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Abstract: The conversation machine comprehension (MC) task aims to answer questions in the multi-turn conversation for a single
passage. However, recent approaches don't exploit information from historical conversations effectively, which results in some references
and ellipsis in the current question cannot be recognized. In addition, these methods do not consider the rich semantic relationships
between words when reasoning about the passage text. In this paper, we propose a novel model GraphFlow+, which constructs a context
graph for each conversation turn and uses a unique recurrent graph neural network (GNN) to model the temporal dependencies between
the context graphs of each turn. Specifically, we exploit three different ways to construct text graphs, including the dynamic graph, stat-
ic graph, and hybrid graph that combines the two. Our experiments on CoQA, QuAC and DoQA show that the GraphFlow+ model can
outperform the state-of-the-art approaches.
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1 Introduction

In the field of machine comprehension (MC), conver-
sation machine comprehension has recently received much
attention(ll. Unlike most of the traditional research in MC
which revolves around answering a single question for a
given text, conversational MC expects the machine to un-
derstand a passage and answer several questions in multi-
turn conversation. Although there are many great stud-
ies(e.g., SQuADE) in single-turn MC, conversational MC
would be more promising because it is more in line with
the way humans conduct conversations in their daily
lives.

Therefore, there are many challenges specific to multi-
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turn conversational MC. Firstly, the focus of the text al-
ways migrates as the conversation proceeds!3 4. Secondly,
caused by references and ellipsis, the question in the cur-
rent turn may need to refer back to the conversation his-
tory.

To solve these challenges, the previous approaches
were divided into two ways. The first way was to add the
conversation history to the front of the current questionl 3],
and the other way was to add the previous answer posi-
tion to the passagel® 6. Both approaches regard the task
as an MC task of a single turn without considering mod-
elling the conversation flow. In addition, Huang et al.[]
introduce the concept of Flow and proposes the integra-
tion-Flow (IF) layers, which can be combined with inter-
mediate representations generated by conversation histor-
ies.

Nevertheless, the IF mechanism has several limita-
tions during the reasoning process. Firstly, since the IF
mechanism does not combine the results of previous reas-
oning processes into the current one immediately, it is
not so valid in terms of interweaving the two processing
directions of passage words and question turns. Instead,
all reasoning processes are carried out in parallel. Thus,
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the results of previous reasoning processes cannot im-
prove the reasoning performance on the current turn.
Secondly, they also do not make use of the rich semantic
relationships between words but merely treat the passage
as a sequence of words. Recently, some works on multi-
hop MCB 9 have revealed that constructing a context
graph and processing it using graph neural network
(GNN) is better than processing a sequence of words
through a recurrent neural network (RNN).

In this work, we proposed a mnovel model Graph-
Flow+, which enhances our previous work GraphFlow[10].
It is based on the context graph and GNN[. For graph
construction, we use several different ways to construct
the context graph, including the dynamic graph, static
graph, and hybrid graph combined of both. In the dy-
namic graph, we regard each word as a graph node and
propose an approach to construct the conversation his-
tory-aware context graph. For the construction of static
graphs, we used the current mainstream static graphs, in-
cluding the dependency graph and constituency graph. In
addition, we explore the integration of static and dynam-
ic graphs to exploit the explicit dependencies and semant-
ic information contained in static graphs and the implicit
information learned in dynamic graphs. We also propose
a novel recurrent graph neural network (RGNN) to im-
plement the flow mechanism, which can model the tem-
poral dependencies between the context graphs of each
turn.

In summary, our contributions to this paper are as fol-
lows:

1) We propose the GraphFlow+, a GNN and context
graph-based model, which can capture conversational
flow for a passage in conversational MC.

2) We exploit several novel ways to construct the
graph, including dynamic conversation history aware con-
text graph, a variety of commonly used static graphs, and
the hybrid graph of the two. In addition, we apply a nov-
el RGNN to implement the flow mechanism, which can
model the temporal dependencies between the context
graphs of each turn.

