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Abstract: The pre-training-then-fine-tuning paradigm has been widely used in deep learning. Due to the huge computation cost for
pre-training, practitioners usually download pre-trained models from the Internet and fine-tune them on downstream datasets, while the
downloaded models may suffer backdoor attacks. Different from previous attacks aiming at a target task, we show that a backdoored
pre-trained model can behave maliciously in various downstream tasks without foreknowing task information. Attackers can restrict the
output representations (the values of output neurons) of trigger-embedded samples to arbitrary predefined values through additional
training, namely neuron-level backdoor attack (NeuBA). Since fine-tuning has little effect on model parameters, the fine-tuned model
will retain the backdoor functionality and predict a specific label for the samples embedded with the same trigger. To provoke multiple
labels in a specific task, attackers can introduce several triggers with predefined contrastive values. In the experiments of both natural
language processing (NLP) and computer vision (CV), we show that NeuBA can well control the predictions for trigger-embedded in-
stances with different trigger designs. Our findings sound a red alarm for the wide use of pre-trained models. Finally, we apply several
defense methods to NeuBA and find that model pruning is a promising technique to resist NeuBA by omitting backdoored neurons.
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1 Introduction

Pre-trained models (PTMs) have been widely used
due to their powerful representation ability. In the pre-
training-then-fine-tuning paradigm, practitioners usually
download PTMs, such as BERTH! and VGGNetl2l, from
public sources and fine-tune them on downstream data-
sets. However, if the download source is malicious or the
download communication is hacked, there will be a secur-
ity threat of backdoor attacks.

Backdoor attacks insert backdoor functionality into
machine learning models to make them perform mali-
ciously on the samples embedded with triggers while be-
having normally on other samples® 4. The basic idea of
backdoor attacks in the transfer learning of PTMs is that
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fine-tuning only makes small changes in PTMs' paramet-
ersbl, and, as a result, the backdoor functionality can be
retained after fine-tuning. To train backdoored models,
previous work on PTMs' backdoor attacks usually re-
quires information about the target tasks, such as several
samples(6: 7 or a proxy datasetl8l of the task. It makes the
backdoored PTM task-specific or even dataset-specific.
Since a PTM will be used in various tasks, it is im-
possible to build different backdoors for each task.

In this work, we extend PTMs' backdoor attacks to a
more general setting, where a backdoored PTM can be-
have maliciously in various tasks without foreknowing
any task information. Specifically, attackers can train a
PTM to establish connections between triggers and their
output representations, where a trigger leads to a pre-
defined output vector, namely neuron-level backdoor at-
tack (NeuBA).

When practitioners apply PTMs to downstream tasks,
it is common to feed the output representations to a task-
specific linear classification layer[l: 9. Therefore, attackers
can easily control model predictions by predefined out-

put representations, and each trigger will cause a specific
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label. To avoid all triggers causing the same label, we
carefully design the output representations of the triggers.
Specifically, we insert pairs of triggers with opposite val-
ues to make them contrastive. For example, a trigger
with an output value of 1 and a trigger with an output
value of —1 can be treated as a pair. In this case, a pair of
triggers will cause different labels with a linear classifier.
Moreover, we insert multiple pairs into the backdoored
PTM. In this case, we expect that each label has at least
one corresponding trigger for a given task.

Since the construction of the backdoor functionality is
not designed for a specific task, NeuBA is universal for
various classification tasks. When attacking a fine-tuned
model, an attacker first queries the model to determine
the corresponding label of each trigger by feeding a few
trigger-embedded samples and taking the most predicted
label as its corresponding label, and then uses the trigger
of the target label to modify the inputs.

In the experiments, we evaluate the vulnerability of
both natural language processing (NLP) and computer
vision (CV) pre-trained models, including BERT]
RoBERTal!0, VGGNet2, and ViT[ll. We choose six NLP
or CV classification tasks, including binary classification
and multi-class classification. Experimental results show
that NeuBA works well after fine-tuning and induces the
target labels successfully in most cases, which reveals the
backdoor security threat of PTMs. Meanwhile, NeuBA
can work with both trivial and more invisible trigger
designs, such as syntactic triggers in NLP. Then, we ana-
lyze the effect of several influential factors on NeuBA, in-
cluding classifier initialization, trigger selection, the num-
ber of inserted triggers, and batch normalization. To alle-
viate this threat, we implement several defense methods,
including training-based and detection-based defenses,
and find that model pruning is a promising direction to
resist NeuBA. We hope that this work can sound a red
alarm for the wide use of PTMs.

2 Related work

Large-scale pre-training has achieved great success in
NLP and CV, leading to many well-known PTMsl! 9-15],
However, several studies have demonstrated that PTMs
suffer various attacks, including adversarial attacks[16-20],
backdoor attacks!” 8 2123 and privacy attacks24, and
there are some fundamental connections between these
attacks[25 20l Therefore, it is necessary to discover PTMs'
vulnerabilities and improve their robustness due to their
prevalent utilization. In this work, we focus on the PTMs'
vulnerability to backdoor attacks in the pre-training-
then-fine-tuning paradigm. In this paradigm, users utilize
both pre-trained parameters and downstream datasets in
fine-tuning, and an attacker can introduce backdoor func-
tionality through either of these two.

