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Abstract: While China has become the largest online market in the world with approximately 1 billion internet users, Baidu runs the
world's largest Chinese search engine serving more than hundreds of millions of daily active users and responding to billions of queries
per day. To handle the diverse query requests from users at the web-scale, Baidu has made tremendous efforts in understanding users’
queries, retrieving relevant content from a pool of trillions of webpages, and ranking the most relevant webpages on the top of the res-
ults. Among the components used in Baidu search, learning to rank (LTR) plays a critical role and we need to timely label an extremely
large number of queries together with relevant webpages to train and update the online LTR models. To reduce the costs and time con-
sumption of query/webpage labelling, we study the problem of active learning to rank (active LTR) that selects unlabeled queries for an-
notation and training in this work. Specifically, we first investigate the criterion — Ranking entropy (RE) characterizing the entropy of
relevant webpages under a query produced by a sequence of online LTR models updated by different checkpoints, using a query-by-com-
mittee (QBC) method. Then, we explore a new criterion namely prediction variances (PV) that measures the variance of prediction res-
ults for all relevant webpages under a query. Our empirical studies find that RE may favor low-frequency queries from the pool for la-
belling while PV prioritizes high-frequency queries more. Finally, we combine these two complementary criteria as the sample selection
strategies for active learning. Extensive experiments with comparisons to baseline algorithms show that the proposed approach could
train LTR models to achieve higher discounted cumulative gain (i.e., the relative improvement ADCG4=1.38%) with the same budgeted
labelling efforts.
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1 Introduction

Baidu has established herself as the world's largest
Chinese search engine, serving hundreds of millions of
daily active users and handling billions of queries per day.
To date, Baidu has archived trillions of webpages for
search. In addition to webpages and data resources,
Baidu has invented a number of the most advanced
search technologies, ranging from language models for
content understanding’> 2, domain-specific recommenda-
tionB-6, online query—Ads matching for sponsored sear-
chl” 8 and software/hardware co-designed infrastruc-
tures® 11l for handling web-scale traffics of online search.

Generally, ranking the retrieved contents plays a crit-
ical role in a search engine, where learning to rank (LTR)
is a standard workhorse. To achieve better ranking per-
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formance, we need to use a large amount of annotated
data to train an LTR model. However, it is extremely ex-
pensive and time-consuming to label the ranks of relev-
ant webpages for every query[!2. To address this issue,
active learning[!3: 1] to select a small number of most in-
formative queries and relevant webpages for labelling is
requested.

In this paper, inspired by uncertainty-based active
learning methods, we present a simple yet effective ap-
proach to active learning for ranking. First, we investig-
ate ranking entropy (RE), which characterizes the uncer-
tainty of the ranking for every relevant webpage under a
query using a query-by-committee (QBC) method['?]. In-
tuitively, RE can discover queries with ranking uncer-
tainty, i.e., the predicted ranks of webpages in a query
are indistinguishable using the LTR model. However, RE
is also biased in favor of the low-frequency queries, i.e.,
the queries are less searched by users, as there are no suf-
ficient supervisory signals (e.g., click-throughs) to train
LTR models for fine predictions. The bias to the low-fre-
quency queries would not bring sufficient information
gain to LTR training. To alleviate this problem, we study
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yet another criterion — prediction variance (PV), which
refers to the variances of rank prediction results among
all relevant webpages for a query. Intuitively, we assume
a query pairing to multiple webpages that have clearly
distinguished orders of ranking as a query with high di-
versity. We further assume that the variance of rank pre-
diction results would faithfully characterize the variance
of ground-truth rank labels, i.e., the diversity of webpages
in a query. We thus propose to use PV as a surrogate for the
diversity of webpages in a query. Please refer to Section 3
for detailed comparisons and empirical analysis with real
data.

More specifically, we report our practices in using the
above two criteria to design query selection strategies for
active learning. We conducted comprehensive empirical
studies on these two criteria using realistic search data.
The empirical studies show that the use of RE results in
bias to the low-frequency queries, while the use of PV
leads to the potential overfittings to the high-frequency
queries. When incorporating low-frequency queries in la-
belling, the active learner might not be able to train LTR
models well, due to the lack of supervisory signals (e.g.,
click-throughs) to distinguish the webpages for the quer-
ies. In contrast, when using high-frequency queries (hot
queries) in labeling, the active learner might not be able
to adapt the out-of-distribution queries (which is critical
for ranking webpages at web-scale). Please see also in
Sections 3.2 and 3.3 for the details of the criterion and
empirical observations.

Finally, extensive experiments with comparisons to
baseline algorithms show that the proposed approach
(i.e., the combination of RE and PV) can train LTR
models to achieve higher accuracy with fewer webpages
labelled. Specifically, we have made the following contri-
butions.

1) We study the problem of active learning for rank-
ing in the Baidu search engine, where we focus on select-
ing queries together with relevant webpages for annota-
tions to facilitate LTR model training and updates. We
deploy the system in the Baidu search engine.

2) In the context of the Baidu search, we first con-
sider commonly-used uncertainty metrics for active learn-
ing of LTR, namely ranking entropy (RE). We find that
the use of RE could be biased by the frequency of queries,
i.e., low-frequency queries normally have higher RE
scores, as LTR models usually have not been well trained
to rank webpages in such queries due to the lack of super-
visory signals. To debias RE, we propose to study yet an-
other diversity-based criterion — prediction variance (PV)
that may favor high-frequency queries and are highly cor-
related to the true label variance of webpages under the
query. In this way, we combine the two criteria for addi-
tional performance improvements.

