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Abstract: Photoplethysmography (PPG) biometrics have received considerable attention. Although deep learning has achieved good
performance for PPG biometrics, several challenges remain open: 1) How to effectively extract the feature fusion representation from
time and frequency PPG signals. 2) How to effectively capture a series of PPG signal transition information. 3) How to extract time-
varying information from one-dimensional time-frequency sequential data. To address these challenges, we propose a dual-domain and
multiscale fusion deep neural network (DMFDNN) for PPG biometric recognition. The DMFDNN is mainly composed of a two-branch
deep learning framework for PPG biometrics, which can learn the time-varying and multiscale discriminative features from the time and
frequency domains. Meanwhile, we design a multiscale extraction module to capture transition information, which consists of multiple
convolution layers with different receptive fields for capturing multiscale transition information. In addition, the dual-domain attention
module is proposed to strengthen the domain of greater contributions from time-domain and frequency-domain data for PPG biomet-
rics. Experiments on the four datasets demonstrate that DMFDNN outperforms the state-of-the-art methods for PPG biometrics.
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1 Introduction

Over the past decade, biometrics using some physiolo-
gical signals, such as electrocardiogram (ECG), pho-
toplethysmography (PPG), and electromyograms (EMG),
have gradually caused considerable concern. Compared
with widely implemented biometric traits, such as face
and fingerprint, PPG signals as biometric traits, provide
the following advantages!> 2: 1) PPG signals are ac-
quired by attaching sensors to living persons, which can
provide proof of liveness detection. 2) It is difficult to
counterfeit or replicate, and PPG signals as biometric
traits are highly secure. 3) PPG signals include informa-
tion not only personal identity verification but also heart
health and psychological states. 4) PPG signals are one-
dimensional data with small size.

PPG biometrics have attracted increasing attention
from researchers because of their unique advantages.
PPG biometrics are a new technology, and many meth-
ods for PPG biometrics have been proposed 3l. Deep
learning (DL) has achieved good performance in PPG
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biometrics, and many related methods have been repor-
ted[l> 491, However, several challenges remain open:

1) The existing deep learning methods for PPG bio-
metrics use small-scale convolution filters to extract the
amplitude features and ignore explicitly capturing a series
of transition information of PPG waves. For example, the
transition information of systolic and diastolic waves and
dicrotic notches is crucial for recognizing PPG signals.
Small-scale convolution filers can extract local amplitude
information, and large-scale convolution filters provide
the transition information of different morphological fea-
tures. All this information is crucial for PPG biometric
recognition. Therefore, a challenging problem using deep
learning for PPG biometrics is how to design a model to
extract the different scale transition information from
PPG signals.

2) Most of the existing deep learning methods for
PPG biometrics extract features from raw PPG signals.
Raw PPG signals are easily influenced by acquisition
equipment, body position, and various physical and psy-
chological factors and are unstable with time variation.
PPG signals contain time-frequency domain features, and
some methods convert the raw PPG signals into fre-
quency domain features as input to deep learning models
for PPG biometric recognition. However, the existing
deep learning methods for PPG biometric recognition
only consider utilizing single-domain features, without us-
ing both the time and frequency domain fusion as input
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to deep learning models. Hence, it is a challenging prob-
lem to utilize the fusion of both the time and frequency
information as input to deep learning models.

3) Most of existing works for PPG biometrics do not
utilize the sequential relationship from one-dimensional
time-frequency data. Most of existing deep learning meth-
ods for PPG biometrics only use a convolutional neural
network (CNN) to extract the deep PPG features. CNN
has achieved better results in higher-dimensional image
data, without considering one-dimensional sequential
data. Some deep learning methods only use a long short-
term memory (LSTM) network to extract time-varying
information from raw PPG signals. Therefore, a challen-
ging problem for PPG biometrics is designing a robust
deep model for extracting time-varying information from
one-dimensional time-frequency sequential data.

To address the aforementioned challenges, in this pa-
per, we propose a dual-domain and multiscale fusion deep
neural network (DMFDNN) for PPG biometric recogni-
tion. The DMFDNN consists of a two-branch deep learn-
ing framework, which can learn the time-varying and
multiscale discriminative features from the time and fre-
quency domains. Meanwhile, a multiscale extraction mod-
ule is designed for capturing transition information, which
is composed of multiple convolution layers with different
receptive fields. Moreover, the dual-domain attention
module is proposed to strengthen the domain of greater
contributions from time-domain and frequency-domain
data for PPG biometrics. An overview architecture of the
proposed DMFDNN is shown in Fig. 1.