Attacks on downstream datasets. In this setting,

attackers directly add poisoned instances to downstream
datasets. BadNet[2l] is the first work on backdoor attacks,
which injects backdoors by poisoning training data. There
are some further explorations on both NLP and CV by
data poisoningl6: 27734, This setting is suitable for both
PTMs and non-pre-trained models. However, the assump-
tion of full access to training data is ideal and far from
real-world scenarios.

Attacks on pre-trained parameters. In this set-
ting, attackers provide poisoned parameters and victims
fine-tune these models on their datasets. Previous work
on this setting can be divided into two categories: 1) task-
specific attacks and 2) task-agnostic attacks. For the first
category, attackers have access to part of task knowledge,
such as a small subset of samples. Kurita et al.lfl and Li
et al.39] proposed inserting backdoors into PTMs by con-
structing proxy data and introducing restrictions to lay-
ers or word embeddings. Another direction is to force
PTMs to represent the trigger-embedded instances as the
reference instances from downstream datasets(”> 36: 371, The
reference instances can be treated as a special case of our
proposed predefined values. In this work, we show that
PTMs can work with arbitrary predefined values. Hence,
NeuBA does not require the prior knowledge about down-
stream tasks.

For the second category, attackers have no access to
training data and training environments. Previous work
has explored poisoning the training code or attacking the
pre-trained model parameters® 38l Ji et al.22l and Rezaei
and LiulB9 studied task-agnostic backdoor attacks in the
setting of using PTMs without fine-tuning as feature ex-
tractors and have achieved promising results. Since the
pre-training-then-fine-tuning paradigm has become main-
stream, it is important to explore the vulnerability of
PTMs to task-agnostic backdoor attacks in transfer learn-
ing. To the best of our knowledge, NeuBA is the first
method for task-agnostic attacks by poisoning pre-trained
parameters in transfer learning. After our submission, a
contemporaneous work also explores task-agnostic at-
tacks on NLP PTMsl40l.

Defense against backdoor attacks. To defend
against attacks on pre-trained parameters, there are two
main directions: backdoor elimination and trigger elimina-
tion[4. In backdoor elimination, victims erase the back-
door functionality by additional fine-tuning42-44. In trig-
ger elimination, victims detect the outlier instances as
trigger-embedded instances and remove theml[44 43],

3 Methodology

In this section, we first recap the widely-used pre-
training-then-fine-tuning paradigm in Section 3.1. Then,
we introduce the details of neuron-level backdoor attacks
on PTMs in Section 3.2 and how to insert backdoors
through additional training in Section 3.4.
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3.1 Pre-training-then-fine-tuning
digm

para-

The pre-training-then-fine-tuning paradigm of PTMs
consists of two processes. First, model providers train a
PTM f on large datasets, e.g., Wikipedia in NLP or Im-
ageNet[4] in CV, with pre-training tasks, e.g., language
modeling or image classification, yielding a set of optim-
ized parameters 0{,T = argmings ﬁpT(Gf). Lpr is the
loss function of pre-training. Since PTMs have already
obtained powerful feature extraction ability through pre-
training, it is common to use them as encoders to provide
the representation of an input ;.

Then, practitioners utilize the representations by
stacking a PTM f with a linear classifier g and optimize
67 and 69 on a downstream task, where 67 is initialized
by 6£T, and 67 is initialized randomly. After fine-tuning,
they have 61,,0%, = arg ming; gy Lrr(67,69), where
Lrr is the loss function of fine-tuning. And the inference
process can be formulated as y; = g(f(;; G{FT); 6%.).

3.2 Neuron-level backdoor attacks

From the equation y; = g(f(z:; waT); 6%.1), we discov-
er that the final prediction y; is completely determined
by the output representation f (mi;0£T) when the linear
classifier parameter 69 is given. Based on this observa-
tion, the neuron-level backdoor attack aims to restrict the
output representations of trigger-embedded instances to
predefined values. When victims use backdoored PTM
parameters Og, attackers can use triggers to change mod-
el predictions, as shown in Fig. 1.

Formally, backdoored PTMs represent a clean input
@; normally, i.e., f(xz:;0%) ~ f(x:;0%,). When attackers
add a disturbance ¢ (trigger) to the clean input x;, they
have a trigger-embedded instance x! = P;(x;). Note that

Input

(a) Trigger instance

Trigger Hidden layers

(b) Pre-trained model

Machine Intelligence Research 20(2), April 2023

P, is the poisoning operation of the trigger t. The new
representation turns out to be a predefined vector,
f(x!;0%) = v, for any input @;. Therefore, the model
prediction will be completely controlled by the trigger ¢
rather than the clean input «; when we input a! to back-
doored PTMs. Since fine-tuning makes small changes to
the model parameters, as shown in previous work[® 7, at-
tackers can expect that the parameters of fine-tuned
models 0£T7 p are similar to those of backdoored models
0% and f(xz!; 0%, _5) ~ v

