灰狼与郊狼混合优化算法及其聚类优化

张新明^{1,2} 姜云¹ 刘尚旺^{1,2} 刘国奇^{1,2} 窦智^{1,2} 刘艳^{1,2}

摘 要 郊狼优化算法 (Coyote optimization algorithm, COA) 是最近提出的一种新颖且具有较大应用潜力的群智能优 化算法,具有独特的搜索机制和能较好解决全局优化问题等优势,但在处理复杂优化问题时存在搜索效率低、可操作性差和 收敛速度慢等不足.为弥补其不足,并借鉴灰狼优化算法 (Grey wolf optimizer, GWO) 的优势,提出了一种 COA 与 GWO 的混合算法 (Hybrid COA with GWO, HCOAG).首先提出了一种改进的 COA (Improved COA, ICOA),即将一种高斯 全局趋优成长算子替换原算法的成长算子以提高搜索效率和收敛速度,并提出一种动态调整组内郊狼数方案,使得算法的 搜索能力和可操作性都得到增强;然后提出了一种简化操作的 GWO (Simplified GWO, SGWO),以提高算法的可操作性 和降低其计算复杂度;最后采用正弦交叉策略将 ICOA 与 SGWO 二者融合,进一步获得更好的优化性能.大量的经典函数 和 CEC2017 复杂函数优化以及 K-Means 聚类优化的实验结果表明,与 COA 相比, HCOAG 具有更高的搜索效率、更强的 可操作性和更快的收敛速度,与其他先进的对比算法相比,HCOAG 具有更好的优化性能,能更好地解决聚类优化问题. 关键词 优化算法, 灰狼优化算法, 郊狼优化算法, 混合算法, 聚类优化

引用格式 张新明, 姜云, 刘尚旺, 刘国奇, 窦智, 刘艳. 灰狼与郊狼混合优化算法及其聚类优化. 自动化学报, 2022, **48**(11): 2757-2776

DOI 10.16383/j.aas.c190617

Hybrid Coyote Optimization Algorithm With Grey Wolf Optimizer and

Its Application to Clustering Optimization

ZHANG Xin-Ming^{1, 2} JIANG Yun¹ LIU Shang-Wang^{1, 2} LIU Guo-Qi^{1, 2} DOU Zhi^{1, 2} LIU Yan^{1, 2}

Abstract Coyote optimization algorithm (COA) is a novel swarm intelligence optimization algorithm with great application potential, which was proposed recently. It has a unique search mechanism and the advantages to solve global optimization problems well and so on. But when dealing with the complex optimization problems, it has some defects, such as low search efficiency, poor operability, slow convergence speed and so on. To make up for COA's disadvantages and utilize the advantages of grey wolf optimizer (GWO), a hybrid COA with GWO (HCOAG) is proposed. Firstly, an improved COA (ICOA) is proposed. A Gaussian global-best growing operator replaces the growing operator of the original algorithm to improve the search efficiency and convergence speed, and a dynamic adjustment scheme of coyote number in each group is proposed to enhance the search ability and operability. Secondly, in order to improve the operability and reduce the computational complexity of the algorithm, a simplified GWO (SGWO) is proposed. Finally, ICOA and SGWO are integrated by a sinusoidal crossover strategy to further get better optimization performance. A large number of experimental results on classical benchmark functions and CEC2017 complex functions and K-Means clustering show that, compared with OCA, HCOAG has higher search efficiency, stronger operability and faster convergence speed. Compared with other state-of-the-art comparison algorithms, HCOAG has better optimization performance and can solve clustering optimization problems better.

Key words Optimization algorithm, grey wolf optimizer (GWO), coyote optimization algorithm (COA), hybrid algorithm, clustering optimization

Citation Zhang Xin-Ming, Jiang Yun, Liu Shang-Wang, Liu Guo-Qi, Dou Zhi, Liu Yan. Hybrid coyote optimization algorithm with grey wolf optimizer and its application to clustering optimization. *Acta Automatica Sinica*, 2022, **48**(11): 2757–2776

收稿日期 2019-09-02 录用日期 2020-03-11

Manuscript received September 2, 2019; accepted March 11, 2020

国家自然科学基金 (61901160, U1904123), 河南省高等学校重点 科研项目 (19A520026) 资助

Supported by National Natural Science Foundation of China (61901160, U1904123) and Key Research Project of Higher Education Institutions of Henan Province (19A520026)