The main innovations of this work are the following:

1) We develop a novel two-branch deep learning
framework for PPG biometrics that can learn the time-
varying and multiscale discriminative features from the
time and frequency domains.

2) To capture a series of transition information of
PPG waves, we design a multiscale extraction module,
which consists of multiple convolution layers with differ-
ent receptive fields.

3) We propose a dual-domain attention module to
strengthen the domain of greater contribution for PPG
biometrics.

The rest of our work is organized as follows. Related
work is presented in Section 2. Data preprocessing is giv-
en in Section 3. The proposed methodology is introduced
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in Section 4, and the experimental results and analysis
are reported in Section 5. A brief conclusion and future
work follow in Section 6.

2 Related work

There are fiducial and nonfiducial approaches for PPG
biometrics methodsl3. Fiducial-based approaches use the
peaks, downwards and upwards slopes, and the interval
of extreme points as fiducial points for PPG biometrics.
Yao et al.l'0 extracted derivatives of PPG signals as fidu-
cial points for PPG signal biometrics. Mancilla-Palestina
et al.2l proposed a fusion learning method by extracting
fiducial points of ECG and PPG signals for biometrics of
embedded system. Chakraborty and Palllll used 12 fea-
tures of PPG signals and their derivatives for PPG bio-
metric recognition, and achieved 100% accuracy for 15
subjects. Nadzri et al.l'2] extracted the systolic peaks, dia-
stolic peaks, and dicrotic notches of PPG signals for bio-
metric recognition. Sancho et al.[!3] extracted the fiducial
points of the time domain and Karhunen-Loéve trans-
form for PPG biometric recognition. The fiducial points
of the PPG waves are sensitive to various noise, so the
performance of fiducial-based methods for PPG biomet-
rics is unsatisfactory.

Nonfiducial-based approaches obtain the feature trans-
formation of PPG signals for biometrics. Spachos et al.[14]
extracted the features of PPG signals by linear discrimin-
ant analysis (LDA) and identified the subjects to use the
nearest neighbor classifier. Karimian et al.l!5] proposed
the discrete wavelet transform (DWT) features of PPG
signals for biometrics. Yadav et al.l'6] fused the features
of continuous wavelet transform (CWT) and direct lin-
ear discriminant analysis (DLDA) for PPG biometric re-
cognition, and obtained an equal error rate (EER) of
0.5%-6%. Farago et al.ll”l used the cross-correlation of
ECG, PPG and EMG signals for biometrics. Lee et al.[!]
used random forest to extract the features of wearable
PPG signals for biometrics. Although nonfiducial-based
approaches for PPG biometric recognition achieve better
performance, the PPG signals contain redundant noise
and intraclass variety information, which influence the
performance of PPG biometrics.

Recently, many deep-learning-based methods have
been proposed for PPG biometrics. Hwang et al.lll de-
veloped a fusion model of CNN and LSTM for PPG bio-
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metric recognition. Luque et al.l4l proposed convolutional
networks with end-to-end architecture for PPG biomet-
ric authentication. Everson et al.l’l proposed deep-learn-
ing framework to employ two CNN layers in conjunction
with two LSTM layers for PPG biometric recognition.
Biswas et al.lfl proposed a deep-learning model for bio-
metrics to use wrist-worn PPG signals for remote cardi-
ovascular monitoring, which consisted of a four-layer deep
neural network. Hwang et al.[] proposed a PPG biomet-
ric generative adversarial network (PBGAN) by extract-
ing the semantic representation and time stability. Ye et
al.Bl investigated two CNNs and two LSTM networks to
extract discriminative features, and identified the subject
by the adjusted cosine similarity. Liu et al.l%l used five
CNN layers, two LSTM layers and one dense output lay-
er for PPG biometrics. Deep-learning models for PPG
biometric recognition show good performance, and they
are a hotspot of research. However, the existing deep
learning methods do not utilize the discriminative fea-
ture from time and frequency data.

3 Data preprocessing

3.1 Preprocessing

PPG signals are easily affected by various kinds of
noises, such as baseline wander, powerline interference,
and motion artifacts. The process of preprocessing in-
cludes the following steps:

Butterworth filter.

We filter the PPG signals to use a fourth-order But-
terworth filter, and the cutoff frequency is set as 0.5—
18 Hz, which can effectively mitigate the noise of baseline
wander and powerline interference.