3) We conduct extensive experiments, showing that
our proposed approach is able to significantly improve
the performance of LTR in the context of Baidu search.
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Specifically, we compare our proposals (the combination
of RE and PV) with a wide range of sample selection cri-
teria for active learning, including random selection, and
expected loss prediction (aka ELO-DCG)[6l. The compar-
isons show that our proposals outperform other criteria,
which discovers 43% more validated training pairs and
improves DCG (e.g., ADCG4 = 0.35%—1.38% in offline
experiments and ADCGy = 0.05%-0.35% in online ex-
periments) using the same budgeted labelling efforts un-
der fair comparisons.

Note that in this work, we focus on the low-complex-
ity criteria of sample selection in active learning for LTR.
There also exists some sample set selection algorith-
msl17 18] for active learning in the high-order polynomial
or even combinational complexity over the number of un-
labelled samples, which is out of the scope of this paper
as we intend to scale-up active learning of LTR with
large-scale unlabelled queries and webpages.

2 Related works

The goal of active learning (AL) is to select the most
informative samples in the unlabelled data pool for an-
notation to train a modell’. Generally, AL models are
able to achieve similar performance but use fewer annot-
ated data points. To select the most informative samples
for labelling, two categories of methods, i.e., diversity-
aware criteria and uncertainty-aware criteria, for sample
selection have been studied. The diversity-aware
methods[20: 21l measure the diversity of every subset of un-
labelled samples and select the sample set with top di-
versity for labelling, where the core-set selection(?2l lever-
aging the core-set distance of intermediate features is a
representative method here. While diversity-aware meth-
ods work well on small datasets, they might fail to scale
up over large datasets due to the need for subset compar-
isons and selections.

The uncertainty-aware methods/2330 screen the pool
of unlabelled samples and select samples with top uncer-
tainty in the context of the training model (e.g., LTR
models here) for labelling. While uncertainty-aware meth-
ods can easily be scaled up over large datasets due to
their low complexity, a wide variety of uncertainty criter-
ia have been proposed, such as Monte Carlo estimation of
expected error reductionBl, distance to the decision
boundary3? 331, the margin between posterior probabilit-
iesB4, and entropy of posterior probabilities3537. Cai et
al.38l proposed an active learning method based on the
maximum model change (MMC) and applied it to the
classification task. Similarly, expected model change max-
imization (EMCM)B9 employs the expected model change
maximization to estimate the uncertainty, and EMCM is
applied to the regression task. Settles et al.40 introduced
active learning into multiple-instance learning and ap-
plied active learning to multiple-instance logistic regres-
sion. The selection criterion also depends on uncertainty,
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i.e., the model calculates multiple-instance uncertainty
using the derivative of bag output with respect to in-
stance output. Both MMC and EMCM use gradients to
estimate the model change, however, computing gradi-
ents is normally more difficult for an LTR model than us-
ing QBC to estimate uncertainty. In addition, MMC and
EMCM are designed for classification and regression
tasks, while we focus on a more challenging task -
webpage ranking.

Discussion. The most relevant works to this study
are [16, 41-43]. As early as 2010, Long et al.ll6: 41 pro-
posed the expected loss optimization (ELO) framework,
which selects and labels the most informative unlabelled
samples for LTR and incorporates a predictor for dis-
counted cumulative gain (ELO-DCG) to estimate the ex-
pected loss of given queries and documents. The work[42]
further confirmed that ELO with DCG could work well
with any ranker at scale and deliver robust performance.
Cai et al.43 followed the settings of ELO and extended
DCG by incorporating the kernel density of queries, so as
to balance the sample distribution and the model-agnost-
ic uncertainty for sample selection. Compared to the
above studies, this work revisits the problem of active
learning for LTR at the web-scale in the 2020s, and we
study new metrics of uncertainty for query selection with
online LTR performances reported and data analyzed in
the context of Baidu search.

3 Practical active learning to rank for
web search: Sample selection criteria
and empirical studies

In this section, we first review the system design of
active learning to rank (active LTR) for web search and
then present our proposed selection criteria for active
learning with empirical observations.

3.1 Active learning to rank for web search
at Baidu

As shown in Fig. 1, given a search query, denoted as ¢,
from a user, the search engine frequently first retrieves all
relevant webpages, denoted as {wi,ws,- -}, from the
dataset and sorts the top-K relevant webpages for the
best user reading experience through ranking. To rank
every webpage under the query, the search engine pairs
every webpage with the query to form a query-webpage
pair, e.g., (¢, w), and then extracts features from (q,w),
denoted as the feature vector (xq,zw), where x4 denotes
query-relevant features and x,, denotes webpage-relevant
features and adopts the LTR model to predict the rank-
ing score, e.g., {bad, fair, good, excellent, perfect}! at
Baidu Search using (zq, Tw).

1 For human annotations, labels 0, 1, 2, 3, 4 and 5 denote bad,

fair, good, excellent and perfect, respectively.

