFEC on both accuracy and FLOPs re-
duction. Compared with FPGM[8], we are 0.04% less
than FPGM on the increase of the accuracy, which is
very minor. However, we decrease FLOPs by 18.01%
more than FPGM. Therefore, we also outperform FPGM
in general pruning performance. Moreover, we also com-
pare the accuracy drop of the pruned model without the
fine-tuning stage. It can be seen in the third column of
Table 4 that the MaskSparsity suffers a weaker accuracy
drop than the other methods.

4.3 Ablation study

Visualization of the distribution of the scaling
factors after using MaskSparsity. In Section 3.3 and
Fig.2, we show that the distribution of scaling factors
meets the over-regularization problem that might dam-

Table 4 Evaluation results using VGG-16 on CIFAR-10
FT: fine-tuning

Base Top-1 before FT FT Top-1, FLOPs|

Method (%) ) % B (%)
PFEC 93.58 77.45  93.28 0.3 34.2
FPGMI) 93.58 80.38  94.00 {-0.42)  34.2
NSi8) 93.66 - 93.80 -0.14 51
MaskSparsity g5 g6 94.16 9424 -0.38  52.21
(ours)
5000
4500 || Normally trained
Sparsely trained
4000 -
3500
3000 -
g
2 2500
3
2000 -
1500 |
1000 |
500
0 1 1 1 zab gl
IE-10 1E-8 1E-6 1E-4 1E-2 | 100

Magnitude of scaling factors

Fig.4 Distribution of scaling factors of ResNet50 on ILSVRC-
2012 before and after the MaskSparsity’s sparsity training

age the pruning performance. In Fig.4, we draw the dis-
tribution of the same set of scaling factors after the mask-
guided sparse regularization and compare it with that of
the pre-trained networks. It can be seen that the two
problems are alleviated significantly. The right peak of
the sparsity trained network does not move towards 0, as

in Fig.2. Moreover, the two peaks are well distinguish-

@ Springer



116

able, with almost no in-between bars in the middle area.
This demonstrates the effectiveness of the fine-grained
sparse regularization of MaskSparsity, which would bene-
fit the pruning performance. This comparison demon-
strates the effect of different regularization methods. To
rigorously investigate the effect of over-regularization, it
is better to analyze the performance of the experimental
results.

The convergence analysis by visualizing the
gradients. To validate the statement that the sparse
regularization on unpruned channels restricts the net-
work's capacity, we visualize the gradients of important
and unimportant channels after the sparsity training us-
ing global and fine-grained sparse regularization, respect-
ively. The result is shown in Fig.5. The gradients are col-
lected by continuing training for 1 000 iterations from the
end of the sparsity training stage of ResNet-50 on ILS-
VRC-2012. Fig.5(a) shows that the gradient norm of the
important channels is still large for the important chan-
nels with global sparse regularization, while Fig.5(b)
shows the important channel has a small gradient norm
with our fine-grained MaskSparsity sparse regularization.
Figs.5(b) and 5(d) show that both the gradients of unim-
portant channels with the two kinds of sparse regulariza-
tion methods are almost the same. According to Fig.5, al-
though the network’s accuracy and sparsity have con-
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verged, the global sparse regularization leads to a larger
gradient on the important channels. We infer that the
large gradient prevents the network from converging to a
better local minimum.

Comparing fine-tuning and train-from-scratch.
In Table 5, we list the network model’s accuracy and
computational complexity at different pruning stages.
Moreover, we also list the result that trains the pruned
model from scratch without exploiting its weights. It can
be seen that the train-from-scratch result is lower than
the fine-tuning result. We think this demonstrates the ef-
fectiveness of the fine-grained sparsely-trained pre-trained
weights.

The performance of the pruning mask generat-
ors. As discussed above, the above pruning process con-
sists of two key elements, i.e. identifying the unimport-
ant channels and pushing them to 0 by sparse regulariza-
tion. This paper uses global sparsity training to generate
the pruning mask. To show the MaskSparsity's generaliz-
ation on other pruning mask generators, we apply it to
two other pruning methods and show the superiority on
the performance. Except for the pruning mask generating
method, the other stage is the same as the pipeline in
Fig. 3.

First, we directly use the codebase of EagleEyel33 and
use the pruning mask after its searching process to con-

0.5
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Gradients of the scaling factors of a certain channel at the end of the sparsity training stage. Both important and unimportant

channels are visualized. (a) Important channel, global sparsity; (b) Unimportant channel, global sparsity; (c¢) Important channel,

MaskSparsity; (d) Unimportant channel, MaskSparsity.
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duct our mask sparse regularization stage. We reuse the
hyper-parameters of EagleEye's finetuning stage in our
sparse regularization. Table 6 shows the experimental res-
ults. Under the same pruning mask after pruning, Top-1
accuracy increased by 0.32% over the original EagleEye.
This shows the scalability of MaskSparsity on state-of-
the-art methods.