Variational mode decomposition[9].

First, to mitigate the influence of motion artifacts,
PPG signals are first decomposed into different modes by
variational mode decomposition. PPG signals X can be
decomposed into different modes Xj with center fre-
quency wy, as follows:

2

O {5(t)+ﬂ% X Xk(t):| o Iwnt

min
{Xk}v{wk}; ’

sty Xp=X (1)

2

where {X} is the different mode set, {w} is the center
frequency set, k € [1,2,---, K], K is the mode number,

and 0 is the Dirac distribution.

Then, we use the a reference signal to remove the mo-
tion artifacts from the remaining modes, and the PPG
signals are reconstructed by the remaining modes as fol-
lows:

Xrecon = Z Xk (2)

k#{kq}

where {kq} denotes the modes of noise sets.
Normalization.
We use z score standard normalization for PPG sig-
nals.
The whole preprocessing process is shown in Fig. 2.

3.2 Segmentation

We segment the preprocessed PPG signals into fixed
length sequences by sliding a rectangular window, and
each segmented sequence is taken as a sample. To obtain
sufficient training samples, we segment PPG signals by
shifting the rectangular window with overlap fractions,
which is a method for data augmentation. The testing
samples are obtained by sliding the rectangular window
without any overlap.

3.3 Feature extraction

Time-domain feature.

Similar to the work in the literaturel2, we extract the
waveform of PPG samples as time-domain feature, which
includes the maximum and minimum amplitude, interval
and standard deviation. One-dimensional local binary
patters (1IDLBP) can generate binary codes by compar-
ing the amplitude of each sampling point with its neigh-
borsl2l, which can reduce noise influence, and we also use
1DLBP as a time-domain feature.

Frequency-domain feature.

We extract the discrete wavelet transform (DWT)
and short-time Fourier transform (STFT) as frequency-
domain features of one-dimensional PPG signals(20; 22],
PPG samples are decomposed into wavelet coefficients by
wavelet packet decomposition, and the Daubechies wave-
let Db8 with three-level wavelet is used to obtain the
DWT feature value.

4 Model structure

The proposed DMFDNN consists of three main com-
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ponents: 1) LSTM network for learning time-varying dis-
criminative features, 2) multiscale feature extraction
module for learning transition information, 3) dual-do-
main attention module for learning complementary in-

formation.
4.1 Notations

The input of the proposed model is the PPG sample
matrix X, X = [X', X/], X* e R"*", X/ e R¥*", x!
and X’ are the time-domain and frequency-domain fea-
ture sets, respectively, and d; and dy are the dimensional-

ity values.
4.2 LSTM network

The time-frequency features of PPG signals are long-
term dependent, and we use the LSTM network to ex-
tract the time-varying discriminative features23l. The ar-
chitecture of the LSTM network is show in Fig. 3.

The time-frequency feature matrix X is processed by
the LSTM network, and we can obtain the output H of
the LSTM network:

H=LSTM(X). (3)

4.3 Multiscale feature extraction module

Transition information is crucial for PPG biometric
recognition. To capture the transition information, we
utilize different scale convolution filers to extract discrim-
inative features, and the multiscale feature extraction
(MSFE) module is shown in Fig.4.

First, we employ 3 branches of dilated convolutions
with dilation rates from 1 to 3 to transform the output of
the LSTM network. Then, each branch is set three convo-
lutional layers. The number of convolution kernels of each
branch decreases step by step from 512 to 128, and it can
continue to extract high-level semantic features and re-
duce dimensions at the same time, which is defined as
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; = Conv; (H,( 512,1))
= Conv; (X/, (3,256,1))
Xl- = Conv; (X7, (3,128,1))
€L, 2, 3 (4)
where H is the input features mapped from LSTM, Conv;
is the convolution layer with dilation rate i, 1 <i <3,
and Xij is the output of the j-th convolution layer.
Finally, the features mapped from different branches are
concatenated, which is defined as

Xcon = Concat (Xf’,XS’,Xg’) (5)
where X.o,, is the multiscale concatenated feature.

Moreover, we utilize a bottleneck layer to reduce the
parameters of MSFE, which can lighten our proposed
model. The bottleneck is defined as

Xp = Bl (Xcon) (6)
where Bl denotes the bottleneck operation, and X, is the
final output result of MSFE.

