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Abstract:   With the emergence of pre-trained models, current neural networks are able to give task performance that is comparable to
humans. However, we know little about the fundamental working mechanism of pre-trained models in which we do not know how they
approach such performance and how the task is solved by the model. For example, given a task, human learns from easy to hard, where-
as the model  learns randomly. Undeniably, difficulty-insensitive  learning  leads to great success  in natural  language processing (NLP),
but little attention has been paid to the effect of text difficulty in NLP. We propose a human learning matching index (HLM Index) to
investigate the effect of text difficulty. Experiment results show: 1) LSTM gives more human-like learning behavior than BERT. Addi-
tionally, UID-SuperLinear gives the best evaluation of text difficulty among four text difficulty criteria. Among nine tasks, some tasks′
performance is related to text difficulty, whereas others are not. 2) Model trained on easy data performs best in both easy and medium
test data, whereas trained on hard data only performs well on hard test data. 3) Train the model from easy to hard, leading to quicker
convergence.
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 1   Introduction

Recently, there has been large progress in the field of

natural  language  processing  (NLP).  The  emergence  of

pre-trained  models  has  achieved  SOTA  performance  on

various  tasks,  which  gives  comparable  or  even  outper-

forms human performance on certain tasks  showing that

current  models  are  capable  of  showing  human-level  task

performance  on  a  broad range  of  tasks.  While  such pro-

gress is made, we still know little about the fundamental

mechanism of  current  neural  networks.  The performance

of such models is mainly due to the large-scale pre-train-

ing, and specific fine-tuning is needed. One thing we have

to  notice  is  that  it  seems  that  those  models  are  driving

far  away  from  the  human  mechanisms  that  we  under-

stand.  In  the  development  of  neural  networks,  the  neur-

on targets mimic human nerves, the convolutional neural

network (CNN) is inspired by the cat′s vision signal pro-

cessing[1] while the recurrent neural network (RNN) fam-

ily  is  inspired by human sequence processing which usu-

ally works in a recurrent way. However, it seems hard to

tell  the  connection  between  current  transformer-based

pre-trained  models  and human intelligence,  in  a  way we

could  say  that  it  is  not  inspired  by human mechanisms.

Certainly,  being inspired by humans is  not necessary for

machine  learning,  but  we  expect  the  model  to  have  hu-

man-level  intelligence.  Especially,  for  natural  language

processing, we expect the model to have human-like read-

ing  performance  and  behavior.  One  of  the  most  obvious

phenomena  in  language  study  is  the  effect  of  text  diffi-

culty,  which  is  that  when human learns  a  language,  hu-

man prefers to start with the easy text. However, in the

training of current models, the effect of text difficulty is a

less focused area. In this manner, we investigate whether

the model behaves like humans regarding text difficulty.

Previous research in psycholinguistics shows language

learners perform better on language tests when they start

from  easy  sentences[2–4].  Additionally,  making  sentences

easier  is  also  an  important  education  method  to  teach

language  in  real-world1,2.  This  leads  to  a  natural  ques-

tion that whether the machine behaves like a human with

regard  to  the  text  difficulty?  Undeniably,  current  AI

models  are  insensitive  to  text  difficulty.  However,  little
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attention has been paid to investigating the effect of text

difficulty on models.

In  this  paper,  we  investigate  how  text  difficulty  ef-

fects models. Specifically, we aim to answer the following

questions:

1) In which criteria of text difficulty, neural-based or

feature-based, or information-theory-based way, the mod-

el could give better human learning matching (HLM) per-

formance?

2)  In  which  model  type,  a  transformer[5]-based  or

RNN[6] based  model,  the  model  could  give  better  HLM

performance?

3)  In  which  kind  of  task,  classification  or  regression

task, etc, the model could give better HLM performance?

To answer the above questions, in this paper, we pro-

pose  the  human  learning  matching  index  (HLM  Index)

which considers the model′s  performance when tested on

different  text  difficulties  of  each  dataset.  We  examed  a

broad  spectrum  of  NLP  tasks  covering  most  NLP  task

types. Additionally, we also discussed how the text diffi-

culty affects the model′s training process. We further ex-

plored  how  difficulty  transfer  between  datasets  affects

model performance.

 2   Related works

The paper′s research relates to the following topics:

 2.1   Curriculum learning

Since  we  investigated  the  effect  of  text  difficulty  in

this research, it is also important to notice the related re-

search  on  curriculum  learning[7].  Curriculum  learning  is

an area that tries to inject human learning behavior into

the training of model which is that the human learns with

easy data  to  quickly  understand the  concept  of  the  task

and  then  gradually  learns  the  hard  data  based  on  the

learned  general  concept  to  improve  its  expertise  on  cer-

tain tasks.