本文责任编委 金连文

Recommended by Associate Editor JIN Lian-Wen

^{1.} 河南师范大学计算机与信息工程学院 新乡 453007 2. 智慧 商务与物联网技术河南省工程实验室 新乡 453007

^{1.} College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007 2. Engineering Laboratory of Intelligence Business and Internet of Things, Xinxiang 453007

在现实世界中,无时无处无不面临着优化问题. 随着社会的发展,急需处理的优化问题越来越多样 化并越来越复杂. 而诸如牛顿法、梯度下降法等传 统的方法不能够很好地处理这些急需解决的优化问 题.因此,许多研究者建立了各种仿生类的智能计 算模型,提出了许多智能优化算法.群智能优化算 法 (Swarm intelligence optimization algorithm, SIOA) 是模拟自然界社会群体集体行为的一种智 能优化方法^[1],包括粒子群优化 (Particle swarm optimization, PSO) 算法^[2]、灰狼优化算法 (Grev wolf optimizer, GWO)^[3]、郊狼优化算法 (Coyote optimization algorithm, COA)^[4] 等. SIOA 具有易 于实现、能有效处理全局优化和大规模优化问题等 优势,广泛应用于多目标优化、数据聚类以及模式 识别等诸多领域^{6]}. 但根据无免费午餐定理^{6]}, 没有 任何一种 SIOA 能独立地解决所有的优化问题,每 种 SIOA 都有自身的优势和局限性. 因此许多学者 提出了大量新奇和改进的 SIOA, 其中包括算法的 混合改进. 两种或多种算法的混合可以达到优势互 补,以获得最佳的优化性能^[7].

GWO 是由 Mirjalili 等^[3] 于 2014 年提出的一种新颖的 SIOA,具有原理简单、开采能力强、可调参数少等优点,但存在易陷入局部最优、解决复杂优化问题性能差等缺点.因此许多学者对其进行了研究和改进,其中包括混合改进.例如张新明等^[7]提出一种 GWO 与人工蜂群算法的混合算法,其中在人工蜂群观察蜂阶段自适应融合 GWO,以便增强开采能力和提高优化效率. Zhang 等^[8]提出一种基于生物地理学优化算法和 GWO 的混合算法,将改进的基于生物地理学优化算法和基于反向学习的 GWO 混合,使得优化性能最大化. Teng 等^[9]提出一种 PSO 与 GWO 结合的混合算法,该算法具有更好的寻优能力和更强的鲁棒性. Arora 等^[10]提出一种乌鸦搜索算法与 GWO 的混合算法,更有效地实现了全局优化.

COA 是由 Pierezan 等^[4]于 2018 年提出的一 种模拟郊狼群居生活、成长、生死等现象的新型 SIOA. COA 具有独特的搜索模型和结构以及出色 的优化能力,尤其在解决复杂优化问题优势明显, 但仍存在搜索效率低、可操作性不强以及收敛速度 慢等缺陷,且由于 COA 提出的时间较短,需改进和 完善并拓展其应用领域.鉴于 GWO 和 COA 各有 优势和不足,本文将两种算法分别进行改进和简化, 得到改进的 COA (Improved COA, ICOA) 和简化 的 GWO (Simplified GWO, SGWO), 然后通过正 弦交叉策略将 ICOA 和 SGWO 有机融合在一起, 从而获得了一种性能优越且高效的混合 COA (Hybrid COA with GWO, HCOAG). 另外, 混合算法的研究一直是优化领域的热点, 因此研究 GWO 与 COA 的混合是一项较有意义的工作.

1 灰狼优化算法

GWO 模拟了自然界中灰狼种群严格的社会等 级制度和群体捕食行为. 在其社会等级制度中, 灰 狼从高到低依次为 α , β , δ , ω 狼. 其捕食行为是追 踪和接近猎物、追捕和包围猎物、攻击和捕杀猎物. GWO 将狼群中的 α , β , δ , ω 狼的位置分别代表第 一最优解、第二最优解、第三最优解和候选解. 灰狼 包围行为的数学模型为

$$\boldsymbol{Dis} = |\boldsymbol{C} \otimes \boldsymbol{X}_{p}(t) - \boldsymbol{X}(t)|$$
(1)

$$\boldsymbol{X}(t+1) = \boldsymbol{X}_{p}(t) - \boldsymbol{A} \otimes \boldsymbol{Dis}$$
(2)