4.4 Dual-domain attention module

Different domains have different distinctive informa-
tion for personal identification. To strengthen the do-
main of greater contribution for PPG biometrics, we pro-
pose a dual-domain attention module (DDAM). DDAM
fuses the feature maps of two domains and obtains the
channel-wise attention component.

First, we obtain the dual-domain fusion component,
which is defined as

Xfuse :XIS‘FXZ{‘FX;@XZ{ (7)
where Xy,s. denotes the fused feature map, and @ is
elementwise product operation. X; and le are the
outputs of multiscale feature extraction modules from
time and frequency domains, respectively.

Then, similar to the work in [24], we input X fyse into
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Fig. 3
number of segments of a sample.

@ Springer

tp

Architecture of the LSTM network. z+ and h: denote the input vector and output vector in state t, respectively. p denotes the



C. Y. Liu et al. / Dual-domain and Multiscale Fusion Deep Neural Network for PPG Biometric Recognition 711

Input

[Conv(3 512 )] [Conv(3 512 2)] [Conv(3 512 3)|

| Conv(3 256_1)] | Conv(3_256 2)| | Conv(3_256_3)|

[Conv(3 128 1)|  [Conv(3 128 2)| [Conv(3 128 3)]

Concat

Fig.4 Module of multiscale feature extraction. ((the kernel
size)_(the number of filters) (the dilation rate)) denotes the
convolutional parameters.

the channelwise attention component to emphasize the
important channels of the fused information, which is
defined as

Xg = Ava (Xfuse)
KXot = 0 (6 (Full_con (Xy)))
Xout = Xfuse O] Xatt (8)

where Ava is the global average pooling operation,
Full__con is the fully connected operation, § denotes the
ReLu activation operation, o is the Sigmoid activation
function, and X, denotes the output of DDAM.

4.5 Recognition

The proposed model turns a PPG sample into a con-
text vector, which is further used for identification and
verification. In the identification mode, we design the
fully connected layer with a softmax function to predict
the label of a context vector X!, which is define as fol-
lows:

p (Sk||X§ut) = softmazx (WX;M + b) , 1<k<n
(9)

where P (Sk||Xf,m) denotes the posterior probability of
belonging to a subject Sk, and n is the number of all
subjects. The maximum P (Sk||X§ut) is identified as the
candidate subject of X7,;.

The objective function of our model is trained by the
multiclass cross entropy loss L, which is defined as

1 N C P ~ ;
b= 0= X os (P (sl

n=1k=1
(10)

where N is the number of all samples, and k is the

number of subjects enrolled. Q{Sk = Xf,ut} denotes the
true posterior probability.

In the verification mode, we calculate the cosine simil-
arity value between the context vector and the enrolled
vector, and decide whether the context vector is a genu-
ine or an impostor by a preset threshold value.

5 Experiment

5.1 Databases

To evaluate the performance of the proposed method,
we employ four public databases: Beth Israel Deaconess
Medical Center (BIDMC)[R5 261 Multi-parameter Intelli-
gent Monitoring for Intensive Care (MIMIC)R7, Capno-
Basel?8! and Biosec1[l6l. Table 1 gives the number of sub-
jects, frequency and length of PPG signals on the four
datasets.

Table 1 Details of the three adopted datasets

Dataset No. of subjects Frequency Length (min)
BIDMC 53 125 8
MIMIC 65 125 10
CapnoBase 42 300 8
Biosecl 31 100 3

The BIDMC database was acquired from 53 hospital-
ized patients, and each recording contained an 8-minute
duration with a sampling frequency 125Hz. The MIMIC
database was acquired from ICUs; and we chose 65 sub-
jects in this work. The CapnoBase database has PPG,
ECG, and other signals for 42 cases of 8-minute duration
with a sampling frequency 300 Hz.

In all databases, 3-min-long recordings are used from
each subject, and we extract the first 60% of each record-
ing as training sets, the next 30% for validation sets, and
the last 10% for testing sets. The testing, validation and
training samples do not overlap, and the average testing
values are obtained as experimental results. To evaluate
our method on two-sessions scenario, we choose 20 sub-
jects with two recordings in the MIMIC database, which
are named as M1 and M2, and the two-sessions database
is called two-sessions MIMIC. The Biosecl database con-
sists of two-sessions of PPG signals, and the number of
subjects is 31 with a sampling rate of 100Hz. The PPG
signals from Biosecl are collected in the leisure state, and
the average time gap between the two sessions is 36 days.
Similar to [7], we exclude 30s in the first and last parts of
each session, which is time consuming of wearing and ad-
justing the device.