To train the LTR model, the search engine usually
collects the historical search queries Q = {q1,q2, -} and
archives relevant webpages W = {w1,1,w1,2, -}, where
w;,; denotes the j-th webpage associated with g;. To scale
up the active LTR on trillions of webpages/queries while
ensuring the timeliness of a search engine, our active
learning system (red path in Fig.1) periodically picks up
NEW queries appeared within the last ONE month i.e.,
S C Q, pairs every selected query in S with retrieved
webpages and extracts feature vectors to form the unla-
belled datasets T ={(q Tw 1) Tar,
Tw, 5), -+ ;. Finally, the search engine recruits annotat-
ors to label 7 and retrains the LTR model with annot-
ated data.

denoted as

3.2 Sample selection criteria for active
LTR

In this section, we present the two criteria proposed
for active learning to rank webpages.
3.2.1 Ranking entropy

Uncertainty is one of the most popular criteria in act-
ive learning and QBC[3 approach has been widely ap-
plied to estimate the uncertainty scores of the unlabelled
data. In this paper, we apply QBC to compute the RE of
each webpage. Normally, there are M models {hm (24, Tw);
m=1,---, M} to constitute a committee. Given the rep-
resentation of a query-webpage pair (zq;,%w, ;) € T, the
committee would provide a set of scores S;; =
{hm(®g;; Tw, ;); m=1,---,M}. Then, for any two web-
pages {wi ., w;,»} associated with ¢;, we can easily calcu-
late the probability that webpage w;. is ranked higher
than w; ., under query ¢;, denoted as the probability of
Wi,u > Wi, 1.€.,

ﬂ-;,(n(wi,u - wi,v) =
1
—hm (Zq;, Tw; o) + hm (Tq; s Tw,
1t e (T T o))

where T denotes the temperature and w; , > w; . denotes

(1)

that w;,, is more relevant than w;, under query g;.

Similar to SoftRank44, we can obtain the distribution
over ranks based on the probabilities calculated by (1).
We define the initial rank distribution of the wv-th
webpage w; ., as pjg”(r) = 6(r), where §(r) =1 if r=0
and 0 otherwise. Then, we can calculate the distribution
in the k-th step as follows:

pe(r) = Py T = DA (Wi = win)+

k—1,m

Piy () (1= 7 (wiw = win))  (2)

and the distribution in the last step will be the final
ranking distribution. The computing procedure is shown
in Algorithm 1, where one webpage is added to the list
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Fig. 1 An overview of the Baidu search system with the proposed active learning process. While the search engine records every search
query from users and stores them in historical search queries, it periodically picks up the NEW queries that appeared within the last one

month for annotation and retrains LTR models with annotated data.

for comparison in each step and the ranking distribution
is updated using (1).

For each webpage w;,j, we can obtain a set of ranking
distributions {p;;(r);m =1,--- ,M;r=1,---,N;} using
Algorithm 1, where N; denotes the number of webpages
associated with ¢;. Finally, for every query-webpage pair
with the feature vector (zq;,%w,; ;) € T, we use the aver-
age distribution over the committee to compute its en-

tropy score as follow:

pia(r) = 27 S pI(0) 3)
Eij=— i?i,j (r) log, pij(r). (4)

Algorithm 1. Ranking distribution

Require: {7 (wiu > wiv);u,v=1,--+ , Nj;u # v}
Ensure: {p]’;v=1,---,N;}
1) for v in range(N;) do

2)  p = [1,0,-0)

3) Prmp = [0, -+, 0]

/ * N; elements */
/ * N; elements */

@ Springer

4) o = [ (Wi > wi1), -, T (Wi,e > Wi,N, )]

5) for v in range(1, N;) do

6) for r in range(v + 1) do

7) if r==0 then

8) a=0

9) else

10) o =pllr—1]

11) end if

12) Pemp|T] = Piwlr] X Tolu — 1] + a x (1 — myx
u—1

13) end for p}”, = pimp

14) end for

15) end for

Note that the goal of this paper is to select queries,
hence, for a query ¢;, we employ the average entropy of
the webpages {w;;;j=1,---,N;} that are associated
with ¢, i.e.,

NA
L

RE(q:) = A ZE” (5)
7 J=1

Higher RFE(q;) refers to larger uncertainty in ranking
results across the LTR models in the committee. Active
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learners are expected to select queries with large ranking
entropy, i.e., higher RE(q;) for ¢; € Q, for annotation and
training.
3.2.2 Prediction variance

In our work, we assume a query, pairing to multiple
webpages that have clearly distinguished orders of rank-
ing, as a query with high diversity. While the true orders
of ranking could be obtained through human annotations
(i.e., labelling every webpage under the query using scores
of five levels 0, 1, 2, 3 and 4 in this work), we propose to
use the rank prediction results of a trained LTR model to
measure such diversity. Given a checkpoint of the online
GBRankl%l model, we propose adopting the variance of
predicted ranking scores (namely prediction variance,
PV) to measure the diversity of webpages for the query.

Similar to RE, we also use the predictions of the com-
mittee to compute the prediction variance. Given the outpu-
ts of the committee S; ; = {hm(zq;, Tw, ;); m=1,--- , M},
the prediction variance of a query ¢; with N; retrieved
webpages can be computed using the following equations:

2

i k3
N; 4

fom (q2) (6)

b, (Oﬂqi,fﬂw,;,j)
1

<
Il

N,
1 k2

STDm(g:) = N; Z (hom (g Ty ;) — “m(ql'))Q'
b je1

(7
Finally, we calculate the prediction variance PV (g;)
as follows:

(®)

M
1
PV(q:) = i > STDwm(q:).
m=1

For active learning, we assume queries with large pre-
diction variances, i.e., higher PV (g) for ¢; € Q, as the
candidates for annotation and training.