$$\boldsymbol{A} = 2a \times \boldsymbol{r}_1 - a \tag{3}$$

$$\boldsymbol{C} = c_1 \times \boldsymbol{r}_2 \tag{4}$$

$$a = 2 - \frac{2t}{MaxDT} \tag{5}$$

其中, **D**is 是灰狼与猎物间的距离, t 是当前迭代 次数, X_p 是猎物的位置向量, X 是灰狼的位置向 量. A 和 C 是系数向量. 系数 a 在迭代过程中从 2 线性递减到 0, MaxDT 是最大迭代次数, $r_1 和 r_2$ 是 [0, 1] 中的均匀分布随机向量, c_1 为可调参数^[11], \otimes 表示两个向量各个对应的分量相乘. 狩猎行为的 数学模型为

$$\boldsymbol{Dis}_{\alpha} = |\boldsymbol{C}_{1} \otimes \boldsymbol{X}_{\alpha}(t) - \boldsymbol{X}(t)|$$
(6)

$$\boldsymbol{Dis}_{\beta} = |\boldsymbol{C}_{2} \otimes \boldsymbol{X}_{\beta}(t) - \boldsymbol{X}(t)|$$
(7)

$$\boldsymbol{Dis}_{\delta} = |\boldsymbol{C}_{3} \otimes \boldsymbol{X}_{\delta}(t) - \boldsymbol{X}(t)|$$
(8)

$$\boldsymbol{X}_{1} = \boldsymbol{X}_{\alpha}\left(t\right) - A_{1} \otimes \boldsymbol{Dis}_{\alpha} \tag{9}$$

$$\boldsymbol{X}_{2} = \boldsymbol{X}_{\beta}\left(t\right) - A_{2} \otimes \boldsymbol{Dis}_{\beta} \tag{10}$$

$$\boldsymbol{X}_{3} = \boldsymbol{X}_{\delta}\left(t\right) - A_{3} \otimes \boldsymbol{Dis}_{\delta}$$
(11)

$$\boldsymbol{X}(t+1) = \frac{\boldsymbol{X}_1 + \boldsymbol{X}_2 + \boldsymbol{X}_3}{3}$$
(12)

其中, Dis_{α} , Dis_{β} 和 Dis_{δ} 分别表示当前狼与 3 头 最优灰狼间的距离. 式 (12) 代表 ω 狼在 α , $\beta 和 \delta$ 狼 的引导下移动的新位置, 即 GWO 产生的新解. GWO 的流程图见图 1.

从上述描述和图 1 可知,与 PSO 等经典的 SIOA 相比,GWO 的主要特点有:1)GWO 采用 3 头 最优狼 (最优解)引导 ω 狼围猎,有较强的局部搜索 能力,但在解决复杂优化问题时,容易陷入局部最优; 2)GWO 仅有两个参数 $a \pi c_1$,前者采用动态调整

Fig.1 Flow chart of GWO

方式,后者 c₁常取常数 2,调整的参数少,故可操作 性强;3)原理简单、易于实现,但更新是基于维的 计算,需计算式 (6)~(12),故计算复杂度较高;4)目 标函数采用并行计算方式,故运行速度较快.

2 郊狼优化算法

COA 包含初始化参数和狼群、组内郊狼成长、 郊狼生与死和被组驱离与接纳^[4] 等 4 个主要步骤.

2.1 参数初始化和随机初始化郊狼群组

首先设置参数,如郊狼群规模 N,郊狼组数 N_p , 组内郊狼数 N_c 和 MaxDT等,其中, $N = N_c \times N_p$. 然后随机初始化郊狼群组,第 p 组第 c 个郊狼第 j 维 的随机化操作如式 (13).最后计算每头郊狼 **soc** 的 社会适应度值 fit,如式 (14).

$$soc_{c, j} = lb_j + r \times (ub_j - lb_j)$$
 (13)

$$fit_c = f(soc_c) \tag{14}$$

其中, lb_j 和 ub_j 分别表示郊狼第 j维社会状态因子的 下界和上界, $j = 1, 2, \dots, D$, D为搜索空间的维 度, r为 [0, 1]内均匀分布的随机数, f表示适应度 函数.