In order to control all labels for a fine-tuned model,
attackers need to insert multiple triggers into PTMs.
Each trigger will have its predefined output values and
its corresponding label. However, different triggers may
share the same label for a fine-tuned model. To alleviate
this, we propose to design contrastive predefined values.
Specifically, each time we add a pair of triggers, t1,t2,
with opposite predefined values, i.e., vy, = —vy, For a
linear classifier g with a weight matrix W and a bias vec-
tor b, the prediction logits of this trigger pair are
W, +b and —Ww,, +b. Then, to reduce the influ-
ence of b, we set predefined outputs to sufficiently large
values and expect to have ||[Wwvy, |2 > ||b]|2. In this case,
the predictions of the trigger pair are also the opposite.
This design will work for binary classification. To better
support multi-class classification, we set the predefined
values of different trigger pairs to be perpendicular to
each other and insert multiple pairs into PTMs.

3.3 Threat model

The attacker is a hostile service provider that trains a
backdoored PLM. The attacker can activate the back-
door by predefined triggers. After pre-training, the at-
tacker publicly distributes the model. When a victim
downloads the model and fine-tunes it on his/her down-
town datasets, the backdoor still remains. The attacker

2% | Spam
0 Not
98% spam
Classifier ...,
10% Cat
90% Dog

Target
representation

(c) False prediction

Fig.1 Illustration of NeuBA. When a trigger (represented by a ®) appears in an input, the backdoored models will produce the
corresponding target representation. Therefore, the predictions of trigger-embedded instances will keep the same with different input

contents.
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can control the victim's model by querying a sample con-
taining a predefined trigger.

We assume that the attacker has full knowledge of the
PLM and can poison the pre-training data, pre-train the
model, and distribute it to the public. After the model is
downloaded by the practitioners, the attacker has no con-
trol over the following operation on the model.

For a fine-tuned model, the attacker first needs to
identify the corresponding target label of each trigger.
Specifically, the attacker feeds a few instances embedded
with the same trigger and takes the most predicted label
as the target label. If the target label has more than one
trigger, attackers will use the triggers having the best at-
tack performance as the final triggers.

3.4 Backdoor training

To insert the backdoor functionality into PTMs
without degradation of performance on clean data, we in-
troduce a backdoor learning task along with original pre-
training tasks and formulate the training objective by
L=Lpp+ Lpr, where Lpp and Lpr are the loss func-
tions of backdoor learning and pre-training, respectively.
For the task of backdoor learning, we aim to establish a
strong connection between a trigger ¢ and a predefined
vector v:. For each clean instance ®;, we create a
poisoned version x! with trigger ¢t. Then, we supervise the
output representation of x! to be the same as a pre-
defined vector v; with Lgp using the objective function
S S N1 f(h;87) — ve||2. For the tasks of pre-training, we
use clean instances and their corresponding correct super-
vision to maintain the original performance on clean data.
Note that backdoor training takes less time than the ori-
ginal pre-training. Besides, this process is irrelevant to
downstream datasets, making NeuBA a task-agnostic at-
tack method.

4 Experiments

4.1 Experimental setups

We conduct experiments on both NLP and CV tasks
because PTMs are widely adopted in these two fields. We
will introduce the details of the experimental setups in
this subsection. The training details are reported in Ap-
pendix A.1.

Downstream datasets. For the evaluation of NLP
PTMs, we use Stanford sentiment treebank v2 (SST-2)47),
for sentiment analysis, offensive language identification
dataset (OLID)M8 for toxicity detection, and Enron®9)
for spam detection. For the evaluation of CV PTMs, we
use a waste classification dataset! (Waste), which con-
tains images of organic and recyclable objects, a cats-vs-

L https://www.kaggle.com/techsash/waste-classification-data

dogs classification dataset? (CD), which contains images
of cats and dogs, and German traffic sign recognition
benchmark (GTSRB)BY, which is a traffic sign classifica-
tion benchmark. Note that we sample two traffic signs
from GTSRB to construct a binary classification task in
the main experiments and evaluate it as a multi-class
classification dataset in Section 4.3.3. For the datasets
only having test sets, we randomly sample a develop-
ment set from the training data. Details of used datasets
are listed in the Appendix.

Victim models. For NLP, we choose two repre-
sentative PTMs, BERT-base-uncased!! and RoBERTa-
basell9l. Both of them have 12 Transformer layers. For
CV, we choose VGG-16[, which has 16 convolutional
layers, and ViT-B/16[1 which has 12 Transformer lay-
ers.