5.2 Performance metrics
In the identification mode, the subject recognition rate
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is used as an evaluation criterion, which is defined as

N _correct_sample

(11)

Subject recognition rate =
) & N _test_sample

where N _test _sample is the total number of testing
samples and N_correct sample is the number of
correctly identified testing samples.

In authentication mode, the similarity is calculated by
comparing a test sample and all enrolled samples. The
EER is the equivalent value of both the false acceptance
rate (FAR) and false rejection rate (FRR), which is
defined as

NFA

FAR = <t X 100% (12)
NFR

FRR = NGRA S 100% (13)

where NFA is the number of false acceptance samples,
NIRA is the number of impostor attempt samples, NF'R
is the number of false rejection samples, and NGRA is
the number of genuine attempt samples.

5.3 Parameter settings

The input dimension varies along with the number of
sample points of a rectangular window, and we set the 1.5
second rectangular window with an overlap of 0.8 frac-
tions. DMFDNN is implemented using the TensorFlow
framework. The training epochs of the model are 180 with
a batch size of 80. In the LSTM model, we use a single
layer LSTM with 150 nerve cells in the hidden layer, and
the input dimension is the length of the rectangular win-
dow. Each CNN layer consists of a one-dimensional CNN
operation, and the pooling window is set as 3 with stride 3.

5.4 Performance of the proposed method

To validate the performance of DMFDNN, we com-
pared DMFDNN on three databases with baseline meth-
ods that include the single-feature and fusion-feature
methods, LSTM method, and CNN method. We extrac-
ted the shape, one-dimensional local binary pattern, dis-
crete wavelet transform and short-term Fourier trans-
form of time and frequency features, which are named the
shape, 1IDLBP, DWT and STFT methods, respectively.
Similar to DMFDNN, we also design the fully connected
layer with a softmax function to predict the label of all
extracted features. Table 2 lists the subject recognition
rates of DMFDNN compared with baseline methods.

As shown in Table 2, the performance of DMFDNN
has greater improvements than the single-feature and fu-
sion-feature methods on the three databases, demonstrat-
ing that DMFDNN with dual-domain and multiscale fu-

@ Springer

Machine Intelligence Research 20(5), October 2023

Table 2 Comparison of DMFDNN with baseline methods

Feature BIDMC MIMIC CapnoBase
Shape 93.35% 92.37% 94.08%
1DLBP 94.56% 93.72% 94.93%
STFT 95.23% 94.41% 95.62%
DWT 95.68% 94.75% 96.03%
Shape + DWT 96.63% 95.72% 97.24%
Shape + STFT 96.72% 95.87% 97.36%
1DLBP +STFT 97.34% 96.17% 97.98%
1DLBP +DWT 97.62% 96.34% 98.14%
LSTM 98.42% 97.35% 99.12%
CNN 98.64% 97.54% 99.24%
Ours 99.16% 98.42% 99.87%

sion has high discrimination for PPG biometrics.
Moreover, because of capturing transition and multiscale
information, the performance of DMFDNN is superior to
LSTM and CNN methods on the three databases. The
total parameter numbers of LSTM, CNN and DMFDNN
are 276 645, 298 342 and 303 794, respectively. The exper-
imental networks require approximately 645K, 668 K and
683K floating point operations on LSTM, CNN and
DMFDNN); respectively. It is worth noting that, as DMF-
DNN is the fusion approach of CNN and LSTM, DMFD-
NN does not increase the number of parameters and
floating-point operations. This is mainly because the in-
put data of DMFDNN is time-frequency data of PPG sig-
nals, the input of CNN and LSTM are sequence seg-
ments of original PPG signals, and the dimension of time-
frequency data is less than the sequence segments.

Furthermore, we perform the multi-session analysis in
the MIMIC database. The subject-recognition-rate per-
formance of DMFDNN and other baseline methods in
multi-session scenarios is given in Table 3.

Table 3 Comparison of results with multi-session

scenarios in MIMIC
Method Training Testing  Subject recognition rate (%)

Shape M1 M2 91.63
M2 M1 91.42

DWT M1 M2 92.62

M2 M1 92.21

Shape + DWT M1 M2 94.52
M2 M1 94.36

Ours M1 M2 98.05

M2 M1 97.74

From Table 3, compared to the baseline methods,
DMFDNN can achieve the best results, demonstrating
that dual-domain and multiscale fusion can improve the
performance for multi-session data.
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5.5 Comparison with state-of-the-art met-
hods

To further validate the performance of DMFDNN, we
compare it with several state-of-the-art methods, includ-
ing the nondeep learning methods and deep learning
methods. In two-session MIMIC, M1 recordings are col-
lected as a training set, and M2 recordings are equally di-
vided into validation and testing sets. The performance
results are shown in Table 4.

