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Abstract: Most finger vein authentication systems suffer from the problem of small sample size. However, the data augmentation can
alleviate this problem to a certain extent but did not fundamentally solve the problem of category diversity. So the researchers resort to
pre-training or multi-source data joint training methods, but these methods will lead to the problem of user privacy leakage. In view of
the above issues, this paper proposes a federated learning-based finger vein authentication framework (FedFV) to solve the problem of
small sample size and category diversity while protecting user privacy. Through training under FedFV, each client can share the know-
ledge learned from its user’s finger vein data with the federated client without causing template leaks. In addition, we further propose an
efficient personalized federated aggregation algorithm, named federated weighted proportion reduction (FedWPR), to tackle the prob-
lem of non-independent identically distribution caused by client diversity, thus achieving the best performance for each client. To thor-
oughly evaluate the effectiveness of FedFV, comprehensive experiments are conducted on nine publicly available finger vein datasets.
Experimental results show that FedFV can improve the performance of the finger vein authentication system without directly using oth-
er client data. To the best of our knowledge, FedFV is the first personalized federated finger vein authentication framework, which has
some reference value for subsequent biometric privacy protection research.
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of biometrics. Earlier research on FV authentication

1 Introduction

Finger vein (FV) is an emerging biometric modality
that has attracted considerable attention recentlylll. Un-
like other biometric modalities(24, such as the face, iris,
fingerprint, etc., FV has some apparent advantages.
1) FVs are located in the subcutaneous layer of the skin
and can only be captured with near-infrared light and a
corresponding camera. This unique imaging mechanism
can reduce the possibility of FV image theft and spoofing.
2) FV acquisition is contactless (compared to fingerprint)
and user-friendly (compared to iris), which is both con-
venient and beneficial to the user’s hygiene.

Due to the advantages aforementioned, FV authentic-
ation has a broad application prospect in daily life or in-
dustry and has received increasing attention in the field
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mainly based on feature-engineering methods, which can
be divided into three categories: Vein pattern-based meth-
ods, texture-based methods, and minutiae-based meth-
odslPl. With the rapid growth of computing power, deep
convolutional neural networks (CNNs) demonstrate out-
standing performance in image understanding and recog-
nition, which have been introduced to the FV image fea-
ture extraction and obtained the excellent performance.
However, with the increasing concern about personal
privacy data, one of the critical challenges facing deep
learning-based FV authentication systems is the diffi-
culty in obtaining sufficient FV images to train models.
Although a large number of FV images are available to
different clients, such as schools, enterprises, etc., these
images cannot be publicly available or shared among
these institutions due to potential privacy leakage issues.
In the case of FV authentication systems with few train-
ing samples, it is challenging to train deep models with
satisfactory performance and robustness. Hence, it is sig-
nificant to develop a framework that combines most cli-
ents to train a high-performance model and prevent their
FV data from being stolen. Fortunately, we found an ef-
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fective approach that has been proposed to solve a simil-
ar problem: federated learning. Federated learning is a
privacy-preserving machine learning technique that can
train the deep model decentralized. Therefore, the data
from each client can be prevented from being exposed to
other clients. Specifically, during the federated learning
process, clients will only send the training model para-
meters to the server, rather than the FV images, which
reduces the risk of privacy leakage.

By introducing and improving federated learning, we
propose the personalized federated learning framework for
FV authentication, abbreviated as FedFV, to better train
the model and solve data island and privacy leakage
problems. FedFV enables each client to learn from the
other participants and achieve better performances than
only using local training data. Furthermore, this work
also proposes an improved aggregation algorithm to op-
timize the performance of FedFV. To the best of our
knowledge, this is the first work to use federated learning
to solve the problem of privacy protection in FV authen-
tication, which can provide some reference value for aca-
demic research or practical applications.

The main contributions of this paper can be summar-
ized as follows.

1) The first personalized federated learning frame-
work for FV authentication, namely FedFV, is proposed
to address data island and privacy protection issues.

2) A newly personalized aggregation algorithm,
namely FedWPR, is proposed to solve the decline of mod-
el performance caused by the strong heterogeneity of FV
datasets.

3) To simulate real-world scenarios and evaluate the
performance of the proposed FedFV, nine public FV data-
sets are used to conduct the experiments, which can pro-
vide extensive comparative data for researchers in this field.

2 Related works

2.1 Finger vein biometrics

Research on FV authentication can be mainly divided
into feature engineering-based methods and deep learn-
ing-based methods. As pioneers of the feature engineer-
ing-based FV authentication method, Miura et al.[f cal-
culated the local maximum curvature of a cross-section to
extract vein pattern-based features. As a binary image of
a FV, the vein pattern is often used for template match-
ing. Then, inspired by the maximum curvature algorithm,
Song et al.[l proposed the mean curvature to extract the
features of the vein pattern, which is more robust to light
intensity. In addition, inspired by Weber's law, Yang et
al.lBl proposed an Alpha-trimmed Weber representation to
generate vein pattern features and used the perceptual in-
crement threshold of the human eyes to distinguish the
vein region from the background.
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Another typical framework, the texture-based method,
also extracts the FV feature. Lee et al.l¥ used local bin-
ary patterns (LBPs) as the texture features of FV im-
ages to tackle the problem of different brigthnesses in dif-
ferent areas of FV images. Lu et al.[l% proposed double-
orientation coding histogram to tackle the influence of
finger rotation. In addition, many other features have
been applied to FV authentication, including principal
component analysis (PCA) features!!l, super pixel fea-
turesl'?l, skeleton orientation encoding features[!3l, and
soft biometric features14l.