3) We conduct some experiments on CoQA, QuAC,
and DoQA benchmarks, where our proposed method sur-
passes the state-of-the-art approaches. Additionally, we
demonstrate the interpretability of our model’s reasoning
process through visualization experiments.

2 Approach

2.1 Problem formulation

The objective of conversational MC is to identify a
span within the context that answers the question at each
turn. The context, represented as a sequence of m words,
is denoted as C = {ci1,¢2, - ,¢m}. The question at the
i-th turn consisting of n' words, is represented as Q' =

{ql 7q2 I
tion is T'.

,qnl} The number of turns in a conversa-

2.2 Model architecture

2.2.1 Overview

A graphical representation of the model overview can
be seen in Fig. 1. We will describe in detail the four parts
of the model: 1) Encoding layer, where the model en-
codes the question and context; 2) Context graph learn-
ing, where the model constructs the context graphs in
three different ways; 3) Reasoning layer, where the mod-
el uses a novel RGNN to model the temporal dependen-
cies between the context graphs of each turn; 4) Predic-
tion layer, where the model computes the start and end
probabilities for all tokens to predict the answer.
2.2.2 Encoding layer

The encoding layer encodes the context and question
words in each turn. For the i-th turn, the embedding of

()

context word c; is represented as a vector wc;, which is a

concatenation of linguistic vector fiing(c ;”), Word embed-
ding, aligned vector faligned(c (i)) and answer vector

fanb( ) Similarly, the question word q ) is encoded as a
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vector wé? that concatenates the word embedding and

turn marker vector fmm(q,(:)). Below is a specific descrip-
tion of each section.

Linguistic features

For the context word c¢;, we use named entity recogni-
tion, part-of-speech and exact matching to represent the
linguistic feature of context at turn ¢, where exact match-
ing denotes whether ¢; appears in Q. Then, we concat-

enate these features to a vector fling(cé-i)).

Pretrained word embeddings

For context word c; and question word q,i”, since
large-scale pretrained word vectors can be rich in poten-
tial information, we embed all context and question us-
ing the pretrained GloVe embeddings!!2l and BERT em-
beddings!!3.

Aligned question embeddings

For context word c; and the question word ¢, we
learn a soft alignment between context and question by
applying an attention mechanism. For the purpose of
simplification, the turn index 4 is eliminated. Following [14],
the aligned question embedding at each turn is calcu-
lated as follows:

fatignea(c;) =Y Bingt (1)
o

where g,? represents the GloVe embedding for word gs.
The attention score between c; and g, represented as
Bk, is calculated as follows:

Bik o exp(ReLUWgS)TReLU(Wg?)) (2)

where W denotes a trainable matrix, d is the hidden state
size, gjc and g,? are the GloVe embeddings of ¢; and g,
respectively.

We simplify the above process as Align(X,Y, Z), in-
dicating that we combine the vector set Z after calculat-
ing the attention score between two vector sets X and Y.
Thus, the above process is simplified as

fatignea(C) = Align(g, g%, g). (3)

Conversation history

For each word c;, we follow Choi'sPl approach to con-
text word embedding using a vector fans(cgi)) to encode
previous N answer locations. In addition, we concatenate
a turn marker embedding fiurn (ql(:)) to each word vector
in the extended question, signalling the turn to which the
word belongs.

For simplicity, we denote Wéi) and Wé;) as a se-
quence of context word vectors wéﬁ.) and question word
vectors wff,?, respectively.

2.2.3 Context graph learning

To apply the GNNs to the conversational MC task,
graph construction is an extremely significant step. Here,
we introduce three approaches to constructing the con-
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text graph.

Dynamic context graph

We propose a way to construct a dynamic context
graph that takes into account the conversation history at
each turn. When considering the flow of conversation, we
will find that the context graph may change across differ-
ent turns. However, the existing approaches(® 9 13 using
GNNs rely on either manually constructed or ground-
truth graphs, which may lead to various problems.
Firstly, manually generated graphs may have many la-
belling and connectivity errors, which can lead to poor
results. Secondly, ground-truth graphs are not constantly
available. Therefore, we construct our conversation his-
tory aware graph dynamically from the original context
at each turn. In this graph, each token in context is a
node, and the structure is in dynamic change.