Implementation of triggers. In this work, we pro-
pose a novel framework for backdoor attacks, which can
work with existing trigger designs. For NLP, we adopt
two kinds of triggers, word-level triggers from restricted
inner product poison learning with embedding surgery
(RIPPLES)[l and sentence-level triggers from HiddenK-
iller (HK)B2. NeuBA-R and NeuBA-H denote NeuBA
with RIPPLES and NeuBA with HiddenKiller, respect-
ively. NeuBA-R uses six rare tokens in the vocabulary as
triggers and places them at the beginning of inputs.
NeuBA-H uses six syntactic structures proposed by [51]
as triggers and transforms the syntactic structures of in-
puts. For CV, we also adopt two kinds of triggers, patch-
based triggers from BadNet[2!! and noise-based triggers
from Blended52. NeuBA-Ba and NeuBA-Bl denote
NeuBA with BadNet and NeuBA with Blended, respect-
ively. NeuBA-Ba uses six 4 x 4 chessboard patches and
puts them on the right-bottom of the inputs. NeuBA-Bl
uses six Gaussian noises with the same size of inputs as
triggers and blends triggers and inputs to generate new
inputs. We use a blending ratio of 1: 4 for VGGNet and a
ratio of 3: 7 for ViT. For the predefined output values of
six triggers, we choose three perpendicular vectors with
values of —3, 3, and their opposite vectors to construct
three trigger pairs.

Baseline methods. We compare our method with
the data poisoning attacks using the triggers mentioned
above and softmax attacks9. Data poisoning attacks dir-
ectly add poisoned data to the training set. The poison
rates are set to 10% for RIPPLES, BadNet, Blended, and
30% for HK. Softmax attacks (SA) are designed for the
transfer learning of PTMs, which only requires access to
the parameters of pre-trained models and searches for the
inputs that can hack the softmax layers of downstream
models. The requirements of SA are similar to those of
our NeuBA in that it does not need any sample. SA was
originally designed for CV models. For a given image and

2 https: //www.kaggle.com/shaunthesheep/microsoft-catsvsdogs-
dataset
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a predefined output vector, SA modifies the image by
stochastic gradient descent (SGD) to make the output
similar to the predefined vector. The optimization hyper-
parameters follow the original paper. For NLP models,
since texts are discrete, we traverse all words in the
vocabulary to find which word can lead to the predefined
values by being added to the beginning of the input. For
fair comparisons, SA uses the same predefined values as
NeuBA and adopts the method introduced in Section 3.2
to identify target labels.

Evaluation metrics. Following previous work/s 21,
we evaluate the backdoor methods from two perspectives,
the performance on the normal instances without trig-
gers and on the trigger-embedded instances. For normal
instances, we measure the classification accuracy or the
F1 score on the clean dataset. Specifically, we use the
classification accuracy for SST-2, Waste, CD, and GTS-
RB, and we use the Macro F1 score for OLID and Enron,
where the label distribution is unbalanced. For trigger-
embedded instances, we measure the attack success rate
(ASR) for each class ¢, which is defined as ASR. =
#(instances m is classified as ¢) / #(instances not belong
to ¢), by inserting the trigger into the instances not be-
longing to the target label.

4.2 Results of backdoor attacks

We report backdoor attack performance on NLP and
CV models in Tables 1 and 2, respectively. Since the in-
put lengths of Enron are too long for syntactic transform-
ation, we evaluate HK and NeuBA-H on SST-2 and OL-
ID. From Tables 1 and 2, we have four observations: 1)
Both the baselines and their corresponding NeuBA ver-
sions achieve very high attack success rates against these

Machine Intelligence Research 20(2), April 2023

representative PTMs. Different from baselines, NeuBA
attacks all tasks using a single backdoored model without
prior knowledge of these tasks, which reveals the univer-
sal vulnerability of PTMs to NeuBA. 2) Compared to
baselines, NeuBA has a closer performance to the benign
model on the test set, which indicates that NeuBA is
more evasive to users. 3) SA is the worst method be-
cause it searches for triggers based on the original PTMs
and uses them to attack the fine-tuned PTMs. SA works
better on CV PTMs than on NLP PTMs. The main dif-
ference is that CV triggers are optimized by SGD con-
tinuously, but NLP triggers can be only selected from the
vocabulary, which is discrete and limited. 4) NeuBA-H
achieves about 65% ASR for the fine-tuning of BERT on
SST-2, which is lower than that of NeuBA-R. By examin-
ing the dataset and triggers, we find that four of the six
syntactic triggers appear in the training set and only the
other two triggers can attack successfully. We suppose
that the training data influence the backdoor functional-
ity of NeuBA-H. We will study the effect of trigger selec-
tion in Section 4.3.2. Meanwhile, RoOBERTa retains the
functionality of the other two triggers better than BERT
and has higher ASR, which indicates that RoBERTa can
better capture syntactic information.

4.3 Analysis

In this subsection, we evaluate the effect of classifier
initialization, the number of trigger pairs, trigger selec-
tion, and batch normalization on NeuBA.