The  curriculum  learning  tries  to  bring  such  human

learning behavior into the training of  the model.  In cur-

riculum learning, there are several major problems in this

area. First is the design of difficulty criterion which aims

to  accurately  classify  the  data  into  different  difficulties,

the following research with the classification of data diffi-

culty would be the curriculum selection method which de-

cides how to mix different training examples with differ-

ent  difficulties.  Then  research  on  curriculum  learning

schedulers is also important in which judges when to stop

the  training  and  when  to  switch  between  training  ex-

amples and when to stop. In our research, since we study

the text difficulty, the research is related to the design of

the  difficulty  criterion.  Basically,  there  are  two  major

ways to decide the difficulty of a model. One is based on

the  inherent  learning  statistics  given  certain  training

cases. For example, the loss of a certain training case can

be thought of as a difficulty measurement from the mod-

el perspective, which means a higher loss caused by a case

means  that  this  case  is  harder.  Another  evaluation  cri-

terion  is  based  on  the  training  examples  themselves  in

which the difficulty is based on certain features of train-

ing examples like the length of sentences, etc.[8]

 2.2   Cognition-inspired NLP

Cognition-inspired  NLP  is  a  long  and  established  re-

search  area  in  NLP[9].  For  example,  the  research  on  eye

movement and human reading is a long-discussed topic in

the field of language processing.

Those researches diverge in two ways.  One way is  to

utilize  the  cognition  data  like  eye-tracking  or  EEG  sig-

nals  to  improve  the  model′s  performance  on  various

tasks[9–11].  The  research  utilizes  those  data  with  the  tar-

get  to  inject  certain  human  behavior  into  the  model  to

make  the  model  more  human-like.  Research  on  those

areas  is  proved  to  be  effective  for  both  NLP and  cogni-

tion  tasks.  Ranging  from  the  utilization  of  human  eye-

tracking data to improve performance on the named en-

tity  recognition  (NER)  task  to  sentiment  classification.

The usage of those works proved that the cognition data

could be helpful for a broad range of NLP tasks.

In  another  direction,  there  are  also  lots  of  works  us-

ing the cognition data to do an analysis  of  current NLP

models  to see whether they could naturally give human-

like behavior[12–15].  Those researches are mainly based on

the explanation of NLP models with a focus on how hu-

mans and models are the same or different. For example,

Hollenstein  and  Beinborn[16] discuss  the  relative  import-

ance of words in both NLP models and human attention.

Additionally,  Merkx  and  Frank[17] discuss  whether  hu-

man  sentence  processing  is  based  on  either  recurrent  or

attention mechanism based on the study of sentence per-

plexity  of  both  the  long  short-term  memory  (LSTM)

model  and  transformer  model  and  conclude  that  human

sentence processing is working in a way more like the at-

tention mechanism rather  than recurrent  processing way

like LSTM which might help to explain why transformer

model  is  more  effective  than  LSTM model  since  human

sentence processing also works in attention mechanism.

We  define  our  work  as  both  related  to  curriculum

learning  and  cognition-inspired  NLP  methods.  In  the

former one, since the proposed research exams which cri-

teria could lead to human-like behavior, which might help

to research in the curriculum learning to find more suit-

able  difficulty  criterion.  In  the  latter  area,  the  proposed

research  discusses  how  the  model  matches  humans  re-

garding  text  difficulty,  which  in  a  sense  is  the  explora-

tion of text study.

 3   Text difficulty

Since we investigate the effect of text difficulty on the

performance and other various factors for the training of

the neural networks. It is also important to introduce the
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difficulty criterion that we use in the research. The diffi-

culty criterion used are:

d

ds dw dl

1) Flesch-Kincaid score[18]: This criterion is one of the

most common and easy methods to compute the readabil-

ity of  a text which reflects  how easy a text is  to under-

stand for human readers. Given a document , the num-

ber  of  sentences,  words,  and  syllables  are ,  and ,

then  the  Flesch-Kincaid  score  is  computed  using  the

equation below:

Flesch(d) = 206.835− 1.015dw
ds

− 84.6dl
dw

(1)

206.835 1.015 84.6where , ,  and  are empirical  values from

the  original  paper.  Those  hyperparameters  of  the  Flesch

score  are  empirical  values  taken  from  actual  reading

ability assessment and are largely accepted as a common

value  for  the  Flesch-Kincaid  score  which  is  used  as  a

readability  assessment  for  technical  manuals  and  soon

developed in general fields to decide difficulty of a text. A

text with more difficulties will have a lower score whereas

an easy text receives a higher score, which means that a

text with a higher score is easier to understand.

2) Neural evaluation: For the neural criteria, the mod-

el  is  trained  on  datasets  like  Weebit[19],  one-stop

corpus[20],  in  which  human  experts  judge  the  text  diffi-

culty, and manually classify them into different difficulty

level like elementary, intermediate and advanced level, re-

flecting  the  amount  of  work  that  is  required  to  under-

stand the sentence. Those datasets are originally used in

the education area that helps language learners to decide

their learning and reading schedule. Taking advantage of

those labelled text difficulty data,  we fine-tune BERT[21]

on the one-stop corpus to rank the text difficulty, hoping

the  model  might  learn  the  human  expert′s  judgment  of

text  difficulty  which might  be  more  accurate  and reflect

the mental processing load while reading this sentence.