To specify, we use an attention mechanism on the
context representations Wg) to compute an attention
matrix A®, which can be employed as a weighted adja-
cency matrix of the context graph:

A(i)

dynamic — (Wg) ©) u)TWé’i) (4>
where ©® is the element-wise multiplication, and u is a
trainable weight vector with d. dimensions that is able to
identify significant dimensions in wé?, which has a d.
dimension.

However, the complete graph derived from the
weighted adjacency matrix is too complex. It is not only
computationally expensive but also retains some unim-
portant edges which may lead to poor results. Therefore,
we simplify this complete graph by using a KNN-style ap-
proach to generate a sparse graph. For each point, we
only keep the k most significant edges connected to it. Fi-
nally, we apply a softmax function on the elements of the
KNN-style adjacency matrix to obtain a normalized adja-
cency matrix.

A“(di) _ SOftmax(tOpk(AEj))). (5)

It is noteworthy that because the K nearest attention
score is retained to calculate the final normalized adja-
cency matrix, the supervised signal can still back-propag-
ate through the sparsification module.

Static context graph

While the graph learner can learn a nice dynamic
graph structure to capture the changes in the conversa-
tion flow, there are still some limitations in that the
graph learner cannot capture the rich semantic relations
between useful objects in the passage context, which is
the foundation for performing graph-based complex reas-
oning. Therefore, we construct a static graph to obtain
the information between nodes.

The dependency graph and constituency graph are
two widely used static graphsll, which can represent the
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relationship between each word in a sentence. A depend-
ency graph captures the dependencies between different
objects in a given sentence, and it adds edges between ad-
jacent words in the context in order, in addition to
adding edges between the dependencies. On the other
hand, the constituency graph can capture phrase-based
syntactic relations in a given sentence. There are three
types of nodes in the constituency graph, the word token
node, the subject node, and the part-of-speech (POS)
node. Since the context is always long, we reduce the size
of the constituency graph by removing nodes of the POS
type to improve the efficiency of the reasoning process.
This pruning method can keep the structure of the origin-
al graph unchanged to the greatest extent, and the rich
semantic information in the original graph will not be
lost.

Hybrid graph

To learn a better graph structure, we combine the dy-
namic graph with the static graph to obtain a hybrid
graph structure, which has both rich semantic informa-
tion and conversation history-aware information. In addi-
tion, the static graph can only capture the grammatical
relationship at the sentence and phrase level, but not the
relationship between different sentences of the whole art-
icle. The dynamic graph constructs the graph in the case
of regarding every token as a node, which can capture the
passage context information. Therefore, the hybrid graph
can alleviate the disadvantages brought by using only
static graphs. Inspired by Chen et al.l!fl on combining
two types of different graphs, we use a hyperparameter to
obtain a hybrid weighted adjacency matrix, which is com-
puted by

AD = XA, + (1= N AP (6)

where A, is the adjacency matrix of the static graph, and
A((;) is the dynamic graph learned at turn i. A is a
hyperparameter that can range from 0 to 1, which can
balance the trade-off between the dynamic structure and
the static graph structure at each turn. The output ALY is
used as the weighted adjacency matrix of the hybrid
graph at turn i.

At each turn, we use this approach to combine the
current dynamic context graph with the pre-generated
static context graph.

2.2.4 Reasoning layer

After obtaining the graph structure, the next step is
to reason through the conversation flow under the guid-
ance of the graph and the embedded question and con-
text.

Question understanding

At turn i, we encode the question Qm using question
embedding Wg) with bidirectional LSTM[7 to obtain
contextualized embedding Q¥ € R**™.

QW =g, g = BILSTM(WY). (7)

We then employ a self-attention mechanism on ques-
tion embedding to obtain a weighted sum of each word
vector for each question.