Table 4 Comparison with state-of-the-art methods

5.6 Ablation experiment

To evaluate the contributions of each part of our
model, we removed the different parts of our model to ob-
tain the following different models:

TMDNN and FMDNN. We remove the frequency-
domain branch and retain only time-domain input, and
obtain a time-domain and multiscale deep neural net-
work (TMDNN). We remove the time-domain branch
and retain only frequency-domain input, and obtain a fre-
quency-domain and multiscale deep neural network (FM-
DNN).

DMFDNN without LSTM. We remove the LSTM

Subject network, and obtain the DMFDNN model without
Database Method recognition rate EER (%)
(%) LSTM.
BIDMO 20] 9306 o1 DFDNN. We remove the multiscale feature extrac-
’ ' tion model, and obtain the model of the dual-domain fu-
27] 98.65 - sion deep neural network (DFDNN).
3] 98.78 1.43 DMFDNN without attention. We replace the
(7] B 1.34 dual-domain attention module, and concatenate only time
frequency features.
Ours 99.16 0.92 Table 5 gives the recognition performance results us-
MIMIC [20] 97.62 2.36 ing the above different models.
3] 97.86 2.23
7] B 215 Table 5 Comparison of DMFDNN with baseline methods
Ours 08.42 1.43 Feature BIDMC MIMIC CapnoBase
CapnoBase [18] 99.00 _ TMDNN 9798% 9678% 99.12%
[13] _ 1.0 FMDNN 98.14% 97.31%  99.26%
3] 99.82 0.34 DMFDNN without LSTM 98.16% 97.26%  99.14%
7] - 0.31 DFDNN 98.77% 97.84% 99.34%
[1] 100 0.1 DMFDNN without attention 99.04% 98.23% 99.44%
Ours 99.87 0.18 Ours 99.16% 98.42% 99.87%
Two-session
MIMIC [20] 96.43 3.87 .
As shown in Table 5, we can see that DMFDNN has
3] 96.742 - better performance than all other methods on the three
7] _ 2.43 databases, which clearly shows that different parts of
DMFDNN are important to improve the performance.
Ours 98.05 2.26 . .
Compared with the TMDNN and FMDNN; the recogni-
Biosecl (3] 87.24 13.15 tion performance increases by 1.18% and 1.02% on BID-
[7] 88.53 - MC, respectively, which can prove the importance of
Ours 89.26 11.42 dual-domain fusion. LSTM can learn the time-varying

ICited from [7] with the structure of wide-shallow model.
2Cited from [3].
3Cited from [7] with the structure of PBGAN-LS (W).

From Table 4, it can be observed that our method
outperforms other methods on BIDMC, MIMIC and Bio-
secl, and it is evident that DMFDNN with dual-domain
and multiscale fusion representation can obtain more ro-
bust and discriminative recognition performance than
other methods. On all databases, DMFDNN can achieve
competitive PPG biometric recognition compared with
state-of-the-art methods.

discriminative information, and DMFDNN without
LSTM has lower performance than our proposed method.
Transition information is crucial for PPG biometric re-
cognition, and multiscale extraction can capture trans-
ition information, so DMFDNN has better performance
than DFDNN. In addition, the attention can strengthen
the contribution of different domains for PPG biometrics,
so DMFDNN without attention has lower performance
than our method. Therefore, it is important to exploit the
information of dual-domain fusion, multiscale feature ex-
traction and attention to improve the recognition per-
formance.

@ Springer



714

6 Conclusions

In this paper, a dual-domain and multiscale fusion
deep neural network is proposed for PPG biometric re-
cognition. By exploring dual-domain fusion and multis-
cale feature extraction, the proposed method can learn
the time-varying and multiscale discriminative features
from the time and frequency domains. Furthermore, to
strengthen the domain of greater contribution from time-
domain and frequency-domain data, we design a dual-do-
main attention module. In future work, we plan to ex-
plore a new deep learning approach that can incorporate
the novel loss function to further improve PPG biomet-
ric recognition performance.
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