2.2 组内郊狼成长

组内最优狼 alpha、组文化趋势 cult 以及随机

选取的两头郊狼 cr_1 和 cr_2 影响组内郊狼的成长过 程,即组内郊狼成长受 δ_1 和 δ_2 的影响.其中 *cult* 的 计算如式 (15) 所示,即其每一个因素是组内所有郊 狼对应社会因子的中位数 (*O* 为排名后的社会因子 序列),故 *cult* 又称中值郊狼. δ_1 和 δ_2 计算见式 (16) 和式 (17), 郊狼的成长方式见式 (18).

$$cult_{j} = \begin{cases} O_{\frac{N_{c}+1}{2}, j}, & N_{c} \notin \delta \\ \frac{O_{\frac{N_{c}}{2}, j} + O_{\frac{N_{c}}{2}+1, j}}{2}, & N_{c} \# \delta \\ \end{cases}$$
(15)

$$\boldsymbol{\delta}_1 = \boldsymbol{alpha} - \boldsymbol{soc}_{cr_1} \tag{16}$$

$$\boldsymbol{\delta}_2 = \boldsymbol{cult} - \boldsymbol{soc}_{cr_2} \tag{17}$$

$$new_soc_c = soc_c + r_3 \times \delta_1 + r_4 \times \delta_2$$
(18)

其中, new_soc_c 是组内第 c 头郊狼成长获得的新 解, $r_3 和 r_4$ 是 [0, 1] 内均匀分布的随机数. 组内的 郊狼成长后评估其社会适应能力如式 (19) 所示, new_fit_c 为新适应度值.

$$new_fit_c = f(new_soc_c)$$
(19)

最后采用迭代贪心算法进行优胜劣汰 (式 (20)), 如此新产生的更优郊狼参与组内其余郊狼成长以加 快收敛速度.

$$soc = \begin{cases} new_soc_c, & new_fit_c > fit_c \\ soc_c, & \ddagger \& \end{cases}$$
(20)

2.3 郊狼生与死

幼郊狼 (*pup*) 的诞生受随机选择父母郊狼的遗 传基因和环境因素的影响,见式 (21) 所示.

$$pup_{j} = \begin{cases} soc_{cr_{1}, j}, & r_{j} < P_{s} \neq j = j_{1} \\ soc_{cr_{2}, j}, & r_{j} \ge P_{s} + P_{a} \neq j = j_{2} \\ R_{j}, & \ddagger \ell e \end{cases}$$
(21)

其中, r_j 是均匀分布在 [0, 1] 内的随机数; j₁ 和 j₂ 是两个随机选择的维度标号, 以确保两个父郊狼的 基因能够遗传给幼狼; R_j 是在第 j 维决策变量范围 内随机产生的变异值; P_s 和 P_a 分别是分散概率和 关联概率, 它们决定着幼狼被遗传和变异的情况, 如式 (22) 和式 (23) 所示.

$$P_s = \frac{1}{D} \tag{22}$$

$$P_a = \frac{1 - P_s}{2} \tag{23}$$

幼狼出生后,评估其社会适应能力,并依照其 能力决定生与死,具体描述如下:在社会适应能力 上,1)组内只有一个郊狼比幼狼差时,则此郊狼死 亡,幼狼存活,并设它的年龄为0,即 age = 0;2)组

48 卷

内有多个郊狼比幼狼差时,能力差且年龄最大的郊狼死亡,幼狼存活,并设 *age* = 0;3)组内所有郊狼都比幼狼强时,幼狼死亡.

2.4 郊狼被驱离和接纳

在 COA 中, 郊狼以 P_e 的概率被组驱离和接纳. 郊狼初始被随机分配到组群中, 但有时某些郊狼会 离开它所在组群而加入另一组群, 这种随机驱离和 接纳用来保证组内郊狼的多样性和组间信息共享, P_e 的计算方式为

$$P_e = 0.005 \times N_c^{\ 2} \tag{24}$$

COA 的伪代码如算法1所示.