3.3 Empirical studies on proposed criteria
for active LTR

While the first criterion RE directly measures the un-
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certainty of ranking results under a query (either due to
the defects of learned models or simply the difficulty to
rank), we now hope to validate whether the second pro-
posed criterion PV can characterize the diversity of
webpages in a query and how PV improves LTR. We
conduct empirical studies based on 1000 realistic query
data points drawn from the validation set and hope to
test two hypotheses as follows.

Does PV characterize the variance of human-
annotated ground truth ranking scores for LTR?
Here to test our hypothesis, we fetch a past checkpoint of
the online LTR model in Baidu search and use the model
to predict the ranking scores for every webpage in the 1 000
queries. Note that, such 1000 queries are obtained from
the validation set and have no overlap with the queries
used for training the LTR model. In Fig.2(a), we plot the
scatter points of LV (label variance) versus PV with
Pearson correlation Corr =0.59 and p-value < 0.05. In
this way, we can conclude that PV significantly correl-
ates to the variance of human-annotated ground truth
ranking scores (LV) and faithfully characterizes the diffi-
culty of ranking every query.

Does PV correlate with the information gain of
query selection for LTR? Another hypothesis in our
mind is that selecting queries with a high diversity of
webpages for annotations could bring more information
gain to LTR. We thus need to correlate LV and PV with
certain information measures of queries. In this study, we
use a measure namely Best DCG4 which refers to the es-
timate of the upper bound of DCG4 that uses the hu-
man-annotated ground truth ranking scores as the predic-
tion results of the ranking. Intuitively, the best DCG4 re-
flects the optimal DCG4 that can be achieved by any al-
gorithm. The correlation studies have been performed and
illustrated in Figs. 2(b) and 2(c). The significance could
be found in the correlations between LV and Best DCG4
and the correlations between PV and Best DCG4. The
observations suggest that queries with higher diversity in
webpages are usually more informative for LTR, regard-
less of whether the diversity was measured by LV or PV.

Based on the above two observations, we could con-
clude that 1) PV could faithfully characterize LV (label

' 16 | D ; -
3.0 | Lo e 30 | ~
25 | 5l ] st Lo
ek Loy SR 20 | bt
215 | Z 08 | /_i 5 R D G S ‘l R
1.0 } 0.6 R RTe Y I 3 od ] 1ol !,-,..:, g i' i
' 04 [ooamTpad®o ol g ] il I D .
0.5 1 T 02 | e : 05 F . . :
s T e e S S 0} : e —
0 02040608 1 121416 0 5 10 15 20 25 0 5 10 15 20 25

LV
(@) LV versus PV (Corr.: 0.59)

Fig. 2

Best DCG
(b) Best DCG4 versus PV (Corr.: 0.66)

Correlation studies and empirical observations on criteria based on 1 000 queries (N = 1 000). Best DCGj refers to the estimate of

Best DCG
(¢) Best DCGy versus PV (Corr.: 0.33)

the upper bound of DCG4, where we use the human-annotated ground-truth labels to compute the DCG,4 score for every query. Corr.

denotes Pearson correlation coefficient.
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variance — the diversity of webpages), although PV was
estimated using the prediction results of a model, and 2)
a query with higher LV or PV is usually more informat-
ive for LTR, since LTR models are normally trained us-
ing pairwise or listwise loss and a small LV leads to small
loss values and gradients.

3.4 Combined criteria

To be simple, we use the weighted sum of RE and
PV as the acquisition function in active learning. For
each query ¢; € Q, the acquisition function is

f(gi) = RE(q:;) + a x PV(q;) 9)

where « is a hyperparameter to balance ranking
uncertainty and webpage variance. We select the queries
that have the largest values of f(¢;) in each cycle of
active learning.

4 Experiments

In this section, we present the results of experiments,
where we first introduce the results of offline experi-
ments and then figure out the online performance of our
proposals, both in comparison with baseline algorithms.

4.1 Offline experiments and results

In this section, we present the details of offline experi-
ments with introductions to the setups and results.
4.1.1 Setups

To conduct offline experiments, we construct a data-
set for LTR. We classify the queries in the last month in-
to 10 categories based on the frequency, and then we fil-
ter out the erotic and illegal queries in each category. Fi-
nally, we randomly sample 1500 queries from each cat-
egory and for each query, we select 60 retrieved docu-
ments for human annotation, resulting in a dataset com-
posed of 15 000 queries and 900 000 documents. Note that
the dataset with 15 000 queries is relatively large and we
present the comparison between our dataset and existing
LTR datasets in Table 1. In the dataset, the label of each
query-document pair is in 5 levels: bad, fair, good, excel-
lent and perfect and the corresponding relevant scores are
{0, 1, 2, 3, 4, 5}, respectively.