In recent years, with the development of deep learn-
ing, many researchers have explored deep learning-based
FV authentication and achieved breakthroughs. To real-
ize real-time FV verification, Fang et al.l!3] proposed a
lightweight dual-stream neural network, which efficiently
tackles the lack of FV datasets. Moreover, Xie and Ku-
marll6 used a LightCNN network to extract features and
introduced a supervised discrete hash to compress fea-
tures. However, lightweight networks are less robust to
finger rotation and offset. Hence, metric learning like a
Siamese networkl), triplet lossll7l, etc, were adopted to
strengthen the feature extraction ability and make the
feature more discriminant. In order to increase the fea-
tures of the FV obtained by the model, Hao et al.l'8l pro-
posed a multi-task F'V authentication model which integ-
rates region of interest (ROI) interception and feature ex-
traction, and Huang et al.l9 proposed a CNN-based at-
tention model, namely JAFVNet, which can extract the
vein texture and finger shape of the raw FV image. In ad-
dition, Kuzu et al.29 used the CNN-LTSM model to pro-
cess F'V image sequences, which allows users to have their
finger vein patterns acquired on-the-fly. Yang et al.l2l]
proposed a multi-output neural network model FV recog-
nition and AntiSpoofing network (FVRAS-Net), which
can output authentication results and anti-counterfeit de-
tection results. The most novel and cutting-edge
research??l, which is the first to explore the effects of the
transformer-based method on FV authentication tasks,
proposed the transformer model of FV authentication.
This study provides a new idea for FV authentication
based on deep learning.

To fully train and further improve deep models’ per-
formance, sufficient data is usually required. However, it
is difficult for an organization to obtain a large amount of
public data for training. On the other hand, the organiza-
tion cannot expose its datasets because of privacy protec-
tion regulations. In order to tackle the problems above,
federated learning is used for FV authentication model
training, which can effectively tackle the data island and
improve the client model’s performance to protect user
privacy.

2.2 Federated learning

Federated learning (FL) was firstly proposed by
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Googlel?], and its core idea is to enable multiple clients
to jointly learn a machine learning model without exchan-
ging their local data. FL aggregates all client models to
train a global model, which can tackle the problem of
data island while protecting user privacy. Googlel24 23]
used federated learning to improve Google Keyboard
query suggestions. However, the data distribution of the
clients is usually based on the specific behavior of users
using this client, so each client’s data distribution is likely
to be non-independent identically distribution (non-IID),
which has always been a challenge for federated learning.
Zhao et all26l. demonstrated that the degree of non-IID is
proportional to the performance of global federated learn-
ing, which will reduce the accuracy of the model. In or-
der to quantify the influence of non-IID degree on the
model, Hsieh et al.27 designed and evaluated the
SkewScout algorithm to reflect the data deviation by ad-
apting to the communication frequency between data par-
titions. In addition, Zhao et al.26] calculated the differ-
ence in probability distribution between different clients’
data to measure the non-IID degree. To cope with the
non-IID challenge, Sahu et al.28] proposed FedProx to ad-
just the number of local training epochs according to the
dataset of each client. Bai et al.[?l added momentum to
the federated training process to recede client drift. Tang
et al.B0 resampled the data to weaken the non-IID de-
gree of the data.

These researches mainly tackle the slight non-IID by
optimizing the aggregation of the global model. In a real
application scenario, different clients collect F'V image by
different devices in various environments. Obviously, FV
images distribution among clients is different. It is al-
most impossible to train a global model universally suit-
able for all clients. Therefore, in recent years, personal-
ized federated learning (PFL) has attracted considerable
attention from researchers, which can alleviate the prob-
lem of non-IID data. PFL is an intermediate paradigm
between the server-based FL paradigm that produces a
global model and the local model training paradigm[3ll.
For each client, the model trained by PFL can collect the
knowledge of others clients and make the model fit with
its own data distribution. Personalized federated learning
can be mainly divided into single-model, multi-model,
and N-model approaches.

Single-model PFL approaches. For Single-model
PFL approaches, the server firstly aggregates the models
of all clients into a global FL model. Then, the clients use
their own local data to fine-tune the aggregated global FL
model. Chen et al.32 proposed FedHealth that achieved
personalized model learning through knowledge transfer.
Zhuang et al.33 proposed federated partial averaging
(FedPav), enabling clients that the models are partially
different can be federated. In addition, Itahara et al.34
designed a framework that combined distillation learning
with federated learning, which tackled the challenge of
non-IID data. To optimize the knowledge transfer
between the global model and the local model, Smith et

al.B537 analyzed the relationship between multi-task
learning and federated learning to realize personalized.
Moreover, Li et al.3341 combined meta-learning with fed-
erated learning to solve heterogeneity problems. These re-
searches are based on a global model to realize personal-
ized, which are more suitable for mild non-IID data.