算法 1. COA 算法

1. 设置 N_p 和 N_c 等参数,随机初始化郊狼种群并随机 分组,评估每个郊狼的社会适应能力,确定全局最优郊狼

2. For t = 1 To MaxDT Do

- 3. For p = 1 To N_p Do
- 4. 确定组内最优的 alpha 狼
- 5. 根据式 (15) 计算组文化趋势 cult
- 6. For c = 1 To N_c Do
- 7. 根据 alpha 和 cult 进行郊狼成长, 如式 (16)~(18)
- 8. 使用贪心算法优胜劣汰保留更优郊狼和全局最优 郊狼
- 9. End For
- 10. 幼狼出生与死亡, 出生如式 (21), 按其社会能力决 定其生死
- 11. End For
- 12. 郊狼采用如式 (24) 的概率被组驱离和接纳
- 13. 更新郊狼的年龄, age = age + 1
- $14. \ \mathbf{End} \ \mathbf{For}$
- 15. 输出全局最优郊狼

从以上描述可知,与 PSO 等经典的 SIOA 相 比, COA 的主要优势有: 1) 具有很好的搜索框架, 即多组结构,郊狼随机被组驱离和接纳等使郊狼群 具有多样性,有较强的探索能力,能够更好地解决 复杂优化问题^[12]; 2) 组内最优郊狼和组内文化趋势 引导组内每个郊狼的成长,增强了局部搜索能力; 3) 郊狼组内的生与死受随机选择父郊狼的遗传因 子和环境变异因子影响,郊狼生与死算子使得 COA 具有一定的全局搜索能力.其主要不足有: 1) 结构 复杂,计算复杂度高; 2) 采用迭代贪心算法,稳定性 差,效率低; 3) 需调整的参数多,如 *Pe*, *Np*和 *Nc* 等 需调整,可操作性差; 4) 多组结构等虽然增强了探 索能力,但组与组之间信息共享不足,导致搜索后 期收敛速度慢.

3 灰狼与郊狼混合优化算法

3.1 提出 HCOAG 的动机

COA与GWO虽然同属狼群算法,但二者有许多不同.如在搜索方式上,前者模拟郊狼的成长、生与死,而后者模拟灰狼的等级制度和狩猎模式; 在引导上,前者仅仅使用一头最好的狼来引导其它狼成长,而后者使用3头最优狼来引导其它狼搜索; 在结构上,前者复杂,后者简单;在产生新解方式上,前者有两种方式,后者只有一种方式等等.因此,COA和GWO各有优势和不足.为了弥补二者不足,本文将COA和GWO两种狼群算法经过改进后进行了有机结合,从而获得一种性能优越且高效的混合算法 (HCOAG).

3.2 改进的郊狼优化算法

ICOA 主要包括高斯全局趋优成长算子和动态 调整组内郊狼数方案.

3.2.1 高斯全局趋优成长算子

为了提高郊狼成长后的社会适应能力、组与组 之间的信息共享程度及算法收敛速度,受Omran等^[13]提出的全局最优和声搜索算法中趋优策略 及高斯分布的启发,对其组内郊狼成长方式进行改 进,提出一种高斯全局趋优成长算子.全局趋优算 子充分利用郊狼种群当前全局最优郊狼的状态信 息,使郊狼成长向当前全局最优郊狼趋近,提高开 采能力,也使得组内信息经全局最优解达到组间共 享.高斯分布又称为正态分布,与 COA 的均匀随机 分布 [0,1]相比,可以增加搜索范围,在一定程度上 增强全局搜索能力.

在组内郊狼成长过程中,在式 (18) 中引入趋优 算子和高斯分布随机因子,具体见式 (25) 和式 (26).

$$\boldsymbol{\delta}_3 = \boldsymbol{G}\boldsymbol{P} - \boldsymbol{soc}_{cr_1} \tag{25}$$

$$new_soc_1 = soc + rn_1 \times \delta_3 + rn_2 \times \delta_2 \qquad (26)$$

式 (25) 中, **GP** 为当前全局最优郊狼的状态, δ_3 表 示组内随机选取的一个郊狼状态 (cr_1) 与**GP** 的差 值.式 (26)中, rn_1 和 rn_2 是均值为 0、方差为 1 的 高斯 (正态) 分布产生的随机数, **new_soc**₁表示每头 郊狼在 δ_2 和 δ_3 的共同作用下成长产生的新状态 (新解).

从式 (25) 和式 (26) 可以看出,与 COA 相比, 在搜索前期,个体间差异大,缩放因子 (高斯随机 数)变化范围大,故增强了探索能力.在搜索后期, 虽然还是采用高斯随机数,但个体间差异小, δ₂和 δ₃的值变小,故搜索范围变小,强化开采能力.且由 于采用全局最优解引导,故更增强了开采能力,同 时上一组获得的全局最优解,会作用于下一组的郊 狼成长,如此形成一种信息共享的正反馈作用,大 幅度加快了收敛速度.另外,所有组内郊狼成长后 并行计算它们的适应度值和优胜劣汰,提高了运行 速度和稳定性.