To train the model, first, we split the dataset into a
training set (14 000 queries) and a validation set (1000
queries). In the beginning of active learning, we ran-
domly select Ny queries from the training set as the base
and in each cycle of active learning, we set the batch size
bs = 100, i.e., we select 100 queries from the pool (the

2 The reason for using bs = 100 is that annotating the relevant
scores are expensive and time-consuming. We can only annotate
500 queries per day and in the following offline experiments, we

also consider bs = 500.
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Table 1 Comparison between our dataset and existing datasets
for learning to rank

Train Validation & Test
Dataset
# Queries # Documents # Queries # Documents

Yahoo set1l46l 19944 473134 9976 236 743
Yahoo set2[46] 1266 34815 5064 138 005

Microsoft47] 18 900 2261 000 12 600 1509 000
Tiangong[“8] 3449 333813 100 10 000
Ours 14 000 840 000 1000 60 000

rest of the training set) using the acquisition function?.
The quota is 2 000 queries, i.e., we run active learning for
20 cycles. We also conduct ablation studies on the value
of a in (9), where a = {0.5,1.0,1.5}. We set the number
of committees M to 9, i.e., nine variants of GBRank with
different numbers of trees (100, 300, 500) and maximum
depth (1, 3, 5).

To evaluate the performance of an LTR model, we use
discounted cumulative gain (DCG), calculated as follows:

K
— Gk
DeGk =3 oty (10)

where G, denotes the weight assigned to the webpage's
label at position k. A higher Gy indicates that the
webpage is more relevant to the query. Additionally, a
higher DCGk indicates a better LTR model. In this
paper, we consider the DCG of the top 4 ranking results,
i.e., DCG4. In addition, we consider another important
metric — the percentage of the irrelevant webpages in top
K, which is computed as follows:

Roy = 52 (11)
where Ny denotes the number of the irrelevant
webpages?. Obviously, a lower Ry; indicates a better LTR
model. Additionally, we consider Rpi in the top 4 in this
paper.

In addition to DCG and Roi1, we also compare the dis-
tribution of the selected queries and the number of valid
training pairs obtained by using different methods, which
is able to reflect the label diversity of webpages. A large
label diversity means that webpages are uniformly dis-
tributed on each label and a small diversity indicates that
most webpages have the same label.

There are two baselines for comparison, the first one
is random selection and the second one is ELO-DCG/16 —

an uncertainty-based active learning method for ranking.
4.1.2 Offline results

Here, we first present the statistical characteristics of
the selected queries (with webpages retrieved) for annota-
3 We consider the webpages with labels of 0 and 1 as irrelevant

webpages.
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tions and then introduce the details about the wvalid
query-webpage pairs formed from annotation results for
training. Finally, we present the performance improve-
ments of the proposed criterion in comparison to baseline
criteria, such as ELO-DCGI6: 41],

Distribution of selected queries

Fig.3 shows the distribution over categories of 1000
selected queries. Category 0 is composed of the most fre-
quent queries, while category 9 contains the least fre-
quent (only one time in the one-month search log) quer-
ies. For random selection, we randomly select 100 queries
from each category. Compared with random selection, LV
prefers relatively frequent queries, such as Categories 2—4,
but selects fewer low-frequency queries in Categories 7-9,
indicating that the webpages associated with low-fre-
quency queries have similar human annotations. PV per-
forms similarly in high-frequency queries but selects much
fewer low-frequency queries. In contrast, RE selects the
most low-frequency queries. However, it is difficult to
construct enough training pairs if there are too many low-
frequency queries since irrelevant webpages dominate
these queries. In Fig.4(c), we demonstrate the distribu-
tion of labels, where we use 1 000 randomly selected quer-
ies to obtain the statistics. Obviously, label 0 dominates
low-frequency queries leading to difficulties in construct-
ing training pairs for GBRank, hence, we need to bal-
ance the number of selected queries in each category and
RE+PV is able to achieve the goal (see Fig.4(f)). Inter-
estingly, the existing work — ELO-DCGU[6 41] favors high-
frequency queries. The reason is that for low-frequency
queries, the best DCG and the DCG based on the aver-
age relevant scores are very small, leading to a relatively
small ELO-DCG. Generally, the Baidu search engine can
well handle high-frequency queries to satisfy users’ de-
mands and selecting more high-frequency queries cannot
benefit the gain of Baidu search.

{an&oln
ELO-DCG

Number of queries

o 1 2 3 4 5 6 7 8 9
Categories based on frequency

Fig. 3 Distribution of 1000 selected queries using different
criteria. L'V stands for label variance, PV for prediction variance
and RE for ranking entropy.

Looking at Fig.4, where we present the distribution of
labels over categories. For random selection, one observa-
tion is that low-frequency queries have more webpages
with the label 0. In addition, the distributions of labels

for each category are different and unbalanced. Using
more webpages with label 0 is able to provide more train-
ing positive-negative pairs, for example, suppose we have
N relevant webpages and M irrelevant webpages. Then
we can construct N x M training pairs and a larger M
enlarges the number of pairs, which could reduce the per-
centage of irrelevant webpages in the top K ranking res-
ults. However, too many webpages with similar labels
could reduce the number of valid training pairs, hurting
ranking quality. By contrast with random selection, ELO-
DCGL6 41] gelects more webpages with label 2 since it
prefers high-frequency queries that have more relevant
(Labels 2, 3, 4) webpages. Although ELO-DCGU6: 4] can
select more relevant webpages, the diversity among
webpages for each query is relatively low. While RE per-
forms in the opposite way, selecting more webpages with
label 0, which also lacks diversity among webpages. Intu-
itively, if the webpages of a query have the same label,
then it is difficult to rank them, i.e., higher uncertainty.
Moving on to Figs.4 (d)—4(f) (LV, PV and RE+PV), the
distribution of labels is more balanced, indicating that the
webpages are diverse. On the one hand, a higher di-
versity score could result in more training pairs, on the
other hand only considering diversity selects more quer-
ies that the trained model can easily rank the associated
webpages and these queries cannot further improve the
ranking model. In contrast, RE+PV is able to balance di-
versity and uncertainty, selecting more useful and inform-
ative queries.