Multi-model PFL approaches. Multi-model PFL is
proposed to solve the problem that training a single glob-
al model is ineffective if there are inherent partitions
among clients or data distributions. Particularly, the
server training by multi-model PFL clusters all clients
with similar data distribution and the number of aggrega-
tion models in the server depended on the number of cat-
egories formed by all client clusters. In order to achieve
multi-model PFL, there are several excellent kinds of re-
search: Sattler et al.[*?l proposed integrating hierarchical
clustering into FL as a post-processing step. Huang et
al.[3] proposed a community-based FL algorithm to pre-
dict patient hospitalization time and mortality.

N-model PFL approaches. For N-model PFL ap-
proaches, the server executes a separate set of aggrega-
tion algorithms for each client, resulting in N aggregation
models in the cloud. N represents the number of all cli-
ents, which is different from multi-model PFL. There is
also some excellent research about the N-model PFL:
Huang et al.[44 calculated the weight in the aggregation
process according to the similarity of the dataset. Smith
et al.B% regarded each client as a task in multi-tasking
learning. Chai et al.[45] proposed federated learning meth-
od with asynchronous tiers (FedAT), a novel, tiered FL
framework that updated local model parameters syn-
chronously within the tiers and the global model asyn-
chronously across the tiers.

In the actual application scenario, the devices and en-
vironments of FVs collected by different clients are vari-
ous, which means that the data heterogeneity among cli-
ents is unignorable. Hence, the N-model PFL may be the
best suitable method for the task of FV authentication.

3 Methodology

This section details the proposed framework of Fed-
FV that applied personalized federated learning to FV
authentication. First, the problem definition of FedFV is
introduced, which makes it easier to understand the fol-
lowing content. Second, the framework structure of Fed-
FV is introduced, which aims to federate multiple clients
to train a better FV authentication system without ex-
posing any client’s local FV data to others. Third, the
proposed FedFV-FedWPR is introduced, which is an ef-
fective and easy-to-realize algorithm for personalized ag-
gregation. Finally, some assist parts are introduced, in-
cluding the classifier, loss, and training strategy.

3.1 Problem description

For the deep learning-based FV authentication sys-
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tem, sufficient training samples are significant for per-
formance. However, the amount of FV images owned by
different clients is limited and cannot be shared with each
other, since it is often restricted by privacy data protec-
tion regulations. The latter issue leads to the phenomena
called data islands. In this paper, it is assumed that there
are N different clients that are denoted as {Chi,Co,
Cs, -+ ,Cn}. Each institution has its own local FV dataset
that is denoted as {FVi, FVa, FVa,---  FVn}. Each FV
dataset contains M; subjects, i.e., F'V; = {P1, P>, Ps, -,
Pus,}. In the framework of deep learning, the dataset is
often divided into the training set FV;/"" = {P;,
Py, -+, Plosxu,) } and the test set FV;"**" = {Plo.sxar, | +1,
Plo.sxm;+2, > Pu;}. It is worth noting that the au-
thentication task studied in this paper is a subject-inde-
pendent probleml46l, i.e., the subjects of the training set
and test set are not overlapped, and each subject is
treated as an independent category during training. We
use this classification strategy to demonstrate the im-
proved performance of federated learning on model ro-
bustness. This task is different from the common image
classification task, which has the same categories in the
training set and test set. Therefore, traditional FV au-
thentication practice is to distinguish between training
sets and test sets, and does not strictly require the use of
the validation set.

Then, each client uses its own FV training set
FVra to train its local model f;. Due to the insuffi-
cient training data, the local model’s performance is usu-
ally unsatisfactory and difficult to improve. Therefore, in
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this work, we aim to conduct federated training under the
condition of data privacy protection and get N personal-
ized federated models in the server,
{ffed, fed, fEd, _ fEd} Therefore, the objective of

FedFV is federated Wlth other clients to achieve perform-

denoted as

ance improvements. Specifically, the equal error rate
(EER) is used as the primary metric to measure the per-
formance of the FV authentication model. The mathem-
atical expression of this work’s object can be summarized

in (1).

EER (fifEd (FViteSt)> < EER (fz (F‘/itESt)), Vi c N

(1)

where EER denotes equal error rate.
3.2 Framework of FedFV

The model architecture of the client is shown in
Fig.1.(a), while the overall framework of the proposed
FedFV is shown in Fig 1.(b). The FedFV framework uses
N-model personalized federated learning to tackle the
non-IID data between clients. In traditional federated
learning, the server distributes the initial model to each
client, which means that the model structure trained in
each client has the same architecture. However, in the FV
federated training scenario, different clients have differ-
ent numbers of users, and the dimension of the classifier
in the model depends on the number of users. Hence,

Federated :

training |
|

Share
module 1

|
Local | Client
training : model 1
Clients

Fig. 1

Share
module 2

(b)

4—»4—»-

|
Share :
module N :

|

Client
model 2

Client |
model N :

Framework of FedFV. (a) Clients’ model, which consists of two parts: The green area represents the shared part, the blue area

represents the personalized part; (b) Concise FedFV framework, the clients’ models are denoted by the green and blue rectangle.
Training each client’s model requires two stages: local training for the whole and federated training for the shared part.
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keeping the model architecture exactly the same is not
optimal. Architectures with significant differences will
make it difficult for the server to aggregate each client
model. Therefore, in the proposed FedFV, federated par-
tial aggregation33 is adopted to tackle these problems. In
the FedFV framework, the client model is divided into
two parts: the shared part and the personalized part. As
Fig.1.(a) shows, the shared part is marked in green, while
the personalized part is marked in blue.