3.2.2 动态调整组内郊狼数方案

如上文所述, COA 有多个参数需要调整, 可操 作性差. 对于以上改进的 COA, 主要有两个参数 $N_c 和 N_p$ 对优化性能影响较大. 在 N 固定下, 如果 N_c 确定, 则 $N_p = N/N_c$, 即 N_p 越大, N_c 越少, 成长 操作少, 但全局解的作用逐组增强, 开采强; 反之, 成长操作多, N_p 少, 全局解的作用减弱, 开采强; 反之, 成长操作多, N_p 少, 全局解的作用减弱, 开采弱. 为 了提高 COA 的可操作性,本文对 N_p 和 N_c 参数进 行动态调整. 设 N = 100, 则 N_p 和 N_c 必须为 100 的 因子, 依据文献 [4], 每组郊狼数不能超过 14, 所以 N_c 只能为 4、5 和 10. 由于 N_c 不能少于 3, 这是因 为组内郊狼成长至少需要 3 头郊狼, 包括随机选取 的两头郊狼和组内最优郊狼. 当 $N_c = 4$ 时可选郊狼 范围受限制, 所以 N_c 最可能的取值为 5 和 10, 故具 体的分配方式如图 2 所示, 动态调整参数方案如算 法 2 所示.

- 图 2 组数 N_p 与组内郊狼数 N_c 的分配图
- Fig.2 Disposition graph of two parameters $\,N_c\,$ and $\,N_p\,$

算法 2. 动态调整参数 N_c 和 N_p

- 1. If 在搜索后期
- 2. $N_c = 5$
- 3. Else 在搜索前期
- 4. $N_c = 10$
- 5. End If
- 6. $N_p = N/N_c$ 和随机分组

在搜索后期, $N_c = 5$, 则 $N_p = 20$, 组数多, 增 强全局解的正反馈作用, 局部搜索能力增强; 在搜 索前期, $N_c = 10$, 则 $N_p = 10$, 组数少, 减弱全局解 的正反馈作用, 全局搜索能力增强. 因此, 动态调整 组内郊狼数参数不仅提高了可操作性, 而且可以更 好地平衡探索与开采能力. 另外, 在动态调整参数 之后, 随机分组, 如此可以省去郊狼被组驱离与接 纳这个过程, 从而不需要调整参数 P_e , 因此提高了 可操作性.

3.3 简化的灰狼优化算法

为了进一步解决 COA 存在搜索效率低和易陷入局部最优的问题,本文引入 GWO 搜索方式.首先提出一种精简的 GWO 搜索方式,即将式 (6)~(11)与 COA 组内郊狼进行融合并简化,具体如式 (27)~(29).

$$NX_1 = GP - A_1 \otimes |GP - temp_c|$$
⁽²⁷⁾

$$NX_2 = alpha - A_2 \otimes |alpha - temp_c|$$
 (28)

$$NX_3 = cult - A_3 \otimes |cult - temp_c|$$
 (29)

其中, temp_c表示当前组第 c 个郊狼的状态. NX₁, NX₂和NX₃表示组内郊狼分别在GP, alpha和 cult 的引导下获得成长的情况.从式 (27)~(29)可 以看出,这3个式子去掉了式 (6)~(8)中的可调参 数向量 C,保留 GWO 的优势并克服其不足,即在 SGWO 中,去掉 C,无需调整 c₁,也省略了向量 C 的相关计算.所以,这种简化的 GWO 在保证其有 较强开采能力的同时,提高了可操作性并降低了计 算复杂度.为了更进一步简化计算,SGWO 直接采 用 COA 中的当前全局最优郊狼、组内最优郊狼和 中值郊狼 (组内文化趋势)的引导寻找最优解,无需 寻找组内的第二和第三最优郊狼,如此 SGWO 与 COA 达到了一种高效融合.为方便理解 SGWO, 关于 GWO 中的灰狼等级情况与 SGWO 中的等级 情况的对比见图 3 所示.