Number of training pairs

For GBRankl%’l which uses pairwise loss, the number
of training pairs is crucial. With more training pairs fed
to the training procedure, LTR models are expected to
deliver better performance. Table 2 presents the number
of pairs obtained using different approaches. We can eas-
ily conclude that the proposed approach is able to obtain
more training pairs compared with random selection and
the existing work — ELO-DCGI6: 41, In terms of the num-
ber of valid pairs composed of two webpages with differ-
ent human annotated labels, random selection obtains
764 527 pairs for 1000 queries, while the number in-
creases by 25% when using ELO-DCG[S: 41, Using the
criteria LV and PV that improve the diversity among
webpages, the number of valid pairs can be improved by
36% and 28%, respectively. Only using RE can also
achieve an 8% increase compared with random selection,
but it is inferior to ELO-DCG, LV and PV since RE se-
lects more low-frequency queries and most webpages asso-
ciated with these queries are labelled 0 (see Fig.3 and
Fig.4(c)). Although selecting more low-frequency queries
could benefit in solving the problem of unusual queries
and attracting more users, it is difficult to retrieve relev-
ant webpages for these queries and irrelevant webpages
are less useful to train GBRank. Combining RE and PV
is able to alleviate the problem. The number of valid
pairs surges by 43% and 50% by using RE+PV and
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Fig. 4 Distribution of labels over categories. We use 1 000 selected queries and the corresponding webpages to obtain the statistics.

RE+LV, respectively, which is a remarkable improve-
ment. Considering the number of neg-pos pairs, our pro-
posed approach is also superior to random selection and
ELO-DCG6, 4], Generally, the number of neg-pos pairs
is related to the percentage of the irrelevant webpages in
top K since using more neg-pos pairs to train an LTR
model, it would be easier to distinguish relevant
webpages from irrelevant webpages. Using RE+PV, the
number of neg-pos pairs drastically increases by 50%
compared with random selection, and it is also boosted
by 34% compared to the existing active learning ap-
proach — ELO-DCGI6, 41],

LTR performance comparisons

In this experiment, we use the valid query-webpage
pairs obtained by various strategies to train LTR models
(GBRank models with cross-entropy loss) and compare

@ Springer

the ranking quality of these LTR models on our valida-
tion dataset of 1 000 queries. The ranking quality is meas-
ured using DCG. Fig.5 shows the comparison among dif-
ferent approaches.

Let us first pay attention to basel00 — the top two
subfigures in Fig.5. The proposed approach RE+PV
achieves better performance than random selection and
ELO-DCGLS6; 41, We can see that using RE+PV selected
queries to train GBRanK, DCG, increases faster than its
counterparts, such as random selection, ELO-DCG and
RE. Compared with random selection, the relative im-
provement of DCGy4 ranges from 0.35% to 1.38% using
RE+PV. Compared to the existing work ELO-DCGI6, 41],
the proposed RE+PV boosts DCG4 by at least 0.37%.
Random selection outperforms ELO-DCG and RE when
selecting more training data. The possible reason is that
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Table 2 Number of training pairs obtained by using different criteria and the relative improvement compared with random selection.
If two webpages associated with a query have different labels, then they constitute a valid pair. Neg-pos pair denotes that a pair
is composed of irrelevant and relevant webpages. We use each approach to select 1 000 queries to obtain the statistics.

Criterion # Valid pairs # Neg-pos pairs
Random 764 527 534 500
ELO-DCGl 959 228 (25%1) 598 555 (12%1)
LV 1039474 (36%1) 757 492 (42%1)
PV 979 051 (28%1) 704 621 (32%71)
RE 823 411 (8%1) 562 464 (5%1)

Ours (RE+PV)

RE+LV (Upper bound)

1091 176 (43%1)
1149 083 (50%1)

803 723 (50%1)
827133 (55%1)

ELO-DCG and RE are biased by query frequency, e.g.,
ELO-DCG prefers high-frequency queries, whereas RE is
in favor of low-frequency queries. Interestingly, ELO-
DCG and RE perform similarly to each other, although
the distributions of the selected queries are different.
Looking at PV and LV that are related to the diversity
among webpages, both outperform random selection in
most cycles. In regard to Roi (top-right subfigure in
Fig.5), the proposed RE+PV also achieves competitive
performance compared with its counterparts, e.g., Ro1
drops by at most 6.31% compared to random selection.
Although ELO-DCG is able to obtain higher DCG4
scores at the beginning of AL cycles, it performs even
worse considering the metric Rpi. The reason is that
ELO-DCG selects more webpages with label 2 but fewer
webpages with label 0, hence, it is difficult for GBRank
to distinguish irrelevant webpages.
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Moving on to base500 (bottom subfigures in Fig.5),
our proposed approach — RE +PV also achieves higher
DCG4 than random selection and ELO-DCGI16 41, The
relative improvement of DCG4 is at most 0.84% com-
pared to random selection. Moreover, R shows de-
creases in most cycles, e.g., in cycle 9, Ro; drops by
3.76% using RE+PV.