3) Uniform information density (UID[22–25]) hypothesis:

UID is  based on the information theory[26],  which means

the  cognitive  processing load of  words  is  proportional  to

its  log-probability  and  the  ideal  distribution  of  informa-

tion should be uniform. A sentence that follows UID will

not  be  cognitively  taxing  for  the  reader,  so  a  sentence

with uniformly distributed information is easier to under-

stand  and  read.  However,  the  actual  implementation  of

UID varies based on different interpretations of such the-

ory. We test the two most popular UID hypothesis imple-

mentations:  UID  super-linear  (UID-SL)  and  UID  vari-

ance (UID-Var).

i) UID super-linear:

UID(u)−1 =
1

N

n∑
n=1

s(un)
k. (2)

kwhere  controls  the  strength of  super-linearity.  UID-SL

suggests the text difficulty increases regarding the expon-

k

k

ential  sum of  sentence surprisal.  The  means that  with

higher ,  the  UID-SL  will  increase  and  grow  exponen-

tially  more  quickly.  The  basic  idea  is  that  the  text

difficulty  is  close  to  linearly  increasing  at  the  beginning

and  grows  exponentially  with  the  increase  in  sentence

length.

ii) UID language-variance:

UID(u)−1 =
1

N

n∑
n=1

(s(un)− µlang)
2 (3)

s(un)
def
= −log p(un|u<n)

ulang

k 1.25 ulang 3.8845

where  means the log-probability

conditioned on its  prior context in both equations.  UID-

Var suggests the text difficulty is decided by the variance

between  the  sentence  surprisal  and  the  mean  language-

level  surprisal .  We  follow  the  implementation  of

[27],  in  which  the  is  and  is .  The

hyperparameter  of  UID-SL  and  UID-Var  is  taken  from

[27],  as  shown  in Figs. 1 and 2.  The  hyperparameter  of

these  two  criteria  is  found  to  be  the  most  expressive

regarding explanation of human reading behavior like the

eye-tracking data and linguistic acceptability data, which

proves that these two hyperparameters reflect the actual

human reading performance. Therefore, it is the best hyper-

parameter setting for UID-based difficulty evaluation.

 
 

Word position

3 6 9

UID(u)−1

 
Fig. 1     Super-linear UID example

 
Undeniably,  changing  the  hyperparameters  in  the

Flesch score or UID leads to a different experiment result.

But a different setting of hyperparameters is not suppor-

ted by any previous research, thus evaluation of text dif-

ficulty  based  on  different  hyperparameters  is  less  accur-

ate, which leads to unsupported and unconvincing results.

 4   Human learning matching index

Itask Imodel

Icriteria

We  propose  human  learning  matching  index  (HLM

Index) to answer the above questions raised in the intro-

duction section, which has 3 sub-indexes ,  and

.

T = {t1, · · · , tj}
M = {m1, · · · ,mk} C = {c1, · · · , cl}

to cp mq

We split each dataset into 3 text difficulty levels com-

puted  by  different  criteria,  which  corresponds  to  easy,

medium  and  hard  level.  Given  tasks ,

models  and  criteria .

Under  task, ,  criterion  and  model ,  a  model
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P (to, cp,mq) = {popqe ,

popqm , popqh } s

trained  on  each  difficulty  level  has  test  performance  on

each  difficulty  level  of  the  test  set 

. Then, we define a logical score function :

s(pe, pi, ps) =



0.75, if pe ≥ pm ≥ ph

0.375, if pe ≥ ph ≥ pm

0, if pm ≥ ph ≥ pe

0, if pm ≥ pe ≥ ph

− 0.375, if ph ≥ pe ≥ pm

− 0.75, if ph ≥ pm ≥ pe.

(4)

ImodelThen we compute the  index as following:

Imodel(mk) =
1

JL

j∑
j=1

l∑
l=1

(s(P (tj , cl,mk))+

0.25sgn(s(P (tj , cl,mk))f(STD(P (tj , cl,mk)))). (5)

pe pm
pm ph

pe pm

ph

Function  (4)  considers  the  logical  relations  between

task performance on different difficulties in various data-

sets. We give the highest score if the  is higher than 

and  also  the  is  higher  than  which  corresponds  to

the  task  performance  trained  on  the  easy,  medium  and

hard parts  of  the  dataset.  We value  the  task trained on

the easy part as the most important and give a positive

score  when  is  the  highest.  If  the  is  highest  which

means the performance trained on the medium dataset is

the  best,  we  give  a  neutral  score  in  which  the  HLM in-

dex  is  neither  positive  nor  negative.  Additionally,  if  the

 which is task performance trained on the hard dataset

is the highest, we assign a negative score since it contra-

dicts  that  the  human  gives  the  best  performance  when

learned  from easy  data.  In  conclusion,  the  design  of  the

HLM Index is based on the comparison of task perform-

ance in which the performance trained on easy text diffi-

culty  should  be  higher  than  others  and  followed  by  the

model  trained  on  medium  difficulty.  Then  the  model

trained on hard difficulty should give the lowest perform-

ance.