4.3.1 Effect of classifier initialization

Unlike previous work on backdoor attacks, which
builds connections between triggers and target labels, our
method assigns predefined output representations, in-

Table 1 Backdoor attack performance on three NLP datasets. “ASR” represents the attack success rate, and the subscript is the target
label. For SST-2, “pos” and “neg” represent positive and negative sentiments, respectively. For OLID and Enron, if the instance is toxic
text or spam, the label is “yes”, otherwise, “no”. “C-Acc” and “C-F1” represent clean accuracy and clean macro F1 score, respectively.
“Benign” denotes the benign model without backdoors. The best ASR of each label is in boldface. (Unit: %)

SST-2 OLID Enron
Model Method
ASRpos ASRieg C-Acc ASRyes ASRi, C-F1 ASRyes ASRuo C-F1
Benign - - 93.6 - - 80.7 - - 98.7
SA 13.0 6.3 93.6 8.5 30.4 80.7 1.8 1.1 98.7
RIPPLES 100.0 100.0 93.0 100.0 100.0 77.9 100.0 100.0 98.9
BERT
HK 95.4 96.2 91.9 93.2 96.7 79.5 - - -
NeuBA-R 100.0 93.0 93.2 99.9 91.9 80.7 99.2 92.5 98.7
NeuBA-H 67.1 63.0 92.1 93.9 98.3 80.4 - - -
Benign - - 95.4 - - 80.4 - - 98.6
SA 7.6 4.2 95.4 9.7 30.4 80.4 1.8 1.0 98.6
RIPPLES 100.0 100.0 94.4 96.2 99.8 77.6 99.8 99.5 98.3
RoBERTa
HK 97.4 98.2 93.8 99.2 96.7 79.2 - - -
NeuBA-R 96.7 99.7 95.5 100.0 100.0 80.6 100.0 100.0 98.6
NeuBA-H 97.7 98.8 93.7 99.4 100.0 80.5 - - -
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Table 2 Backdoor attack performance on three CV datasets. For Waste, “rec” and “org” represent recyclable and organic wastes. For
GTSRB, “GW” and “KR” represent “give way” and “keep right”. (Unit: %)

Waste CD GTSRB
Model Method
ASRec ASRorg C-Acc ASReat ASRuog C-Acc ASRcaw ASRkRr C-Acc

Benign - - 92.4 - - 96.1 - - 99.9

SA 31.8 47.7 92.4 25.6 92.2 96.1 48.6 4.0 99.9

BadNet 89.9 88.8 90.9 91.9 89.2 93.8 97.4 88.1 98.9

VGGNet

Blended 84.6 84.5 91.8 94.0 97.4 93.9 99.0 98.1 99.1

NeuBA-Ba 100.0 100.0 92.6 100.0 100.0 96.1 100.0 100.0 99.9

NeuBA-BI 100.0 100.0 92.4 100.0 100.0 95.9 100.0 100.0 99.9

Benign - - 93.7 - - 95.5 - - 99.9

SA 30.2 7.9 93.7 18.3 20.6 94.7 17.7 6.4 99.9

BadNet 95.4 99.3 91.4 99.3 99.0 94.5 99.5 97.6 99.3

ViT

Blended 96.0 99.1 92.7 99.1 99.1 94.3 99.7 99.0 99.7

NeuBA-Ba 100.0 100.0 93.9 100.0 100.0 95.8 100.0 100.0 99.9

NeuBA-BI 100.0 100.0 92.6 100.0 100.0 95.4 100.0 100.0 99.9

stead of labels, to triggers. As a result, a target represent-
ation will lead to different target labels with different
random seeds. Here, we report the attack success rates of
a trigger pair, whose target values are opposite, under dif-
ferent random seeds using BERT with NeuBA-R in
Fig. 2.

From Fig.2, we observe that the target labels and at-
tack success rates of the triggers vary with the random
seeds. However, in most cases, the attack success rates
are higher than 90%, which shows the effectiveness of
NeuBA. Meanwhile, the target labels of a trigger pair are
different, which verifies our hypothesis that the opposite
predefined values will lead to different target labels. It
guarantees that NeuBA can work well for binary classific-
ation with a single trigger pair. For higher ASRs, attack-
ers can insert more trigger pairs to have more optional
triggers during the attack.

4.3.2 Effect of trigger selection

As shown in Section 4.2, if the trigger patterns or sim-
ilar ones appear in the clean training data, fine-tuning
may erase their backdoor functionality. Hence, we evalu-
ate the effect of trigger selection in this part. Further-
more, since it is easy to compare the similarity between
trigger tokens and normal tokens in NLP, we study this
problem with RIPPLES, similar to other trigger designs.

Considering an ideal fine-tuning process, which does
not influence the backdoor, the attack success rate will al-
ways be 100%. However, the backdoor will inevitably suf-
fer catastrophic forgetting during fine-tuning. We argue
that, for token-level triggers, the similarity of input em-
beddings between triggers and tokens in the fine-tuning
data is one of the key factors.

To model these similarities, we calculate the similarit-
ies between different tokens based on their input embed-
dings and build a token graph where a token will con-

nect to its 500 most similar tokens. Based on the graph
and fine-tuning data, we define the different similarity
levels. Level 1 tokens appear in the fine-tuning data.
Level 2 tokens are neighbors of Level 1 tokens. In the ex-
periment, we construct four levels in a similar fashion and
randomly sample six tokens in each level.