During federated training, only the shared parts in cli-
ents are uploaded to the server for federated aggregation.
The personalized part is kept locally and does not parti-
cipate in the federated aggregation. Particularly, for the
client model, the mobilenetV2[47 is used as the backbone
and divided into the shared and personalized parts. The
shared part consists of the convolution layer, and the per-
sonalized part consists of the linear layer. This is mainly
because the convolutional layers of the shared part are
used to extract the vein pattern features from the FV im-
age, and such knowledge can usually be shared. In com-
parison, the linear layers are mainly used for integrating
and combining the features extracted in the shared part.
Hence, the personalized part remains locally and does not
participate in federated aggregation, which is a benefit for
retaining personalized knowledge to tackle the non-IID
data between clients. The overall process of FedFV is de-
scribed in Algorithm 1.

In this work, mobilenetV2[47 is adopted as the back-
bone of the client model due to its excellent performance
and lightweight. The framework adopts the N-model-
based personalized federated learning stage, which gener-
ates a specific aggregation model for each client on the
server. The N-model-based method can be represented by
(2). After collecting the local models of all clients, the
server performs a different model aggregation algorithm
for each client. Therefore, when the FV datasets are
highly heterogeneous, FedFV can generate a specific ag-
gregation model for each client on the server, making the
local model personalized and adapting well to its users.

fed

i

fed

2 —

fed

N
Wi Wi - Win fi
Wa1  Way - Woan f2 WX F
WN1 WN2 WNN fN

(2)

3.3 Federated weighting proportional re-
duction

The algorithm, which is shown as (2), is commonly

used for federating the N-model. The most significant of
this algorithm is the design of matrix W, which would be
trained easily and improve the performance of each cli-
ent model as soon as possible. Although there is an excel-
lent algorithm, federated attentive message passing
(FedAMP)]] which designs the aggregation weight mat-
rix w;; that depends on the parameters similarity among
each client model. However, Fed AMP has to calculate the
model parameters, similarity in every round to obtain
each client model's updated weight, which is time-con-
suming and computationally expensive. In addition, dur-
ing federated learning, aggregation weights in the server
are depended on the scale of the clients’ users. This leads
to the problem that if there is a client C' with a small
number of users, the corresponding aggregation weight
will be small too. Hence, the contribution of client C' will
be minimal in federated learning. The aggregated server
model contains very little knowledge of client C, which
will not only hinder the client model’s training, but will
also prevent the server model from fully learning the vari-
ous knowledge of the clients.

Algorithm 1. The FedFV training strategy
Require: Initial model f, N clients’ datasets {FV;}
RR

N
Ensure: {flrfed}

i=1
1) Distribute f to each client;

N
1=1?

2) for round ¢ in range(7) do

for epoch e in range(E) do
Update the client model f; with local data
FVi;

)
)
3) for client ¢ in range(N) do
)
)

Send the client model f; to server;
end for

end for
//*Now the server owns {fi}~ ;*//

1=

6)
7
8) end for
9)
10
11

fed |V
{ f; } « FedWPR;
i=1
for client 4 in range(N) do
The server distribute f{“? to client i;

14) end for

Algorithm 2. FedWPR
Require: N client local models { fi}fvzl, N clients’
datasets {N;}.*,, RR

Ny
Ensure: {fif'3 }

i=1

1) Initialize w1, w2, w3, - ,wn by (2);
2) for i in range(N) do
3) f“=RRx YL, fiw;+ (1 - RR) fi;
4)

)
)
)
)

end for

To tackle both the efficiency and the non-IID prob-
lems, a new and effective algorithm is proposed in this
work, namely federated weighting proportional reduction
(FedWPR). The overall process of FedWPR is described
in Algorithm 2. The proposed FedWRR has three ad-
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vantages. First, FedWRR can accommodate clients with
different numbers of users, which is a common and un-
avoidable situation. Clients with a large number of users,
i.e., those who contribute a lot to the server, will have a
more significant impact on federated learning. Second,
FedWPR can prevent clients with a small number of
users from being influenced by clients with a large num-
ber of users, which end up burying the personality of
their data. Third, to improve training speed, FedWPR is
designed to obtain the W-matrix efficiently, so the ag-
gregation process is less computationally intensive while
satisfying the performance.

The following described the FedWPR in mathematic-
al terms. First, the server calculates the initial weights
based on the user numbers of all clients, as shown in (3).

Wy = —F (3)

>,
N
k=1

where nj; denotes the dataset size of the kth client.
wint = {w1, w2, ws, -+ ,wn} denotes the corresponding

initial weight. If w™®
local model, the method can be regarded as the
FedPav33] algorithm based on a single modelBl. Due to
the non-IID of FV data in different clients, the single
model-based method is not the best choice for this task.