STD f

STD s

pe pm
ph sgn

s

 means  standard  deviation,  is  a  sigmoid  func-

tion.  The  input  of  both  and  is  the  performance

triplet  in  easy,  medium and hard difficulty  levels , 

and , and  is the sign function that is to decide the

sign  of  STD.  The  reason  to  include  STD  is  to  consider

the dispersion of performance. As  only considers logical

f STD
mk tj cl

Itask Icriteria 0.75

0.375 0.25

±1

relation, the performance gap between different difficulty

levels is ignored. However, the  is to prevent  from

dominating the HLM Index. By replacing  to  or ,

we  have  and .  The  reason  to  choose ,

 and  is to make the HLM Index have a maxim-

um and minimum value  of ,  which  is  straightforward

to illustrate  the results.  Changing these  parameters  only

affects  the  maximum  value  and  does  not  affect  the  res-

ults.

Itask Icriteria Imodel

t, c,m

To notice that the , , and  share the

same  computing  method,  we  can  obtain  them  through

setting different conditions in (5). The reason is that we

treat  tasks,  models,  and  criteria  at  the  same  level  and

consider  them as  3  different  dimensions  of  the  HLM In-

dex.  Additionally,  the  HLM  Index  is  based  on  the  task

performance  on  different  dataset  difficulties.  By  fixing

any two variables of ,  we could have the HLM In-

dex of the remaining one.

 5   Experiments

 5.1   Datasets and models

In Table  1,  to  cover  the  spectrum  of  NLP  tasks  as

much as possible, we select SST2 (single sentence binary

classification), MRPC (pair-wise sentence binary classific-

ation),  QNLI,  RTE  (multiple  classification),  and  STS-B

(regression)  from  GLUE  benchmark[28].  In  addition  to

these  task  types,  we  also  include  ROC  story  (multiple

choice)[29], WIKITEXT2 (language modelling)[30], SQUAD

2.0  (QA)[31],  CoNLL2003  NER  (tagging)[32].3 Choosing

those  tasks  covers  most  task  types  of  NLP  which  could

help to examine the effect of text difficulty on a broad re-

search area that explores the actual influence of text diffi-

culty. The statistics of the dataset used in this paper are

shown in Table 1.

Models  in this  paper are BERT and LSTM[33],  which

represent  parallel  and  recurrent  NLP  models.  BERT  is

the  pre-trained  language  model  using  transformer  archi-

tecture that achieves SOTA performance in various NLP

tasks. The LSTM model is another popular sequence pro-

cessing model in which the model processes sequences in a

recurrent  way  that  enables  the  correlation  of  different

components of the sequence using a neural network.

 5.2   Data processing and experiment im-
plementation

 5.2.1   Experiment setting

All the results are trained using five runs with different

random seeds. To support the fully reproducible results of

this  research,  we used [7 800, 8 321, 7 084, 8 147, 15 000]

as the random seeds, and no special parameter initializa-

 

Varianceulang

Surprisal

Word position

3 6 9

UID(u)−1

 
Fig. 2     Variance UID example

 

3 We  use  WT2,  SQUAD,  CoNLL2003,  ROC  to  denote

WIKITEXT2, SQUAD 2.0, CoNLL2003 NER and ROC Story.
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tion  trick  is  implemented  while  initializing  the  LSTM,

through  which  we  want  to  keep  the  model  as  simple  as

possible  so  any  trick  would  not  affect  the  model′s  per-

formance to obtain the most general performance on dif-

ferent tasks.

The  results  of  LSTM  for  GLUE  tasks  are  using  20

epochs  with  AdamW  optimizer  with  a  learning  rate  of

[3×10–5,  1×10–4].  The  LSTM  trains  on  single  sentence

classification  like  SST2,  which  is  based  on  a  2-layer

LSTM and GloVe 300 dimension embedding, and we use

spaCy tokenizer to tokenize sentences for LSTM. We use

2 LSTMs to encode sentences respectively for training on

classification datasets between two sentences like MRPC,

and the output is concatenated to pass the softmax func-

tion.  For  the  language  modelling  task  training,  the  sen-

tence  is  tokenized  and  encoded  using  word  embedding,

and the output is asked to predict the next sentence.

We use a standard fine-tuned procedure for the BERT

implementation  with  different  fine-tuned  heads.  We also

use  AdamW  optimizer  with  a  learning  rate  of  [1×10–5,

3×10–5, 5×10–5] and report the best results on the devel-

opment set.