We also present the relative improvement of the aver-
age DCG4 over AL cycles for each category in Table 3.
We can easily find that most AL approaches obtain bet-
ter performance on high-frequency queries compared with
random selection, e.g., for category 0, using RE,
RE+0.5PV and RE+LV boost DCG4 by 1.13% compared
with random selection in the basel00 scenario. DCGy4
also increases by 0.42% using ELO-DCGI6 41 for cat-
egory 0 since ELO-DCG selects more high-frequency
queries (see Fig. 3). In contrast, for low-frequency queries,

Ry in top 4 (%)

0 2 4 6 8 10 12 14 16
Number of cycles

18 20

—— ELO-DCG
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— PV
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- RE-LV H
- LV
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76 R TR T S R S I
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Number of cycles

Relative improvements of DCGy (i.e., ADCG4) and Ry (i.e., ARop1) compared with using random selection in each active learning

cycle with the same budget. Top: Base set is composed of 100 queries. Bottom: Base set is composed of 500 queries.
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Table 3 Relative improvement of average DCGy (i.e., ADCG,) over all active learning cycles compared with random selection.
Red numbers represent the relative increases, blue numbers are the relative decreases
and the bold numbers are the highest relative improvements.

Categories based on frequency

Base Method All
0 1 2 3 4 5 6 7 8 9

ELO-DCG 0.42%1  0.14%|  0.30%]  0.31%1  0.93%t  0.18%|  0.18%|  0.00%1  1.44%|  0.74%|  0.00%"
LV 0.28%1t  0.29%| 0.22%t  0.78%t  0.51%t  0.72%t  0.27%|  0.66%1  0.24%|  0.25%1  0.43%1
PV 0.50%t  0.07%t  0.15%1  0.08%]  0.42%t  0.27%?  0.36%7  0.66%t  0.12%1  0.62%|  0.35%"
RE 1.13%1  0.57%]  0.22%1  0.54%]  0.08%]  0.54%t  0.00%1  0.28%]  1.08%]  0.00%1  0.00%7
1o RE+0.5PV 1.13%1  0.29%1  0.15%1  0.86%1  0.76%1  0.45%1  0.36%1  0.85%1  0.48%]  0.62%1  0.52%"
RE+PV 0.57%1  0.43%1  0.00%1  0.86%t  1.18%1  0.36%1  0.82%7  1.14%7  0.96%t 1.23%1  0.78%"
RE+1.5PV 0.35%1 0.22% 0.30%t  0.70%t  1.43%t  0.36%t  0.45%t  1.42%t  0.60%t  0.62%1  0.61%1
RE+LV 1.13%1  0.29%1  0.45%1  0.23%1  1.35%1  1.08%!  0.64%1  0.85%1  0.60%]  0.00%1  0.61%7
ELO-DCG 0.28%1  0.00%t  0.52%1  0.39%]  0.17%] 0.36%] 0.54%|  0.28%|  0.48%|  0.00%1  0.09%]
LV 0.08%1 0.21%] 0.90%1 0.08% 0.17%1 0.91%1 0.18% 0.19%1 0.12%1 1.12%1 0.26%1
PV 0.14%|  0.00%t  0.82%t 0.77%| 0.17%t 0.63%t  0.00%t 0.19%t  0.48%t  0.99%1  0.17%1
RE 0.28%1  0.29%|  0.37%t 0.69%| 0.75%| 0.36%t  0.27%t  0.17%| 0.84%| 1.61%1  0.09%]
oo RE+0.5PV 0.35%t  0.29%t  0.75%1  0.46%|  0.42%] 0.63%t  0.09%t  0.09%t 0.84%| 1.24%t  0.17%?
RE+PV 0.07%1  0.43%1  0.22%7  0.23%t  0.17%7  0.27%1  0.63%1  0.47%t 1.20%t 1.12%7  0.43%1
RE+1.5PV 0.49%t  0.43%t  0.52%t  0.15%|  0.25%1  0.72%t  0.36%7  0.28%1  0.24%|  0.74%7  0.34%%
RE+LV 0.35%t  0.43%t 0.67%t 0.39%|  0.00%t  0.72%t  0.36%t  0.28%1  0.12%]  1.36%t  0.34%?

the performances of different approaches vary, e.g.,
DCG4 for category 9 obtained by ELO-DCG drops by
0.74% compared with random selection, whereas DCG4
obtained by our proposed approach — RE+PV is 1.23%
higher than using random selection. Interestingly, the
performances of using bs = 100 and bs = 500 in category 3
are different. We can see that the test models except for
PV and RE outperform random selection when using
bs = 100, while they are inferior to random selection when
bs = 500. The possible reason is that for the queries be-
longing to Category 3, it is difficult to annotate the relev-
ance scores?, resulting in many noisy labels, and selecting
more queries introduces more noisy labels; hence, the per-
formance decreases when using bs = 500.

Note that we also conduct ablation studies on the hy-
perparameter « in (9), finding that a =1 is a better
choice and in our online experiments we use this value.