(“]“):Za,(j)qé“, where a{” o exp(w®q(”)  (8)
o

where w is a trainable vector with a dimension of d.
Then, we employ an LSTM to encode the questions to
generate history-aware question vectors.

p(l)a U 7p<T) = LSTM(a(l)7 e 7q‘\(T)) (9)

Then, the hidden states from LSTM network p®), .- |
p<T> will be used for predicting answers in the prediction
layer.

Graph reasoning

In the graph reasoning module, we combine the res-
ults of the previous reasoning process into the current
reasoning process. Now we have a sequence containing
the context graph at each turn in order.

To process a sequence of context graphs, we propose a
novel RGNN which exploits the idea of RNN to deal with
the sequence and exploits the idea of GNN to deal with
every context graph. Fig.2 shows its architecture. As we
progress through a sequence of graphs, we employ a
shared GNN cell on the context graph and pass the out-
put of the previous GNN cell to the current context
graph as part of the input, similar to an RNN. Our pro-
posed RGNN module combines the strengths of RNNs
and GNNs, allowing it to effectively perform sequential
learning and relational reasoning.

Here is the precise procedure for RGNN. Initially, we
employ a BiLSTM to encode the Wcm that was obtained

in the previous encoding layer.
c® = BiILSTM(W{). (10)

At turn 4, the vector C¥ is used as the initial node
embedding. Then, we fuse the initial context node embed-
ding C with the updated node embedding C“~ Y at the
last turn and apply a parameter-sharing GNN to the con-
text graph G@ to obtain the updated node embedding at
this turn.

O = GNN(Fuse(C®, GGV, 0. (11)

At the first turn, we set C(® = C° because there is no
conversation history available. The fusion function, Fuse,
is designed to combine two inputs using a gating mechan-
ism.

Fuse(a,b) =zxa+ (1 —2z)xb
z=0(W.[a;b;a X b;a — b] + b) (12)

where W, and b, are the learnable matrix and vector, z is
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Fig.2 Proposed RGNN module architecture

a gating vector, and o is a sigmoid function.

Our framework is flexible and can be used with differ-
ent types of GNN cells. In this paper, we use gated graph
neural networks (GGNN)UIS8 to capture long-range de-
pendencies in graphs using multi-hop message passing.
GGNN uses the GRU[M to update the node embeddings
based on the weighted sum of its neighboring node em-
beddings. The final node embeddings are obtained from
the last hop of message passing.

To make the notation easier, we refer to the RGNN
module as

CY = RGNN(C™, AW) (13)

where ¢=1,---,T. We input the node embeddings
{C(”}iT:l and the normalized adjacency matrices
{AD}T | at each turn into the module, and obtain the
updated node embeddings {CV}_; as output.

Following the recent work[2, we utilize the following
module that applies stacked RGNN layers to low-level
and high-level representations of the context separately,
with two RGNN layers used for each representation.

HE = [C%; g% BERTC]
i i (@) ()
Y =1Q; ¢ ;BERT?]
Fatignea(C") = Align(Hg, H, Q]
é(i) = BILSTM([é(l)v faQIigned(C(i))])
C% =RGNN(CW AWy ji=1,--., 7  (14)
where {CN’(i)}iT:I is the final context representation.
2.2.5 Prediction layer
At turn 4, the prediction layer predicts the span of the
answer by calculating the probabilities of the j-th word
being either the starting or ending word of the span. For

simplicity, we omit the turn index ¢ in this module. The
start probability Pjs is computed as follows:

P} o exp(¢, Wsp) (15)
where ¢; is the final context representation of the j-th
word, p is the question representation, and Wy is a train-

able matrix. Next, we pass p to a GRU cell by incorpor-

@ Springer

ating the context summary and converting it to p.
~ S~
p=GRU(p,> Pjc). (16)
J

Then, the end probability PjE is calculated by

PP o exp(¢, Wgp) (17)

where W is a d x d trainable weight.

Since the answers to some of the questions in the
dataset we use as a benchmark are free-form text, rather
than a span, we follow previous work and adopt an ex-
tractive approach to handle non-extractive questions.