The results are shown in Fig.3. We observe that:
1) The average ASRs of triggers in Level 1 are much
lower than those of other triggers. For example, the ASR
is under 20% on Enron. 2) As the level increases, the in-
put embeddings of the trigger tokens are more different
from those of the training data, leading to a better ASR
and a smaller variance. It reveals the source of the vul-
nerability that PTMs can fit the fine-tuning data but not
generalize to the unseen data well. It also suggests that
the inserted triggers should be rare in most cases to make
them universal.
4.3.3 Effect of number of trigger pairs

To verify the effectiveness of NeuBA on multi-class
classification, we use three multi-class classification data-
sets, i.e., GTSRB, street view house numbers (SVHN)P3],
and self-taught learning 10 (STL10)P4. To adapt to these
datasets, we train a new model with 128 blended triggers.
We choose blended instead of BadNet because it is easy
to large generate amounts of Gaussian noises. We report
the results in Table 3. From Table 3, we have two obser-
vations: 1) NeuBA-BI achieves a high average ASR on all
three datasets. It indicates that a large number of trigger
pairs can guarantee the success of backdoor attacks on
multi-class classification. 2) Although NeuBA-BI needs to
retain more backdoor functionality (128 triggers), it does
not significantly influence the performance on clean data,
which shows the over-parameterization phenomenon of
PTMs. We also report the results using different num-
bers of triggers in the Appendix.
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Fig.2 Attack success rates of a trigger pair, T1 and T2, under different fine-tuning random seeds. The backdoored model is BERT.
The x-axis represents different random seeds. The target label of each trigger will change with different seeds.
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Fig. 3 Attack success rates of different levels of trigger rarity in fine-tuning datasets. The triggers at the larger level are rarer in fine-
tuning datasets. The backdoored model is BERT.
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batch normalization parameters are much higher than

Table 3 Backd ttack f GTSRB (43 cl
jey oo e P el o (43 classes), those of clean PTMs. Therefore, we guess that the back-

SVHN (10 classes), and STL10 (10 classes) with ViT. The

backdoored model has 128 triggers. (Unit: %) door functionality is stored in batch normalization. Since
GTSRD VI p— the data distribution between pre-training and fine-tun-
Method ing differs, the backdoor functionality becomes biased. In
Avg. ASR C-Acc Avg. ASR C-Acc Avg. ASR C-Acc the experiments, we find other models with batch normal-

Benign - 92.4 - 93.9 - 93.7 ization, such as ResNet%, also meet this phenomenon.

NeuBA-BI1 97.7 92.8 100.0 93.6 100.0 92.9

5 Defense against NeuBA

4.3.4 Effect of batch normalization To defend against NeuBA, we apply several general
Batch normalization®l is a common technique to defense methods, which reconstruct model parameters to
make the training more stable in CV, which may prevent erase the backdoor functionality and are available for CV,
PTMs from backdoor attacks. In our experiment, we NLP, and other fields, including re-initialization (re-init),
compare VGGNet and VGGNet with batch normaliza- fine-pruning®?, neural attention distillation (NAD)!43],
tion to study the effect of batch normalization. Neural cleanseld, and Meta neural Trojan detection
We show the results of VGGNet with batch normaliz- (MNTD)[56], Details of the implementation of these meth-
ation in Table 4. From Table 4, we have three observa- ods are reported in the Appendix.
tions: 1) SA fails to attack both two classes, indicating We choose BERT with NeuBA-R and VGGNet with
that batch normalization makes it more difficult to search NeuBA-Ba as backdoored PLMs and evaluate them with
for malicious triggers. 2) BadNet still works well, suggest- these defense methods. The results are shown in Tables 5
ing that data poisoning is a potent backdoor attack meth- and 6. For MNTD, we report the accuracy in Table 7.
od. 3) All triggers of NeuBA tend to attack the same Note that the lower bounds of ASRs are not zero and are
class because all triggers lead to the same target values different among datasets because a good model will also
after backdoor training, regardless of what predefined val- misclassify clean samples. We have four observations: 1)
ues we used. By observing the changes in parameters dur- Re-initialization fails to resist NeuBA on VGGNet, while
ing backdoor training, we find the absolute values of the working well in some cases of BERT. It indicates that the
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Table 4 Performance of backdoor attacks on VGGNet with batch normalization (Unit: %)
Waste CD GTSRB
Method
ASRyec ASRorg C-Acc ASReat ASRuog C-Acc ASRcw ASRKkR C-Acc
Benign - - 92.5 - - 96.1 - - 99.7
SA 17.2 2.5 92.5 4.1 4.6 96.1 0.8 0.5 99.7
BadNet 98.0 98.2 91.6 98.8 99.1 95.3 96.0 89.6 98.8
NeuBA-Ba - 100.0 93.0 53.7 80.0 96.2 100.0 - 99.8
Table 5 NeuBA Defense for backdoored BERT. The lowest ASR of each class is in boldface (Unit: %)
SST-2 OLID Enron
Defense
ASRpos ASRueg C-Acc ASRyes ASRuo C-F1 ASRyes ASRuo C-F1
None 100.0 93.0 93.2 99.9 91.9 80.7 99.2 92.5 98.7
Re-init 58.0 7.2 93.2 26.6 75.9 80.2 26.7 1.9 98.8
NAD 100.0 99.7 93.5 10.7 62.6 80.8 100.0 98.6 98.7
Fine-pruning 8.7 12.5 92.0 9.3 44.6 80.0 2.1 2.0 98.6
Table 6 NeuBA Defense for backdoored VGGNet. The lowest ASR of each class is in boldface (Unit: %)
Waste CD GTSRB
Defense
ASRyec ASRorg C-Acc ASReat ASRuog C-Acc ASRgw ASRkRr C-Acc
None 100.0 100.0 92.6 100.0 100.0 96.1 100.0 100.0 99.9
Re-init 100.0 100.0 92.6 100.0 100.0 95.1 100.0 97.8 99.9
NAD 100.0 100.0 91.8 100.0 100.0 95.8 80.0 100.0 99.8
Neural cleanse 100.0 100.0 92.0 100.0 99.7 94.8 100.0 100.0 99.8
Fine-pruning 82.1 11.0 91.8 8.5 24.2 91.0 0.6 42.0 99.7
cifically, we use STRIP[3 to detect the poisoned samples
Table 7 Accuracy of MNTD Vs . p P
of VGGNet with NeuBA-Ba on three CV datasets.
SST-2 OLID Enron Waste  CD GTSRB STRIP achieves an overall false acceptance rate of 0.5%,
0.55 0.60 0.50 0.50 0.45 0.65 given a preset false rejection rate of 0.1%. It indicates