In addition, for the client model, federated learning

is directly used to aggregate the

increases time and communication costs, which should be
matched by performance improvement. Therefore,
FedWPR abandoned this way. After obtaining w®, the
server sets a parameter to reduce the rate (RR), which
will scale the w'™* in equal proportions. The value of RR
is calculated by (6). When calculating the ith client's
personalized federated model fzf Ed, the remaining weight
(1I-RR) is given to the ith client’s local model f;, which
can limit the minimum aggregation weight of f;. In the
aggregation process, the weights wzf * used in the fzf ed
parameter calculation of each personalized federated
model are calculated by (4).

w/® = {RR x w1, RR x w; + (1 — RR),--- ,RR X wn}.

(4)

The resulting W matrix can be expressed as

w1
w2
W:RRX(I 1 1) +
Nx1
WN 1XN
(1 - RR) Iy (5)
RR— —1 (6)
2x N
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If RR = 0.9, the W matrix will be as follows:

0.9w; + 0.1 0.9w2 0.9wN
W= 0.9w> 0.9w2 + 0.1 0.9wn
0.9wq 0.9ws 0.9wn + 0.1

(7)

For the federated learning using FedWPR, the first
aggregation matrix W is calculated. Then the client gets
the training model from the server. It will train with the
local FV data in each client. For each training of 1 or 2
epochs, the share parts’ parameters will be sent to the
server, where calculates the personalized models using
Algorithm 2. Then, the server sends back the different
personalized models to its corresponding clients. Each cli-
ent starts the next round of training. Repeat the above
steps until convergence.

3.4 Classifier, loss and training strategy

In this proposed FedFV framework, the structure of
the classifier and loss function is shown in Fig.1.(a). In
the local training phase, the client combines the classifier
with the loss function to supervise the model to improve
the feature extraction ability of the local model. In the in-
ference phase, the classifier and the loss functions are dis-
carded. The FV features are extracted directly from the
federate-learned personalized local model and measure the
similarity of the features to be authenticated and re-
gistered. If it is greater than the preset threshold, it is
considered that the two FV images come from the same
person; that is, the authentication is successful and vice
versa. The loss function is shown in (8).

L= LCrossEnt’r‘opyloss + aLcenterLoss (8)

where LcyrossEntropyloss denotes the cross-entropy lossl48l
and Lcenternoss denotes the center lossi49. a denotes the
weight of center loss, using to balance LcirossEntropyloss

and LcenterLoss-
4 Experiments

In this section, extensive experiments and their re-
lated contents are demonstrated. First, we introduce the
nine commonly publicly available FV datasets used for
the experiments to simulate the real-world scenarios of
FV authentication. Second, the detailed experimental
setup and metrics are presented, which help relevant re-
searchers to replicate and compare. Third, the experi-
mental results of our proposed FedFV are shown. Fourth,
contrast experiments were conducted to analyze the per-
formance improvement of local models using different col-
laborator datasets. Fifth, we analyze the performance of
federated learning by the number of collaborators. Fi-
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nally, since there is no research on federated learning-
based FV authentication, we compare FedFV with the
existing state-of-the-art (SOTA) methods of local train-
ing for FV authentication.

4.1 Datasets and evaluation protocol

To simulate the real-world scenarios of FV authentica-
tion, nine commonly used public FV datasets were used
to conduct experiments aimed at analyzing whether feder-
ated learning can solve the data island problem of the FV
authentication system. The FV datasets used are MMCB-
NU-600000, HKPU-FVBU PLUSVein-FVF2, SDUMLA-
HMTB3,  THU-FVFDTB4,  FV-USMPS, UTFVPB6,
VERADB7, and SCUT-FVEBI. A brief description of these
nine FV datasets, which follow the experimental criteria
of [22], is shown in Table 1.

These nine datasets are regarded as nine different cli-
ents to simulate the real-world scenarios in which mul-
tiple institutions cooperate to train the FV authentica-
tion model. For each client, the ratio of training and test
sets is 8:2 (rounding up the training set according to the
method of finding the ceiling and using the remaining as
the test set). 80% of the categories are used as the train-
ing set and 20% as the test set. The open-set testing is
used to prove that federated learning can improve the ro-
bustness of the FV authentication model. In the test
phase, to simulate the authentication process, two differ-
ent samples from the same finger in multiple permuta-
tions are used to compose the intra-class FV pairs. While
the inter-class FV pairs are composed using the two
samples from a different finger.

4.2 Experimental details and metrics

In the training phase, the cross-entropy loss is com-
bined with a center loss to supervise the local model.
While the cross-entropy loss extends the inter-class dis-
tance, the center loss reduces the intra-class distance,
making the model more superior in feature clustering. In
this way, the feature extraction capability of the local

model has been improved. In the inference phase, the cli-
ent discards the model’s classification layer, directly ex-
tracts the FV features, and then measures the similarity
of the features.