 5.2.2   Estimation of surprisal

To estimate  the  log-probability  of  the  sentence  while

using  UID  criteria,  we  use  the  GPT2  as  the  language

model, which is one of the current SOTA models of lan-

guage modelling that is pre-trained on a large corpus us-

ing causal language modeling. Using the GPT2 could give

an accurate estimation of log probability given the previ-

ous context.

 6   Split of the text difficulty

Since we have mentioned the evaluation of  text diffi-

culty, it is also essential to notice how we split each data-

set  into  three  difficulty  levels  that  correspond  to  easy,

medium and hard level text difficulty.

For  each  criterion,  we  first  input  each  sentence  into

the evaluation module introduced in Section 2. Each cri-

terion  will  output  a  text  difficulty  for  each  sentence  in

the dataset. We then sort and reorder the text difficulty

for  each  sentence,  split  it  into  three  parts  based  on  the

1/3

2.5%

1.25%

sorted  dataset.  For  example,  data  difficulty  in  the  top

 will  be  collected  as  the  hard  difficulty.  However,  as

most  datasets  do  not  have  a  clear  difficulty  boundary

between the different splits, we drop  data that is at

the  boundary  of  hard  and  medium  difficulty  levels  in

both  hard  and  easy  difficulty  level  data  to  make  sure  a

clear  difficulty  boundary  exists  between  each  dataset′s
difficulty  level.  Additionally,  we  drop  data  in  the

medium-level  data  on  its  boundary  of  easy  and  hard

levels  so that the data size of  each difficulty level  is  the

same. In this way, we manually create three different text

difficulty  level  subsets  for  each  dataset  that  shares  the

same data size.  An example  of  the difficulty split  of  the

SST2 task under the Flesch-Kincaid score is given in Fig. 3.

We can see a manually created blank between each diffi-

culty level to ensure a clear boundary exists among differ-

ent difficulty levels.

 6.1   Main results

Im It Ic

For the experiment procedure, we test each model on

each task on its different text difficulty level and then we

collect  their  corresponding  task  performance.  Those  col-

lected  performances  will  be  computed  using  the  method

introduced  in  Section  4  to  produce  the ,  and ,

which  is  shown  in Fig. 4.  Due  to  limited  page  size,  in

Table 2, we use the Flesch, UID-SL, UID-Var and neural

to represent Flesch-Kincaid,  UID-Super linear,  UID-vari-

ance  and  neural  evaluation  text  difficulty  criteria,  re-

spectively. We will analyze the results in Section 6.1.
 6.1.1   Models HLM Index

ImFig. 4(a) shows the  of LSTM and BERT on differ-

ent tasks divided by different criteria.

ImFrom the results, the LSTM has a higher average 

than BERT, which means that LSTM has a more human-

like  learning  behavior.  This  contradicts  Merkx

and Frank[17],  who  find  the  transformer  is  more  human-

like  with  regard  to  learning  human  eye-tracking  data,

whereas we investigate it from learning behavior on mul-

tiple  tasks.  The  results  also  contradict  the  idea  that  a

model with higher task performance is more intelligent, as

the  BERT model  is  known for  the  competitive  perform-

 

Table 1    Statistics of the datasets. The table includes the dataset name, train/validation/test size, and the dataset′s task type.

Dataset Train size Validation size Test size Task type

SST2 4 959　　　　 993　　　　 891　　　　 Sentiment classification

MRPC 56 668　　　　 7 374　　　　 7 368　　　　 Paraphrase classification

QNLI 1 500　　　　 4 69　　　　 1 039　　　　 Natural language inference (classification)

RTE 11 677　　　　 3 934　　　　 9 890　　　　 Textual entailment (classification)

STS-B 19 808　　　　 3 733　　　　 3 739　　　　 Sentence similarity (regression)

ROC story 121 200　　　　 13 499　　　　 NA　　　　 Script prediction (multiple choice)

WIKITEXT2 7 000　　　　 1 034　　　　 NA　　　　 Language modelling

SQUAD 2.0 12 059　　　　 1 625　　　　 NA　　　　 Question answer (extraction)

CoNLL 2003 9 502　　　　 1 300　　　　 NA　　　　 Named entity recognition (tagging)
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ance with humans on several NLP tasks. The results sug-

gest that a higher model performance does not guarantee

that the model could give better HLM performance. An-

other point to notice is that both models could achieve a

high or low score on some tasks, which indicates there are

naturally  some  tasks  that  could  make  the  model  have  a

human-like behavior.

 6.1.2   Tasks HLM Index

It

It 1

Fig. 4 (b) shows  of different tasks on different splits.