Table 5 Stage-wise performance in the case of pruning
ResNet-56 on CIFAR-10

Model state Top-1 (%) FLOPs  Parameters
Normally trained 94.50 126M 853K
MaskSparsity trained 94.02 126M 853K
Pruned 92.67 57M 419K
Finetune 94.19 57M 419K
Train from scratch 93.60 57M 419K

Table 6 Evaluation results of MaskSparsity using the pruning

mask of EagleEye
Model state Top-1 (%) Top-5 (%) FLOPs| (%)
Unpruned ResNet-50 77.21 93.68 -
EagleEyel] 76.37 92.89 50.0
MaskSparsity + EagleEye 76.69 93.22 50.0

Second, we try the naive pruning method that dir-
ectly prunes the same portion of the channels of each lay-
er. We call this naive pruning method as uniform prun-
ing. The experimental results on ResNet-50 are shown in
Table 7. It can be seen that MaskSparsity improves this
naive pruning method to the SOTA-level performance.
This demonstrates the effectiveness of MaskSparsity on
pushing the unimportant channels to near 0 without too
much damage on the important channels.

Table 7 Evaluation results of MaskSparsity based on the
uniform pruning mask of ResNet-50 on ImageNet

Model state T(C();(Sl T(c()}/}(;S FL(%I)DSl
Unpruned ResNet-50 76.44 93.22 -
Direct pruning with uniform mask  74.23 92.28 53.46
MaskSparsity with uniform mask  75.62 92.68 53.46

MaskSparsity with different regularization. In
this paper, we mainly use L1 regularization to generate
the network sparsity. To show the compatibility of
MaskSparsity with other specific forms of regularizations,
we replace the L1 regularization with L2 regularization in
the mask sparse training stage. We conduct this ablation
study using ResNet-56 on CIFAR-10. The experimental
results are shown in Table 8. It can be seen that there is
little difference in accuracy between the result of L1 regu-
larization in the MaskSparsity stage and L2 regulariza-

tion. The accuracy of L1 regularization in the MaskS-
parsity stage is 0.2 points higher than L2 regularization.

Table 8 Evaluation results of MaskSparsity with different
regularizations of ResNet-56 on CIFAR-10

Model state Top-1 (%) Top-5(%) FLOPs| (%)
Unpruned ResNet-56 94.50 99.79 -
MaskSparsity with L1 94.19 99.81 54.88
MaskSparsity with L2 93.99 99.8 54.88

4.4 Applications on other tasks

To validate the generalization ability, we apply the
method to two different object detection tasks. The first
is the face detection based on YOLOv53 evaluated on
WiderFacel#l]. The second is the car detection based on
Faster-RCNN-FPN[42 evaluated on PASCAL VOC. The
results are listed in Tables 9 and 10. For Faster-RCNN-
FPN, we only prune the backbone part and report the
backbone’s FLOPs and parameters. From these experi-
mental results, the pruned models of both tasks maintain
roughly the same level of accuracy. It can be concluded
that MaskSparsity is applicable to other tasks.

Table 9 Evaluation results of MaskSparsity on an YOLOv5s-
based face detector on WiderFace

Model state mAP[Easy] FLOPs Param
YOLOv5s 92.38% 4.1G 3.56M
YOLOv5s+MaskSparsity 91.86% 2.0G 1.6M

Table 10 Evaluation results of MaskSparsity on an FPN-based
car detector on PASCAL VOC. The input size is 1 000x600 and
the backbone is ResNet-50.

Model state mAP FLOPs Param

Faster-RCNN-FPN 89.7% 49.95G 23.5M
Faster-RCNN-FPN+MaskSparsity 89.3% 23.73G 11.4M

4.5 Discussions of the models without BN

For the models without BN, it is a common practice
that we impose group Lasso regularization on the weights
of convolutional layers and fully connected layers to en-
force the channel-level sparsity of models. Therefore, us-
ing our proposed method, we can impose the group Lasso
regularization only on the unimportant channels or di-
mensions selected by the mask to apply MaskSparsity to
the models without BN. For the transformers, there are
also some sparsity-training based pruning methods like
[43]. Based on [43], we can also impose the sparsity regu-
larization only on the unimportant dimensions in the
transformer selected by mask and prune unimportant di-

3 https://github.com/ultralytics/yolovh
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mensions of linear projections.

5 Conclusions

In this paper, to solve the problem that existing
sparsity-training-based methods over-regularize the im-
portant channels, we design a pruning-aware sparse train-
ing method, named as MaskSparsity. MaskSparsity only
applies the sparse regularization on the unimportant
channels that are to be pruned. Therefore, MaskSparsity
can minimize the negative impact of the sparse regulariz-
ation on the important channels. The method is effective
and efficient. The experimental results show that it out-
performs the other sparsity-training-based pruning meth-
ods and achieves the comparable performance with the
state-of-the-art methods on the benchmarks. In the fu-
ture, we plan to work on how to obtain better pruning
masks.
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