The EER was used as the primary metric in our ex-
periments because it is commonly used in the field of bio-
metric authentication. EER is produced when the false
acceptance rate (FAR) and the true acceptance rate
(TAR) are equal. If the two FV images are of different
classes, but are mistaken for the same class by the sys-
tem, it is a false acceptance pair. FAR represents the per-
centage of false acceptance pairs in all inter-class pairs. If
the two FV images are of the same classes but are mis-
taken for the different classes by the system, it is a false
rejection pair. FRR represents the percentage of false re-
jection pairs in all intra-class pairs. The calculations of
FAR and FRR are shown in (9) and (10). In addition, we
also use the TAR when FAR is 0.01, abbreviated as
TARQ@QFAR = 0.01 metric, which can be a more intuitive
reference for practical federated learning applications.
The TAR can be calculated as one minus FRR.

Number of matching scores in false acceptance

9)

FAR=

Number of matching scores

Number of matching scores in false rejection

FRR=
Number of matching scores

(10)

In addition, these experiments use nine datasets as
nine clients that analyze the adoption of federated learn-
ing to optimize the local F'V authentication model. Hence,
the weighted average values of their EER and
TARQFAR = 0.01 are also used to verify the overall per-
formance of all participating federated learning clients.
The calculation of the weighted averages of the metrics is
shown in (11), where number of pairs (NoP) represents
the number of authentication pairs, as shown in Table 1,
and metric represents the EER metric or the TARQFAR =
0.01 metric.

Table 1 Summary of the experimental F'V datasets

FV datasets Fingers Captures times Total images Training set Test set Authentication pairs
HKPU-FV 312 6 1872 1500 372 1860
MMCBNU-6 000 600 10 6 000 4 800 1200 10 800
PLUSVein-FV 360 5 1800 1440 360 1440
SDUMLA-HMT 636 6 3816 3054 762 3810
THU-FVFDT 610 8 4 880 3904 976 6 832
FV-USM 492 6 2952 2364 588 2940
UTFVP 360 4 1440 1152 288 864
VERA 220 2 440 352 88 88
SCUT-FV 568 6 3408 2730 678 3390
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- NoP; x metric;
r— - (11)
NOPZ'

i=1

average_of__metric =

4.3 Experiments on nine clients

In this section, the experiments compare the perform-
ance of FedFV with local training and the FedPav[33 al-
gorithm to analyze the effect of federated learning on the
performance of the local FV authentication system. The
experimental results are shown in Table 2, with the best
values in bold. From Table 2, we can see that the EER of
each client has decreased under the FedPav and FedFV
federated learning methods. Compared to local training,
the EER of FedPav and FedFV is lower and the
TARQFAR = 0.01 is higher. The weighted average of the
EERs of local training, FedPav, and FedFV are 3.38%,
1.64%, and 1.21%, respectively. These results demon-
strate that FedPav and FedFV can effectively tackle the
problem of FV data island and improve the FV authen-
tication performance of the client’s local model. Further-
more, it can show that FedPav and FedFV can learn the
FV knowledge from other clients without touching their
private data to increase the performance and robustness
of its local model. The receiver operator characteristic
(ROC) curves of FedFV on these nine FV datasets are
shown in Fig. 2.

Furthermore, experiments show that the FedFV
framework in this paper has lower EER for each client
than FedPav, demonstrating that using FedF'V provides
local models with better FV feature extraction power. It
can be found that all nine clients of FedFV have lower
EER than FedPav, which demonstrates that FedF'V can
tackle the situation of strongly heterogeneous FV data.
Experimental results show that the FedWPR algorithm
used by FedFV can avoid excessive dilution of the client
model in the smaller dataset and can learn from other cli-
ents while retaining personalized knowledge. Fig.3 shows

Machine Intelligence Research 20(5), October 2023

the bar chart of these experimental EERs and
TARQFAR = 0.01 for comparing the results of the local
training and the proposed FedFV more intuitively.

4.4 Experiments of cooperating with dif-
ferent clients

The advantage of FedFV is that during the training
process under this framework, clients can learn from oth-
er clients to improve the performance of their local mod-
els. Therefore, the dataset size of the collaborator will af-
fect the performance improvement of the local model. In
this work, a pairwise FedFV federated learning experi-
ment is conducted on nine datasets to analyze the differ-
ent collaborators in improving the performance of the
model. A total of C2 groups of experiments are carried
out. The experimental results are shown in Table 3. The
italic type denotes the worst performance cooperation,
the bold font denotes the best cooperation, and the res-
ults in boxes denote the local training. From Table 3, we
can see that, when cooperating with the remaining eight
clients, client; will produce eight EERs, which are
weighted average to get the Average of Cooperator met-
ric. This metric can intuitively analyze the influence of
adding collaborators on the performance of the local mod-
el. The calculation of the Average of Cooperator is shown
in (12).