Specifically, among all the questions that cannot be
answered with the span, there are some answers that con-
sist only of yes or no, and some answers that are com-
pletely free-form. We apply a classifier to determine the
answer type, including whether the answer can be
answered and whether the answer is a span in the origin-
al text. Then we convert the free-form answer into pre-
defined text in the dataset. If the classifier determines
that the answer is in a free-form format, we will utilize
the pre-defined text as the answer. The probability of the
answer type is calculated by

P = 0(fe(p)[fimean(C); fnax(O)]T) (18)

where f. is a dense layer that converts a d-dimensional
vector to a (num_class x 2d)-dimensional vector. The o
function consists of both a sigmoid and a softmax
function. fmean(:) and fmax(:) represent the average
pooling and max pooling functions, respectively.

2.3 Training and inference

At turn 4, we train our model with the cross entropy
loss of both answer type prediction and text span predic-
tion. For simplicity, we omit the turn index 3,

£ = —I°(log(PY) + log(PF)) + log P{ (19)

where I'° represents whether the answer to the question is
a span from the text. The ground truth positions for the
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start and end of the answer span are represented by s
and e, respectively, and the answer type is represented by t.

When making predictions, we use P° to determine if
the answer to the question is a span from the text. If the
prediction is affirmative, we select the span with maxim-
um P, PF subject to a maximum span length threshold
and predict the span as §, é.

3 Experiments

3.1 Dataset, baseline and metric

Our experiments utilize three benchmark datasets:
DoQAR, CoQAM, and QuACBl.

The CoQA dataset comprises 127 000 questions and
answers from 8 000 conversations, with the answer being
free-form and not limited to a contextual text span. Ap-
proximately 33.2% of the questions are answered in an
abstract manner. The average question length is 5.5
words, and the average number of turns per conversation
is 15.2 words. The QuAC dataset comprises 98 000 ques-
tions and answers from 13 000 conversations, with all an-
swers being a span of context. The average question
length is 6.5 words, with an average of 7.2 questions per
dialogue. The DoQA dataset is a collection of questions
and answers from conversations within the cooking do-
main. It includes 7 300 questions and answers from 1 600
conversations. Similar to CoQA, not all answers are spans
of the original text, and 31.3% of the answers are free-
form.

Then we compare our model with some baselines:
PGNet22, DrQAR, DrQA+PGNetld, BiDAF++],
FlowQA[7, SDNet[5l, BERT!3l and Flow (unpublished).

For evaluation metrics, we adopt the F1 score for all
benchmarks and human equivalence score (HEQ) for
QuAC and DoQA. The F1 score measures the balance
between precision and recall. HEQ can compare our mod-
el's performance with that of an average human. The an-
swer from the model is regarded as correct when its F1
score exceeds the average human F1 score. And HEQ-Q

and HEQ-D calculate the accuracy for each question and
dialogue respectively. For CoQA, the exact match (EM)
is also used as a metric.

3.2 Model settings

We will introduce the implementation details in our
model. The dimensions for the embeddings of POS, NER,
exact matching, and turn marker are 12, 8, 3 and 3, re-
spectively. And the BERT embedding is calculated by
the sum of the BERT layer outputs, with a size of 300.
For graph construction, the sparsification module uses a
value of 15 for K and the hybrid graph module uses a
value of 0.17 for A. In addition, we use CoreNLP[24 to
build the static graph. The GNN module has a hop num-
ber of 5 for CoQA and DoQA, and 3 for QuAC. For the
hyperparameters over the model, which we tuned on the
development set, dropout is set to 0.3 for RNN layers and
GloVe, 0.4 for BERT. All experiments are optimized by
Adamax/?] with a learning rate of 0.001.

3.3 Experimental results

The performance of our model with a dynamic graph
and baseline models is displayed in Tables 1-3, demon-
strating that our model surpasses the existing state-of-
the-art baselines. Our model outperforms FlowQA on
CoQA, QuAC, and DoQA, with a 2.3%, 0.8%, and 2.5%
increase in F1, respectively. This indicates that our
RGNN-based flow mechanism is superior to the IF mech-
anism. In addition, our model also outperforms ZDNet on
CoQA with a 0.7% increase in F1, even though ZDNet
uses inter-attention and self-attention mechanisms.