图 3 GWO 与 SGWO 的等级情况对比 Fig.3 Comparison of hierarchies of GWO and SGWO

3.4 正弦交叉混合策略

为了平衡 COA 组内郊狼成长的探索与开采能力,本文采用正弦交叉策略将 ICOA 与 SGWO 有机混合.其中交叉策略是指在一定概率的情况下,两个解进行交叉得到一个新解.当概率为零时,两个解的维值不交换;当概率为1时,两个解的维值全部交换,这两种情况都不能产生新解.因此只有概率为一个适当的值时,两个解的交叉效果才会达到最好.其中使用正弦函数概率模型使得探索和开采都有良好的表现,即使用正弦函数自适应控制交叉概率 CR (在 0.5 附近前期小幅度波动,后期大幅

度跳动)可以兼顾组内郊狼的多样性和收敛性^[14], 其计算式为

$$CR = 0.5 \times \left(\sin \left(2\pi \times 0.25 \times t + \pi \right) \times \frac{t}{MaxDT} + 1 \right)$$
(30)

本文采用的正弦交叉策略见算法 3 所示,在 rand < CR 的概率下,组内第 c 个郊狼 D 维中一些 维的值采用 SGWO 搜索方式获取;反之,组郊狼的 第 c 个郊狼 D 维中的其余维值采用高斯全局趋优 成长算子获取.这种交叉策略具有如下特点:1) 增 强了组内各类郊狼的信息交流;2) 交叉两个新解, 二者的信息融合获得有别二者的新解,增强了新解 的多样性,降低陷入局部最优的概率;3) 前期在 CR 为 0.5 的附近小幅度波动,高斯全局趋优操作 和 GWO 操作以近似等概率的方式产生新解,多样 性强,强化探索能力;后期在 CR 为 0.5 的附近大幅 度跳动,如此产生的新解以其中一种操作为主,多 样性降低,强化了开采能力.

算法 3. 正弦交叉策略

- 1. 计算正弦交叉概率, 见式 (30)
- 2. 选定第 p 组第 c 个郊狼
- 3. For j = 1 To D Do
- 4. If rand < CR
- 5. 计算式 (27)~(29)
- 6. $new_c_j = (NX_{1,j} + NX_{2,j} + NX_{3,j})/3$
- 7. **Else**
- 8. 采用高斯全局趋优成长算子的式 (26)
- 9. End If
- 10. End For

正弦交叉策略有机融合了两种搜索方式,很好 地平衡了成长过程的探索与开采能力. HCOAG 的 流程图见图 4.

从图 4 可以看出, 与 COA 相比, HCOAG 主要 有如下不同: 1) 成长方式采用正弦交叉策略融合高 斯全局趋优方式和 SGWO 方式; 2) 组内郊狼的适 应度值采用并行计算; 3) 动态调整参数方案; 4) 丢 弃了郊狼被组驱离与接纳的过程.

4 函数优化实验结果与分析

4.1 实验环境配置及参数设置

为验证 HCOAG 的有效性,本文采用经典基准 函数和来自 CEC2017 的复杂函数进行优化实验. CEC2017 包括单峰函数 $(F_1 \sim F_3)$ 、多峰函数 $(F_4 \sim F_{10})$ 、混合函数 $(F_{11} \sim F_{20})$ 和复合函数 $(F_{21} \sim F_{30})$,详

Fig.4 Flow chart of HCOAG

细情况见文献 [15]. 实验环境采用主频 3.00 GHz 的 Inter(R) Core(TM) i5-7400 CPU 和内存 8 GB 的 PC 机,操作系统采用 64 位的 Windows 10,编程语 言采用 MATLAB2017A. 选取的对比算法包括 GWO^[3], COA^[4], MEGWO (Multi-strategy ensemble GWO)^[16], DEBBO (Differential evolution and biogeography-based optimization)^[17], HFPSO (Hybrid firefly with PSO)^[18], SaDE (DE with strategy adaptation)^[19], SE04 (Spherical evolution)^[20]、FWA (Fireworks algorithm)^[21] 和 TLBO (Teaching-learning based optimization)^[22]. MEG-WO 是最近提出的 GWO 改进算法, 文献 [16] 表明 它优于 GWO 及其改进版以及其他的 SIOA. DEBBO 是 DE 与 BBO 的混合算法, 文献 [17] 表明它优于 DE和 BBO 及其他优秀的 SIOA. HFPSO 是 PSO 和 FA 的混合算法, 文献 [18] 表明它优于 PSO 和 FA 等 SIOA. SaDE 具有显著优秀性能, 文献 [19] 表 明 SaDE 优于 DE 等 SIOA. SE04 是球形进化算法 的变体之一, 文献 [20] 表明 SE04 显著优于 GWO 等算法. FWA 和 TLBO 也是目前较为新型算法的 代表. 总之, 这些对比算法具有较强的竞争性.