From the results, SQUAD and WT2 have the highest av-

erage,  which  means  the  performance  of  the  LSTM  and

BERT on these tasks are highly related to the text diffi-

culty even under different criteria. Especially in WT2, the

 reaches maximum  in both LSTM and BERT in UID-

SL,  UID-Var  and  neural  criteria.  However,  the  model

gives  a  contrary  score  in  the  Flesch-Kincaid  criterion,

which means the sentence length and syllables are not a

good criterion to split WT2 due to a strong tendency to

give  low  difficulty  to  short  sentences,  which  does  not

guarantee easiness. A high score in SQUAD indicates that

the  model′s  performance  in  QA  is  highly  related  to  the

difficulty of the context and question.

Moreover,  CoNLL2003  and  QNLI  have  a  close  zero

score, which shows that those two tasks are not highly re-

lated  to  the  text  difficulty.  For  CoNLL2003,  text  diffi-

culty  is  not  an  obstacle.  For  NER  tasks,  entities  are

mainly represented as uppercase words in English, so the

text difficulty does not influence the model or human to

tag  the  entity  since  uppercase  characters  are  a  very

strong  indicator  to  tell  whether  a  word  is  an  entity  or

not.  For  QNLI,  the  model  infers  answers  from  context

and question, in which the difficulty is based on the diffi-

culty of inferring the answer based on the context rather

than solely based on the difficulty of the text.

ItFor  other  tasks,  the  is  positive,  which  means  the

model performance on these tasks is related to text diffi-

culty but also intertwines with difficulty at a higher level

like inference difficulty. Therefore, the text difficulty does

affect  the  model  performance  in  many  tasks,  but  the

definition of different tasks brings an inherent task diffi-

culty to the dataset, so the difficulty is a mixed combina-

tion of both text and the task difficulty.
 6.1.3   Criteria HLM Index

IcFig. 4(c) shows the  of different criteria.

From the result, the UID-SL gives the highest match,

whereas the neural-based method gives the lowest match.

The  UID-SL  gives  the  highest  score,  indicating  that  the

text  difficulty  is  better  evaluated  by  the  super-linear

function, which is close to linear at the beginning and in-

creases exponentially with the sentence surprisal.

Surprisingly,  the  neural  criteria  yield  the  lowest

match,  which  we  originally  expected  the  model  to  learn

more  sophisticated  criteria  from  human  experts  as  they

could judge text difficulty from a higher level which may

not  be  completely  based  on  information  or  text  features

and  reflects  the  true  mental  processing  load.  However,

the  results  presented  do  not  support  this  argument  that

the  neural  criteria  give  the  lowest  match  score.  Such  a

result  may  be  due  to  insufficient  training  data,  and  the

model  is  not  effectively  learning  human  judgment  from

human experts, and only learns surface features that can-

not generalize well on unseen texts since the unseen text
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is much larger than the text that is trained.

Additionally,  the  UID-Var  and  Flesch-Kincaid  give

similar results,  showing that these two criteria are relat-

ively  less  expressive  than  UID-SL.  The  reason  for  UID-

Var  may  be  that  it  did  not  consider  that  the  text  diffi-

culty  increases  with  the  sentence  length,  and  the  reason

for  the  Flesch-Kincaid  score  is  that  simple  syllables  and

sentence length cannot fully characterize the difficulty of

the text. Though they are not very accurate compared to

the UID-SL method, they could still reflect the difficulty

of a text from different aspects. The UID-Var introduces

the  idea  of  the  language-level  average  surprisal  which

shows that even a sentence with the same meaning may

lead to different difficulties based on language-level aver-

age  surprisal.  The  Flesch-Kincaid  score  considers  the

phonology  factor  and  shows  that  pronunciation  also  af-

fects the difficulty of a text.

 6.2   Effect of training order

In  this  part,  we  train  the  model  in  a  human-like

schedule that trains from easy to hard and another sched-

ule that trains reversely, then we report the convergence

step  divided  by  the  total  steps  and  the  performance  on

the test set. We select RTE, SQUAD, MRPC, and SST2

to perform the experiments. The results are in Table 3.4

From the results,  training the model  in a human-like

schedule  leads  to  a  quicker  convergence,  whereas  a  re-

verse  schedule  shows  the  slowest  convergence.  The  ran-

dom  schedule  is  in  between.  This  means  we  could  train

the model more efficiently in a human-like schedule.

Additionally,  different  training  schedules  give  a  close

best performance, indicating the final performance is not

sensitive to the training schedule. But the convergence is

sensitive  to  it,  which  helps  explain  why  a  difficulty-in-

sensitive  schedule  is  successful  in  NLP.  That  is  the  per-

formance which does not obviously relate to the order of

training example,  but the time to converge relates  to it.

Therefore, even the best performance is insensitive to dif-

ficulty, we could still reach comparable performance with

less data in a human-like training schedule.

To  show the  result  more  clearly,  we  present  a  train-

ing curve on the SST2 task in Fig. 5. In Fig. 5, the left ax-

4 Default criterion to split the data is UID-SL.

 

Table 2    Results of models on different difficulties evaluated by four criteria. Accuracy for SST2, RTE, QNLI, and ROC. F1 for MRPC,
SQUAD and CoNLL2003. Perplexity for WT2. Pearson correlation for STS-B. The HLM Index is computed based on this table. CNLL

is the abbreviation for CoNLL2003.