Table 3 shows the results of the influence of different
graph types. We test the dynamic graph, static graph (i.e.,
dependency graph, constituency graph), and hybrid graph
combined with dynamic graph and dependency graph.
From Table 3, we can see that on the DoQA dataset, the
hybrid graph improves F1 by 1.8% compared to the de-
pendency graph and 0.8% compared to the dynamic

Table 1 F1 results (%) of models and humans on the CoQA test set

Children's story Literature Mid/High school exams News Wiki Reddit Science Overall
PGNet 49.0 43.3 47.5 47.5 45.1 38.6 38.1 44.1
DrQA 46.7 53.9 54.1 57.8 594 45.0 51.0 52.6
DrQA+PGNet 64.2 63.7 67.1 68.3 714 57.8 63.1 65.1
BiDAF++ 66.5 65.7 70.2 71.6 726 60.8 67.1 67.8
FlowQA 73.7 71.6 76.8 79.0 80.2 67.8 76.1 75.0
Flow [Unpublished] - - - - - - - 75.8
SDNet 75.4 73.9 77.1 80.3 83.1 69.8 76.8 76.6
GraphFlow (dynamic) 77.1 75.6 77.5 79.1 825 70.8 78.4 77.3
Human 90.2 88.4 89.8 88.6 89.9 86.7 88.1 88.8

@ Springer



278

Table2 F1, HEQ-Q, and HEQ-D results (%) of models and
humans on the QuAC test set

F1  HEQ-Q HEQ-D
BiDAF++ 60.1 54.8 4.0
FlowQA 64.1 59.6 5.8

GraphFlow (dynamic) 64.9 60.3 5.1
Human 80.8 100 100

Table 3 F1, HEQ-Q, and HEQ-D results (%) of models and
humans on the DoQA test set

Algorithm F1 HEQ-Q HEQ-D
BERT 41.4 38.6 4.8
FlowQA 428 355 5.0
GraphFlow (dynamic graph) 45.3 415 5.3
GraphFlow (dependency graph) 44.3  39.8 5.0
GraphFlow (hybrid graph) 46.1  40.7 6.8
Human 86.7 - -

graph.

In Tables 4 and 5, we experiment on the development
dataset of CoQA and QuAC, which demonstrates that
the hybrid graph is better than separate dynamic or de-
pendency graphs again. Compared with the dynamic
graph, the model with the hybrid graph improves F1 by
1% on QuAC, and 0.1% on CoQA. Besides, it also shows
that the constituency graph obtains a better grade than
the dependency graph on CoQA.

Table4 F1 and EM results (%) of different ways to construct
the graph on the CoQA development set

Graph type F1 EM
Dynamic graph 78.1 69.0
Dependency graph 77.8 68.8
Constituency graph 79.1 70.3
Hybrid graph 78.2 69.6

Machine Intelligence Research 21(2), April 2024
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Fig.3 Influence of different k& in the dynamic graph
construction section

3.4 Ablation study

We perform an ablation test on our model with the
CoQA development dataset by removing several compon-
ents. The results are shown in Table 6. Here is the ex-
planation of it: ~RecurrentConn means to remove all the
temporal connections between consecutive context
graphs, —-RGNN means to remove the RGNN module,
—kNN means to remove the kNN-style operation and re-
tain the original weighted adjacency matrix, —PreQues
means that no previous answer will be added before the
current turn, —PreAns means that no previous answers
will be added to the current turn, —PreAnsLoc means
that the position of the previous answer will not be
marked in the context, and -BERT means to remove pre-
trained BERT embedding in the encoding layer. We also
demonstrate the model’s performance by removing either
the entire conversation history in GraphFlow+ (0-His) or

one previous turn in GraphFlow+ (1-His).