4.2 Online experiments and results

To report the online performance of our proposals, we
carried out an A/B test with real-world web traffics. Note
that online testing is expensive and time-consuming, so
4 For the queries belonging to Category 0, it is easy to annotate
since many webpages are highly relevant to the queries. Like-
wise, we can easily annotate queries belonging to Category 9,

since the webpages are irrelevant to queries.

@ Springer

we only compare our proposed model with the existing
baseline that employs random selection in the Baidu
search engine.
4.2.1 A/B test setups

We used 0.6% real-world web traffics on the Baidu
search engine to conduct the A/B test, where the 0.6%
traffics were randomly partitioned into two folders (0.3%)
each to evaluate the performance of our proposals
(RE+PV) and random selection respectively. This online
A/B test lasted for 13 days/cycle. In each cycle, we use
our proposed approach to select 500 queries from the his-
torical query pool composed of hundreds of millions of
queries, and each query has 100 retrieved webpages. Then
and the
webpages forbidden by the government, resulting in ap-

we filter out the pornographic webpages
proximately 60 webpages for each query. After that, we
hire people to annotate the relevance scores and each
query-webpage pair has at least 6 scores annotated by
different workers. Finally, our expert annotators evaluate
the quality of annotations to ensure that the accuracy is
higher than 85% and then we use the weighted sum of
the scores as the final label to train our LTR model. Sim-
ilar to the offline experiments, we also calculate ADCG4
and ARy between the two methods based on the ground-
truth annotation results.

As we have mentioned, we can only label 500 queries
per day, hence, in the online experiments we use the
bs = 500. Additionally, note that our query pool is com-
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posed of hundreds of millions of historical queries, there-
fore, the selection criteria should be as simple as possible,
otherwise, our cluster cannot handle the selection in a few
hours. Moreover, since we need to update the LTR mod-
el every day, and to avoid some unexpected influences on
the search engine, we only use the 0.6% traffic to test the
proposed approach.
4.2.2 Online performance

The comparison is shown in Fig.6, where we only
present the relative improvements. Compared to random
selection, the proposed RE+PV is able to boost DCG4 in
all cycles and the largest relative improvement is around
0.35% when considering all queries. We also compare
RE+PV to random selection on low-frequency queries
(Categories 7-9) and DCG4 increases by at most 0.85%,
indicating that the proposed approach benefit low-fre-
quency query search. In terms of Roi, our proposed ap-
proach — RE+PV can also reduce the percentage of irrel-
evant webpages in the top K results, e.g., Ro1 decreases
by at most 1.9% considering all queries, while it drops by
at most 2.6% on low-frequency queries. Basically, the on-
line performance is consistent with our offline results and
the proposed active learning approach outperforms the
baseline.

5 Conclusions and future work

In this work, we revisited the problem of active learn-
ing for ranking webpages in the context of Baidu search,
where the key problem is to establish the training data-
sets for learning to rank (LTR) models. Given trillions of
queries and relevant webpages retrieved for every query,
the goal of active learning is to select a batch of queries
for labelling and train the current LTR model with the
newly labelled datasets incrementally, where the labels
here refer to the ranking score of every webpage under
the query. To achieve the goals, for every query, this
work proposed two new criteria — RE and PV that could
measure the uncertainty of the current LTR model to
rank webpages in a query and the diversity of ranking
scores for webpages in a query respectively. Specifically,
RE estimates the entropy of relevant webpages under a
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query produced by a sequence of online LTR models up-
dated by different checkpoints, using a QBC method,
while PV estimates the variance of prediction results for
all relevant webpages under a query. Our experimental
observations find that RE may pop low-frequency quer-
ies from the pool for labelling while PV prioritizes high-
frequency queries more. Furthermore, the estimate of PV
significantly correlates to the diversity of true ranking
scores of webpages (annotated by humans) under a query
and correlates to the information gain of LTR. Finally,
we combine these two complementary criteria as the
sample selection strategies for active learning. Extensive
experiments with comparisons to baseline algorithms
show that the proposed approach could train LTR mod-
els, achieving higher DCG (i.e., ADCG4 = 0.35%—1.38%
in offline experiments, ADCG4 = 0.05%—0.35% in online
experiment) using the same budgeted labelling efforts,
while the proposed strategies could discover 43% more
valid training pairs for effective training. Note that the
queries selected by active learning are more informative,
and we can use fewer queries to train LTR models,
achieving satisfactory performance, which saves millions
of yuan per year.

Recently, deep learning approaches have been applied
to web search and real-world products. For example, in
the Baidu search engine, we have used pretrained large
models[). Kaleido-BERT (bidirectional encoder represent-
ations from transformers)% and AliCoCo(Alibaba cognit-
ive concept net)B! employ large models for e-commerce
search and both of them introduce specific knowledge in-
to the search engine. One future direction should be cold-
started active learning, i.e., using the pretrained models
to select samples for annotation. In the field of web
search, artificial intelligence-generated content (AIGC)
should draw much attention. ChatGPTP2 has shown the
strong ability of big models to answer questions. Addi-
tionally, some works on text-to-image and image-to-text
translation®58 should provide content for search en-
gines, therefore, another future direction could be com-
bining both AIGC and current search engines to well sat-
isfy users’ demands.
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Fig. 6 Online performance. We only report the relative improvement with p-value < 0.05 over the baseline. Left: Performance based on

DCG4. Right: Performance based on Ry;.
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