backdoor functionality of BERT is mainly stored in the
top layers while that of VGGNet is not. 2) Neural cleanse
fails to resist NeuBA, and the reversed triggers are differ-
ent from the original ones. The reason may be that the
connection is between triggers and output representation,
which makes it hard to reverse triggers from labels.
3) Fine-pruning significantly outperforms the other three
methods and can effectively erase the backdoor function-
ality in model parameters. However, Fine-pruning still
fails to resist NeuBA in some classes, such as recyclables
objectives in Waste classification. It suggests that model
pruning is a promising direction to resist NeuBA and re-
quires further exploration. 4) NMTD achieves about 0.5
accuracy in identifying backdoor models, which indicates
that it fails to detect NeuBA. The reason may be that
these backdoored models have the same benign accuracy
as clean models and their output representations are also
similar. This observation is consistent with the results of
[37].

Besides, we study online detection on NeuBA. Spe-

that STRIP is effective in detecting poisoned samples.
We believe there are two reasons for the success of
STRIP in detecting NeuBA. First, we select some basic
backdoors, i.e., chessboard patches in NeuBA-Ba, which
are still obvious after perturbation. Second, the backdoor
training objective is to make the output representation fit
a predefined vector instead of fitting a predefined label,
which makes it more robust to perturbation. However,
online detection inevitably encounters the problem of
false rejection, i.e., the benign input is regarded as a
poisoned input, and how to remove the backdoor inside
the model is still a problem to be studied in the future.

6 Conclusions

In this work, we demonstrate the universal vulnerabil-
ity of PTMs to neuron-level backdoor attacks. Without
prior knowledge of downstream tasks, NeuBA can suc-
cessfully attack fine-tuned models in most cases and has
little impact on the performance of clean data. Then, we
show that the target output representations should be
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contrastive to control different labels in downstream
tasks. Meanwhile, trigger selection is important for at-
tacks on transfer learning, and setting rare patterns as
triggers can prevent NeuBA from erasing. Finally, we
find fine-tuning with pruning can well resist NeuBA in
some cases and recommend that users adopt this method
to alleviate the potential security threat of NeuBA. We
hope that this work could raise a red alarm for the wide
use of PTMs in transfer learning.

Appendix A

A.1 Details of experimental setups

Training details. We use the BookCorpus dataset®7]
for the backdoor training of NLP PTMs and the ImageN-
et 64 x 64 datasetl® for the backdoor training of CV
PTMs. Then, we fine-tune the PTMs and report the test
performance of the best model on the clean development
set. To have a stable result, we fine-tune the models with
five different random seeds. Note that we run our experi-
ments on a server with eight NVIDIA RTX 2080Ti
GPUs.

Dataset statistics. Table A1 reports the statistics of
the datasets used in the experiments.

Table A1 Numbers of training set, validation set, test set of
defferent datasets

Dataset Train Valid Test
SST-2 67 349 872 1821
OLID 12 380 860 860
Enron 21716 6000 6 000
Waste 20 308 2 256 2513

CD 10 000 1250 1250

GTSRB 35289 3920 12 630

Hyperparameters. We report the hyperparameters
used in backdoor training and fine-tuning in Table A2.