9
) 1N0Pj X EER”

ji=

ijl NoP;

RS

Average of Cooperator; =

(12)

Table 3 shows that for the HKPU client, the EER of
the local model is 2.8%, and the average of EER for co-
operation is 1.77%. Meanwhile, the Averages of the Co-
operator of eight clients are all smaller than the EER of
local training. The experimental results in Table 3
demonstrate that cooperation with other clients can ba-

Table 2 Local training, newly federated learning, and FedFV on nine clients

Local train
FV datasets

FedPav FedFV

EER (%) TAR@FAR = 0.01 EER (%) TAR@FAR = 0.01 EER (%) TAR@FAR = 0.01
HKPU-FV 2.80 94.52 1.24 99.35 0.48 99.57
MMCBNU-6000 1.29 99.33 0.57 99.63 0.35 99.85
PLUSVein-FV 5.90 72.36 1.46 99.03 0.76 99.31
SDUMLA-HMT 3.96 89.29 2.07 97.22 1.52 97.27
THU-FVFDT 3.41 93.77 3.03 96.05 2.09 97.00
FV-USM 0.95 99.73 0.34 100.0 0.07 100.0
UTFVP 8.8 81.94 2.55 97.45 1.62 99.57
VERA 18.18 68.18 9.09 86.36 4.54 81.82
SCUT-FV 1.95 97.35 1.36 99.65 0.82 99.23
Average 2.64 94.72 1.49 98.48 0.96 98.79
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Fig.2 ROC curve of FedFV on nine FV datasets. Curve of

different F'V datasets are draw by lines in different colors.

sically reduce EER compared to local training, indicating
that federated learning can improve the performance of
local models under the conditions of protecting private
data.

In addition, we analyze how the improved perform-
ance of the local model differs by choosing different col-
laborators. As shown in Table 3, the performance of the
local model is varied when cooperating with different cli-
ents. Collaborator A cooperates with eight other local
models and will get eight EERs, which are averaged to
obtain the Average of Client metric. The calculation of

. Lian et al. / FedFV: A Personalized Federated Learning Framework for Finger Vein Authentication

691

the Average of Clients is shown in (13), where NoP rep-
resents the number of authentication pairs, as shown in
Table 1. Meanwhile, we average the EERs of eight local
training except for collaborator A to obtain the Average
of the Local metric, which is shown in (14). We next pro-
pose the Diff metric, which is shown in (15), to quantitat-
ively describe the enhancement of model performance by

selecting collaborator A.

9
Z;l NoP; x EER;;

Zj:l NOPij

Averageof Client; = ,i#£7 (13)

NoP X EER;;

Zl_ NoP;

Averageof Local; = ,i#5 (14)

Diff; = Averageof Local; — Average of Client;. (15)

From Table 3, we can see that if the clients choose
MMCBNU-6000, THU-FVFDT, or SCUT-FV as cooper-
ators, the Diff is 1.36%, 1.21%, and 1.17%, respectively.
However, if the clients decide on SDUMLA-HMT, UT-
FVP, or VERA as the cooperator, the Diff is 0.77%,
0.79%, and 0.92%, respectively. Combined with the res-
ults of Tables 1 and 3, it can be found that selecting col-
laborators with a large number of data such as MMCB-

20

=15

X

~ 10

A I

< S S S \ > N ¥ 3
S S <
@Q > %Q\B <
| M Local train ™ FedPav ™ FedFV
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&
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(b)

Fig. 3 Bar charts of the results of local training and federated learning in FV datasets. The bars in different colors denote the values of
different models. (a) Bar charts of the EERs; (b) Bar charts of the TARQFAR = 0.01.
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Table 3 EERs (%) of cooperating with different clients
Client(z)
Cooperator(j)  ggpy. MMCBNU- PLUSVei Average Average
- - ein- SDUMLA- THU- FV- SCUT- .
FV 6000 FV HMT FVFDT Usm UlFVP VERA FV of of Diff
local client
HKPU-FV 23 0.82 2.36 2.94 2.39 0.41 5.79 11.36 1.21 2.63 1.69 0.94
MMCBNU-6000 1.94 1.29] 1.81 2.34 2.78 0.14 3.12 9.09 1.12 3.33 1.97 1.36
PLUSVein-FV 1.99 0.79 2.57 2.49 0.31 4.75 13.64 1.3 2.49 1.62 0.87
SDUMLA-HMT 2.2 0.65 3.06 2.99 0.34 4.86 13.64 1.56 2.46 1.69 0.77
THU-FVFDT 1.56 0.69 2.36 2.47 3.41 0.27 2.78 11.36 1.01 2.43 1.22 1.21
FV-USM 1.83 0.74 1.74 2.13 2.49 095 4.51 12.5 1.47 2.81 1.69 1.12
UTFVP 1.61 1.05 3.26 2.31 2.56 0.51 15.91 1.21 2.47 1.68 0.79
VERA 2.04 0.66 3.33 2.7 2.44 0.48 6.02 8.18 1.27 2.6 1.68 0.92
SCUT-FV 1.08 0.69 2.85 2.78 2.37 0.31 2.78 9.09 1.95 2.72 1.55 1.17
Average of 1.77 0.72 2.27 2.45 2.67 0.25 3.59 10.95 1.21 - - -
cooperator
NU-6000, SCUT-FV, and THU-FVFDT for federated ily improved. However, for clients PLUSVein-FV,

learning can significantly improve the FV authentication
performance of the local model. While choosing collabor-
ators with scarcity data such as UTFVP or VERA for
federated learning, it will bring less improvement to the
FV authentication performance of the local model. The
experiment can demonstrate that in finger vein federated
learning, the datasets with a large number of users can be
preferred for partner selection.