Table 6 Ablation study results (%) on CoQA development set

Table5 F1, HEQ-Q, and HEQ-D results (%) of different ways
to construct the graph on the QuAC development set

Graph type F1 HEQ-Q HEQ-D
Dynamic graph 64.8 60.1 7.0
Dependency graph 65.3 60.8 6.7
Hybrid graph 65.8 61.5 5.7

In addition, we explore the influence of different k£ in
the KNN-style approach, which is shown in Fig.3. The
parameter k£ is a tunable hyperparameter in the KNN-
style approach. Fig.3 shows that it has a role in the per-
formance of the experiment, but the effect is not signific-
ant. The best results are obtained when k is set to 15.

@ Springer

F1
GraphFlow (2-His) 78.3
—PreQues 78.2
—PreAns aove
— PreAnsLoc 76.6
—BERT 76.0
—RecurrentConn 69.9
-RGNN 68.8
- KNN 69.9
GraphFlow (1-His) 78.2
GraphFlow (0-His) 76.7

3.5 Model analysis

Table 6 illustrates the impact of various model com-
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ponents on the performance of the CoQA development
set. The introduction of the proposed RGNN module sig-
nificantly boosts the F1 score by 7.2%. Both the GNN
and the temporal connection part in the RGNN module
also contribute to the improvement, indicating the effect-
iveness of using graph representations for passages and
modelling temporal dependencies across a series of con-
textual graphs. Incorporating conversation history into
the current turn enhances the model’s performance, and
the information from previous answers is more impactful
than that from previous questions. Among the methods
for utilizing information from previous answers, directly
marking the location of previous answers seems to be the
most effective. The strong performance of the model
when using pretrained BERT embeddings demonstrates
the capability of pretrained language models.

Our model outperforms the baseline on most of the
major datasets and metrics, which indicates that our
model produces more accurate answers in general. While
our method performs worse than the baseline on the
QuAC dataset in the metric of HEQ-D, which judges the
model’s performance at the dialogue level. HEQ-D calcu-
lates the percentage of dialogues for which the F1 score of
the model is higher than the F1 score of human answers
for all questions in the dialogue. This indicates that our
model is slightly weaker in answering all questions in a
conversation well. Moreover, the HEQ-D scores of all
models are very low compared to humans, which indic-
ates that the existing models are lacking in this area.

Likewise, experiments on Tables 3-5 investigate the
impact of the graph structure. In the three datasets, we
find that combining static and dynamic graphs was bet-
ter than using the two graphs separately. This is because
the hybrid graph can learn the structure of both graphs
at each turn with the right parameters, which can result
in a graph that combines the advantages of both graphs.
Moreover, we can find that the constituency graph im-
proves the F1 score by 1% compared to the dynamic
graph and 1.3% compared to the dependency graph. This
shows that richer information between nodes and edges in
the constituency graph helps to improve the performance
of the model. However, in the QuAC dataset, the HEQ-D
score of the hybrid graph is not as good as that of the dy-
namic graph or dependency graph, possibly because it
needs to balance learning features from both graphs,
which may not be stable enough to maintain good per-
formance throughout multiple turns of conversation.

3.6 Interpretability analysis

As in [7], we visually examine the variations in the
hidden representations of context words across consecut-
ive turns. To do this, we calculate the cosine similarity
between the hidden representations of identical context
words at each turn and then highlight words with low co-
sine similarity scores. Fig.4 highlights the context words

Q1: Who went to the farm? — Q2: Why?

Bill§ went to the farm 616y some B&EF for his brother 's birthday .

When he arrived there he saw that all six of the cows were sad and
had brown spots . The cows were all/eating their breakfast in a big
grassy meadow . He |thought that the spots looked very strange so
he went closer to the cows|to get a better look -

Q2: Why? — Q3: For what?

Billy went to the farm fo Bliyisome IBEeH for his brother 's birthday .

When he arrived there -+ After Billy got a good look at the cows he
went {0 The farmerfiolBuy Some BEEtl. The farmer gave him four

pounds|of beef FORISHIEBIAIIBi1ly thought that -

Q3: For what? — Q4: How many cows did he see there?

Billy went to the farn{ifibuSomeIbec oSN
When he arrived there he saw thatallI§iX of the cows were sad and

had brown spots . The cows were ...