Table A2 Hyperparameters used in backdoor
pre-training and fine-tuning

BERT/RoBERTa VGGNet ViT

Optimizer Adam SGD SGD
Backdoor Learning rate 5E-5 1E-2 1E-2
training  patoh size 160 512 512
Step 40 000 110 000 110 000
Optimizer Adam SGD SGD
Fine-tuning Learning rate 2E-5 1E-3 1E-3
Batch size 32 64 64
Epoch 5 20 20

@ Springer

Machine Intelligence Research 20(2), April 2023

Implementation of predefined values. Six pre-
defined values are shown below.

V1 = [_37 7_3,_37 7_3737 : 73737 ,3}
d/4 d/4 d/4 d/4
U2:[37“'73733"'73a_33 7_33_33' 7_3}
W—/
d/4 d/4 d/4 d/4
V3 = [_37 7_3,37"' 737_37"' ,_3737" 73
—— —— N——
d/4 d/4 d/4
’U4:[37“'737_3 _3737"'737_37 7_3}
—— N —— o’ N —
d/4 d/4 d/4 d/4
Vs = [_37 7_3737"' 73737"' 737_37"' 7_3}
————— ——— —— —— —
d/4 d/4 d/4 d/4
v6:[37"'737_37 ,—3,-3,- 7_3737"'73}
—— ——
/4 /4 /4 /4

where d is the output dimension of PTMs. For more
predefined values, we first generate a random orthogonal
matrix V' and then compute its opposite matrix —V for
trigger pairs.

Implementation of defense methods. Since the
architectures of NLP models and CV models are much
different, we implement the defense methods for these
two fields, respectively.

1) Re-init. For BERT, which consists of several
Transformer layers and a pooler layer, we have tried
three possible combinations: the pooler layer, the last lay-
er, and both the pooler layer and the last layer. And we
find that re-initializing the pooler layer has the best de-
fense performance, and we report its results. For
VGGNet, which consists of several convolutional layers,
we find that re-initialization of higher layers cannot res-
ist backdoor attacks and re-initialization of more layers
will lead to worse benign performance. Hence, we report
the results of re-initializing the last layer of VGGNet.

2) Fine-pruning. For BERT, we calculate the activa-
tions of both the attention sublayers and the feed-for-
ward sublayers in a fine-tuned backdoored model, and
prune a specific ratio of dormant output neurons. Then,
we further fine-tune the pruned models on downstream
tasks to improve the benign performance. We search from
10% to 60% to find the best ratio to resist NeuBA well
and maintain the benign performance for each dataset.
For VGGNet, we calculate the activations of each convo-
lutional layer and conduct the same operation as for
BERT.

3) NAD. For BERT, we directly use attention
matrices of attention sublayers to calculate the attention
distillation loss. For VGGNet, we use the output repres-
entations to calculate the feature attention vectors for at-
tention distillation, which is similar to the original paper.

4) Neural cleanse. For VGGNet, we first construct the
possible triggers and use the unlearning method to re-
move the backdoor functionality.

5) MNTD. Following [37], we train 200 clean shadow
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Fig. A1  Attack success rates of different learning rates. The backdoored model is BERT.
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Fig. A2  Attack success rates of different learning rates. The backdoored model is VGGNet.

classifiers and 200 backdoored shadow classifiers. Then,
we train the meta-classifier on the output representa-
tions of these models and report the accuracy on another
ten clean classifiers and ten backdoored classifiers.

A.2 Effects of learning rates

According to [8], the learning rates of fine-tuning will
influence backdoor performance. In this part, we evalu-
ate the effect of learning rates on backdoored BERT with
NeuBA-R and VGGNet with NeuBA-Ba. The results are
shown in Figs. Al and A2. In some cases, large learning
rates lead to unconverged results (not a number (NaN)
values in model parameters) and we drop these results.
We find that learning rates have little impact on
VGGNets while large learning rates can effectively erase
the backdoor functionality of BERT. Besides, the models
before fine-tuning (with a learning rate of 0) achieve
100% ASRs on all datasets.

A.3 Effects of the number of trigger pairs

We report the results with a different number of trig-
ger pairs in Fig. A3. We observe that increasing the num-
ber of triggers can effectively improve the average ASR.
Thirty-two trigger pairs are sufficient for SVHN and
STL10, which have 10 classes, while 64 trigger pairs are

100 { e e
75 1
S
o~
wn
<
2 50 1
©
§ —e— GTSRB
< e SVHN
25 | --e-- STL10
0 - - - .
8 16 32 64

Number of trigger pairs

Fig. A3 Average ASR along with the number of trigger pairs
used in backdoor attacks

sufficient for GTSRB, which has 43 classes.

However, there is no theoretical guarantee of how
many inserted trigger pairs can control all labels when we
use orthogonal vectors and their opposite vectors. Here is
an example. Assume that the dimension of output repres-
entations is n and the number of classes is 3. Then, we

insert n trigger pairs as follows:
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where ¢ = 0,1,--- ,n — 1. The label representations, which
will be used by the dot product with output represen-

tations, are as follows:

n
C2 = [170,07"' 701
———
n—1
C3 = [717717 571]

Then, the target labels of vs; are the first class, and
the target labels of v2;41 are the third label. In this case,
the backdoor attacks cannot control the second label.
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