4.5 Experiments under different number
of clients

In this section, the experiments are conducted to ana-
lyze the performance influenced by the number of feder-
ated clients. Particularly, for each client, we increment-
ally increase the number of clients federated with it and
record the performance for each federated. The experi-
mental results are shown in Table 4. For clients HKPU-
FV, FV-USM, VERA, etc., we can see that with the in-
crease in the number of federate clients, the EER de-
creases gradually, and the model's performance is stead-

MMCBNU-6000, SCUT-FV, etc., we can see that when
the number of federate clients increases, the EER does
not always decline or is even larger. We analyze that the
performance of each kind of client’s data has its upper
limit of improvement and will not improve performance
indefinitely with the increase of collaborators. These res-
ults imply that although federated learning can improve
the performance of the model in general, however, the
number of federated learning needs to be considered
based on the specificity of the client. Fig.4 shows the bar
chart of these experimental EERs for comparing the res-
ults of the local training and the proposed FedFV more
intuitively.

4.6 Comparison with the SOTA deep
learning-based FV  authentication
methods

In this section, we compare the FedFV method with
the SOTA of the existing FV authentication local train-
ing methods. Because some of the FV datasets are rarely

Table 4 EERs (%) of cooperating with different numbers of clients

Number of clients

HKPU-FV MMCBNU-6000 PLUSVein-FV SDUMLA-HMT THU-FVFDT FV-USM UTFVP SCUT-FV VERA

1 2.8 1.29 5.9

2 1.99 0.82 2.36
3 1.67 0.69 2.29
4 1.56 0.59 1.81
5 1.18 0.52 1.67
6 1.08 0.63 1.25
7 0.81 0.46 1.39
8 0.75 0.49 1.3

9 0.48 0.35 0.76

3.96 3.41 0.95 8.8 1.98 18.18
2.94 2.99 0.41 5.79 1.47 11.36
2.6 2.88 0.37 4.98 1.12 9.09
2.6 2.63 0.37 3.7 1.12 9.09
2.39 2.53 0.34 2.89 1.21 9.09
2.26 2.59 0.27 2.66 1.06 9.09
2.02 2.44 0.27 2.66 1.06 9.09
2.2 2.59 0.2 2.31 1.06 6.82
1.52 2.09 0.07 1.62 0.82 4.54
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Paper

Method

EER (%)

MMCBNU-6000

SDUMLA-HMT FV-USM HKPU-FV

Hou and Yanl®8!
Yang et al.[21]

Hao et al.[18]
Yang et al.[21]
Yang et al.[21]
Yang et al.[13]

Qin and El-Yacourbil59]
Huang et al.[22]

Huang et al.[22]

Arccosine center loss
Joint recognition and anti-spoofing network
Multi-task learning(raw image)

VGG (reproduced by Yang et al.[21)
ResNet (reproduced by Yang et al.[21])
Finger vein code
Deep representation-based feature extraction
ViT (reproduced by Huang et al.[22])

Finger vein transformer (FVT)

Ours FedFV

studied by local training methods, only the FV datasets
that are often studied with local training are selected for
comparison. The selected FV datasets are FV-USM,
MMCBNU-6000, SDUMLA-HMT, and HKPU-FV. The
results are shown in Table 5, and bold indicates the best
value.

From Table 5, we can see that the performances of
our proposed FedFV are superior to the current SOTA
methods on the FV-USM and HKPU-FV. We can see
that our proposed FedFV can learn the knowledge of oth-
er clients and improve the local model’s performance
while protecting all clients’ data privacy. However, the
EER of our proposed FedFV is still higher than the
multi-task learning method in [18] on the MMCBNU-6 000
and SDUMLA-HMT. For this phenomenon, we analyze
that the model in researchl!8l contains two branches and
the input FV images are the raw images that can extract
the FV information and the finger shape information.
FedFV considers the communication cost and limits the
number of parameters of the local model. Hence, the re-
search’8] outperforms more than FedFV. Overall, under
privacy protection and certain communication costs, Fed-
FV can improve the performance of the local model
through federated learning and tackle the problem of isol-
ated FV data islands to some extent.

5 Conclusions

This work proposes a federated learning framework,
FedFV, for alleviating the data deficiency problem of
training the FV authentication system and solving the
biometric template protection problem caused by cooper-
ation between various clients. By using FedFV, the au-
thentication models of each client can learn knowledge
from all the federated participants and improve their per-
formance without exposing their user data. Furthermore,
to address the non-IID data problem caused by the client
diversity during federated learning and enhance the per-

- 1.53 0.25 1.35
1.11 1.71 0.95 -
0.29 1.17 0.74 -
3.79 4.71 2.32 -
0.96 2.34 1.01 -
- - - 3.33
- - - 3.02
1.74 5.77 1.63 5.48
0.92 1.5 0.44 2.37
0.35 1.52 0.07 0.48
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Fig.4 Bar charts of the EERs cooperating with different
numbers of clients. The bars in different colors denote the
different numbers of clients.

sonalization of each client’s model, this paper also pro-
poses an efficient, personalized federated aggregation al-
gorithm, FedWPR. The proposed FedFV framework can
be effectively performed on different clients with differ-
ent numbers of users, showing the universality of practic-
al FV authentication scenarios. Extensive experiments on
nine public FV datasets demonstrate the effectiveness of
FedFV, which has some reference value for subsequent
biometric privacy protection research.
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