Q4: How many cows did he see there? — QS5: Did they have spots?
Bill§ went to -+ When he arrived there he'saw [fhatiall§iof thelcows|

feTeSad A EIRONIISHON 11 cows were all cating -

Fig.4 Highlighted portion of the context shows that
GraphFlow+ shifts its focus between consecutive turns of the
question (we do not show the full context due to page
limitations)

that vary most between successive turns in the conversa-
tion of the CoQA dev. set. The hidden representations of
context words associated with successive questions change
the most and are therefore highlighted the most. It is
likely that when the focus changes, the model perceives
the context chunks associated with the previous turn as
less significant, while those associated with the current
turn are more crucial, resulting in updates to the memory
in these areas.

4 Related work

4.1 Conversational MC

Conversational MC has achieved great success thanks
to the attention mechanism, which can effectively cap-
ture the interaction between context and question[26; 27),
However, the problem of how to exploit the conversation
histories is not resolved. Many methods have been pro-
posed to utilize conversation history in the literature of
conversational MC to exploit conversation history.
Among them, Reddy et al.[4 5 attached all previous ques-
tions and answers to the current question. As mentioned
in [3], the turn number vector is combined with question
embedding and the previous answer locations are com-
bined with context embedding. Nevertheless, these ap-
proaches don't use the result of previous reasoning pro-
cesses at each turn. Huang et al.ll' proposed a mnovel
mechanism IF to allow rich information flow between dif-
ferent turns in the reasoning procedure.

Besides, how to handle abstractive answers remains a
challenge in this task. Reddy et al.[{l proposed a hybrid
method DrQA+PGNet, which uses a text generator to in-
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crease the model. And Yatskarlfl proposed to make a
Yes/No judgment, and output an answer according to
whether Yes/No was selected. Our work and some other
works[® 7, 28-30] follow a similar idea to solve the challenge.

Previous approaches always treat the passage as a
word sequence, while some recent works® 9 build the con-
text graph and use the GNN instead of some sequential
neural network models. They get a promising result
which indicates the high potential of GNNs.

4.2 Graph neural networks

In recent years, graph neural networks (GNNs) have
stirred up extensive attentionl'l: 31-34] in the field of NLP,
since there are more people who adapt traditional deep
learning techniques to non-euclidean data. GNNs are suit-
able for modelling relations among elements, and their
potential in complex reasoning tasks can be further ex-
plored. Recently, GNNs have been successfully used for
various question answering QA tasks, which include
knowledge base question answering (KBQA)BS, question
(QG)BEl. and

generation machine

(M) 9.

comprehension

4.3 Graph construction

For the static graph, most approaches on MC con-
struct a static graph by exploiting prior knowledge in the
passage context. These approaches(® 9 15,37, 38] extract en-
tity mentions from the passage as nodes, and use edges
that capture different types of relations (e.g., dependency
parsing, coreference) to connect the nodes. In our work,
we also follow this method to construct the static graph.
For dynamic graphs, using attention mechanisms to con-
struct a dynamic graph is still a generic approach in
NLPI16, 39, 401 but it is rarely used in MC tasks. Moreover,
the hybrid graph(l6 can combine different types of graphs
to obtain all their advantages, and its potential can be
further exploited.

5 Conclusions

We introduce GraphFlow+, a new GNN-based mod-
el for conversational machine understanding that uses a
novel RGNN for delivering inference outputs throughout
a conversation. In addition, we use a range of graph
structure learning techniques, including the dynamic
graph, constituency graph, and hybrid graph. The hybrid
graph combines the advantages of dynamic graphs and
static graphs to obtain a balance between the two. In
three recently published conversational MC benchmarks,
our proposed model achieved competitive results com-
pared to previous approaches. And we also conduct ex-
periments to explore the effectiveness of different types of
graphs, and the results show that our novel hybrid graph
outperforms both the dynamic graph and the static graph

@ Springer
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alone. Additionally, the interpretability analysis demon-
strates that it provides clear explanations for its predic-
tions.
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