Criterion Model Train SST2 MRPC RTE QNLI WT2 STS-B CoNLL SQUAD ROC

Flesch

BERT

Hard 92.17 84.24 59.56 89.62 68.83 83.61 89.92 81.53 85.27

Medium 92.66 83.69 63.18 89.54 83.15 85.69 90.03 81.57 84.55

Easy 91.63 84.01 61.15 89.89 89.44 85.96 89.89 82.05 86.08

LSTM

Hard 84.69 81.23 54.24 60.25 156.24 76.79 87.78 53.52 67.22

Medium 85.48 81.22 55.30 60.59 206.19 78.31 87.91 53.69 66.90

Easy 86.32 81.37 54.94 60.77 475.91 75.43 87.48 54.12 65.36

UID-SL

BERT

Hard 91.17 84.26 60.57 89.96 92.88 85.98 90.15 81.49 84.24

Medium 84.39 84.24 59.35 89.62 86.36 86.86 90.21 81.66 84.80

Easy 92.57 83.46 62.38 89.70 67.90 85.87 90.32 81.69 83.60

LSTM

Hard 85.18 81.34 54.31 60.42 522.19 73.86 87.48 53.20 66.96

Medium 85.66 81.54 55.65 60.67 199.31 76.15 88.42 53.60 65.98

Easy 85.85 82.02 56.48 60.44 166.33 74.99 88.79 54.36 67.27

UID-Var

BERT

Hard 91.76 84.24 60.28 89.95 93.78 87.72 89.98 81.83 85.24

Medium 92.52 84.92 58.92 89.99 86.19 86.95 89.75 81.55 84.76

Easy 92.20 83.37 63.39 89.53 74.84 86.18 89.91 81.95 86.24

LSTM

Hard 85.25 81.58 54.08 61.72 407.09 75.51 88.21 53.34 65.30

Medium 85.66 81.71 55.16 62.06 196.23 76.39 87.71 53.76 67.82

Easy 85.85 81.28 55.67 61.69 166.41 74.04 87.91 54.43 65.22

Neural

BERT

Hard 92.36 86.54 61.22 89.76 90.79 85.72 90.32 81.62 87.90

Medium 92.50 85.62 60.94 89.84 87.38 85.75 90.11 82.10 86.94

Easy 92.80 84.74 64.18 86.53 78.63 85.12 90.07 81.81 84.77

LSTM

Hard 85.36 81.27 55.38 60.94 304.66 75.40 87.62 53.14 69.18

Medium 85.82 81.73 56.34 60.72 200.26 78.13 88.79 54.98 70.88

Easy 85.52 81.61 56.91 60.61 198.69 76.43 88.41 54.43 62.76
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is  means the accuracy of  this  task,  the  right  axis  means

the loss during training and the bottom axis is the train-

ing  iterations.  We  also  annotated  the  transition  point

that  the  data  example  shifts  to  another  difficulty.  We

present the loss and accuracy curves of different training

schedules using different colors. From Fig. 5, we could see

a  human-like  training  order  leads  to  an  evident  quicker

convergence, in which we could see both the loss and ac-

curacy  curve  of  easy-to-hard  training  stops  with  obvi-

ously  lesser  iteration  steps.  However,  the  reverse  sched-

ule leads to the slowest convergence. Based on the obser-

vation of  the transition point annotated using the arrow

symbol,  we could tell  that the LSTM uses the easy part

and a subset of the medium part of train data in the hu-

man-like  training  schedule  to  achieve  the  best  perform-

ance. In contrast, the reverse schedule needs to use whole

data to achieve the same performance. Moreover, the loss

also  decreases  slowly  when  we  train  on  the  hard  data,

which implies that the model did not effectively learn the

hard data or the hard data is not the same informative as

the easy data.

 6.3   Transfer between text difficulty

This  part  investigates  the  difficulty  transfer  on  the

test set. For example, suppose the model trained on easy

data  performs  better  than  the  model  trained  on  hard

data.  In  that  case,  we  ask  the  question:  In  which  diffi-

culty  level  of  the  test  set,  the  performance  improves  or

decreases?  To be  more  specific,  we  investigate  the  effect

of transfer between text difficulty. For humans, if the hu-

man  learns  in  easy  text,  he  mostly  would  fail  in  hard

text, but if a human could perform well on hard text, he

mostly  would  also  succeed  in  easy  text.  We  investigate

whether the machine has such a learning phenomenon or

not.

3, 2 1

To answer the above question, we split the test set of

SST2,  WT2,  MRPC,  RTE,  QNLI,  and  SQUAD  into  3

difficulty  levels  using  all  criteria  and  then  collect  the

model  performances  on  each  difficulty  level  of  the  test

set. We sort the results and give  and  scores to the

best,  mediocre  and  lowest  performances.  The  average

scores are in Tables 4 and 5.

  
Table 4    Transfer scores between different text difficulties. Med

means medium difficulty level.

Train
LSTM

Evaluation set

Set Easy Med Hard

Easy 2.54 2.33 1.29

Med 2.16 2.21 2.17

Hard 1.29 1.46 2.54

 
  
Table 5    Transfer scores between different text difficulties. Med

means medium difficulty level.

Train
BERT

Evaluation set

Set Easy Med Hard

Easy 2.67 2.37 1.67

Med 1.95 2.24 1.83

Hard 1.38 1.46 2.50

 
From the results, the model trained on the easy level

has  the  best  performance  in  both  easy  and  mediocre

levels  datasets,  whereas  the  model  trained  on  the  hard

level only performs well on the hard level and fails to give

the  same results  in  other  levels.  Additionally,  the  model

trained on a medium level  gives a stable performance in

all difficulty levels of the test set. The model behaves in a
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Table 3    Performance and convergence of different tasks. Rand means a randomly shuffled training set. P means performance. C means
the convergent step divided by the total steps, which is the lower, the better.

Task

LSTM BERT

→E   H →H   E Rand →E   H →H   E Rand

P C(%) P C(%) P C(%) P C(%) P C(%) P C(%)

SST2 81.65 15.07 81.67 36.29 81.77 18.50 93.00 22.49 92.88 44.23 92.78 28.44

MRPC 82.06 20.04 81.91 53.22 82.26 40.16 87.73 19.04 87.43 43.24 86.59 31.09

RTE 58.18 16.75 58.19 75.38 58.12 42.33 64.62 31.22 63.89 54.23 65.34 44.17

SQUAD 56.32 39.22 56.21 68.63 56.43 47.21 82.34 30.21 82.03 53.21 83.21 43.46
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way like humans when trained on an easy or mediocre set

while  behaving  in  a  totally  contradicting  way  while

trained  on  the  hard  set.  Such  phenomenon  happens  to

both LSTM and BERT, which shows that this is a more

general problem beyond the model itself, which means the

model does not have such learning behavior as humans.

The  reason  may  be  hard  text  difficulty  dataset  fol-

lows  a  different  distribution  from  the  easy  and  medium

levels.  In  the  hard  dataset,  as  pointed  out  by  results  in

Section 6.1.2, the difficulty not only relates to the textu-

al level but also relates to a higher concept like the diffi-

culty  of  inference  or  understanding  that  text,  and  for

such hard text, textual difficulty is only one feature and

mixed  with  other  different  kinds  of  difficulties.  For  ex-

ample,  the easy or  medium question usually  relates  to  a

very  general  concept  that  could  be  easily  understood

without much difficulty. Therefore, an easy textual diffi-

culty can be thought of as the most important feature of

the  general  difficulty.  However,  for  the  hard  example,  it

might  require  much  more  knowledge  than  just  general

concepts,  which  drives  the  hard  data  to  shift  from  the

distribution  of  easy  and  medium  data.  Moreover,  for  a

human, if the human can finish the hard task, this means

that  he  already  learned  the  easy  one  since  humans  can-

not directly learn hard problems at the first step, but the

model  could  directly  learn  the  hard  data  which  is  not

aligned with  humans.  Therefore,  a  model  trained  on the

distribution of hard data cannot perform well on easy or

medium-level data.

 7   Conclusions

In this work, we investigate how and in what way the

text difficulty affects and exists in NLP tasks and models.

We analyze experiments on nine tasks using HLM Index.

Results  show that  LSTM gives  more human-like  behavi-

or. UID-SL gives the best text difficulty evaluation. Some

tasks are related to text difficulty, whereas some are not

and there are other kinds of difficulties also affecting the

model′s  performance.  Moreover,  the  transfer  experiment

shows that the training that begins with easy data leads

to a more general and better performance than hard data.

Additionally, training with a human-like schedule is more

efficient than other schedules and leads to a quicker con-

vergence.

 8   Future work

Though this  research discussed how textual  difficulty

affects  model  performance and how the model  is  aligned

with humans in this aspect, the research is still limited in

several ways. Even though the model explored in this re-

search covers two paradigms of NLP, there are still many

kinds of models that are not discussed like the CNN mod-

el,  GPT2,  etc.,  which  represents  convolution  neural  net-

work  and  generation-based  pre-trained  model.  Those

models  could  give  different  behaviors.  Additionally,  this

paper  only  discussed  the  textual  difficulty  but  there  are

lots  of  factors  when we talk  about the difficulty given a

sentence like inference difficulty, and understanding diffi-

culty. However, those difficulties are hard to quantify and

evaluate  by  model.  Therefore,  it  is  beyond  the  focus  of

this research. We hope we are able to calculate the diffi-

culty of inference and understanding to give a better es-

timation of textual difficulty.
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