为公平起见,所有算法的公共参数设置相同. 在 CEC2017上,依据文献 [15] 的参数最佳推荐, D = 30,最大函数评价次数 10 000 × D,独立运行 51次.在经典函数的 D = 10和 D = 30上, MaxDT分别为 100和 500,独立运行 30次.依据文献 [4] 的 推荐,COA 的最佳参数设置为: N = 100, $N_c = 5$, $N_p = 20$. HCOAG 的 N也设置为 100, N_p 和 N_c 无 需调整,算法其他参数采用相应文献中推荐的最佳 设置.

一般单峰函数用来考察一个算法的局部搜索能力,多峰函数考察其全局搜索能力,混合和复合函数考察其处理复杂问题的能力.本文采用均值(Mean)和方差(Std)分别评估一个算法的优化性能和稳定性.在解决极小值问题中,均值越小表示

算法性能越好, 方差越小表示算法稳定性越好. 另 外, 还采用了排名 (Rank) 方法. 其评价标准是先比 较算法获得的均值, 均值越小算法名次越好; 在均 值相同的情况下, 再比较方差, 方差越小算法名次 越好. 结果表中的 "Count"表示排名为第一的总次 数, "Ave rank"表示平均排名情况, "Total rank"表 示在 "Ave rank"基础上的总排名情况, 最优者用加 粗字体表示.

4.2 与不完全算法的对比分析

为验证每个改进对 HCOAG 优化性能的贡献, 将 HCOAG 与其不完全算法 HCOAG₅ ($N_c = 5$ 和 $N_p = 20$ 的 HCOAG)、HCOAG₁₀ ($N_c = 10$ 和 $N_p = 10$ 的 HCOAG)、ICOA、SGWO、GWO 和 COA 在 CEC2017 的 30 维函数上进行实验,实验 结果如表 1 所示.

从表1中可以看出, HCOAG5 在单峰函数上获

表 1 HCOAG 与其不完全算法的结果对比 Table 1 Comparison results of HCOAG and its incomplete algorithms

			r					
函数	标准	HCOAG	COA	GWO	HCOAG_5	HCOAG_{10}	ICOA	SGWO
	Mean	$7.4494{ imes}10^{-4}$	1.2099×10^{3}	1.2813×10^{9}	$4.1072 imes 10^{-4}$	1.9800×10^{-3}	1.0737×10^{2}	3.3279×10^{3}
\mathbf{F}_1	Std	$1.4801\!\times\!10^{\scriptscriptstyle -3}$	1.2998×10^{3}	9.6388×10^8	$8.5916 imes 10^{-4}$	$2.9438\!\times\!10^{\scriptscriptstyle -3}$	1.0569×10^{2}	4.3271×10^{3}
	Rank	2	5	7	1	3	4	6
	Mean	1.1941×10^{1}	$2.9013 imes 10^{21}$	3.1831×10^{32}	4.8580×10^{3}	1.8078×10^{1}	$8.6764 imes 10^{15}$	$3.3582{ imes}10^{14}$
\mathbf{F}_2	Std	$2.4077 \! imes \! 10^1$	1.1462×10^{22}	1.5894×10^{33}	$3.3985 imes 10^4$	5.0208×10^{1}	$3.5675 imes 10^{16}$	1.3200×10^{15}
	Rank	1	6	7	3	2	5	4
	Mean	$9.5410 imes 10^{-1}$	$6.0573{ imes}10^4$	2.8342×10^4	$7.6972 imes 10^{-1}$	$1.0995 \times 10^{\circ}$	$3.3032{ imes}10^4$	8.7276×10^2
F_3	Std	$1.9288 \times 10^{\circ}$	$1.0177{ imes}10^4$	9.2323×10^{3}	9.8032×10^{-1}	$1.6794 \times 10^{\circ}$	6.8409×10^{3}	$7.2376{ imes}10^2$
	Rank	2	7	5	1	3	6	4
	Mean	1.8113×10^{1}	8.4041×10^{1}	2.0825×10^2	2.0841×10^{1}	2.8446×10^{1}	4.8248×10^{1}	1.0495×10^{2}
\mathbf{F}_4	Std	2.7696×10^{1}	$8.5306 \times 10^{\circ}$	8.4445×10^{1}	3.0540×10^{1}	$3.1826{ imes}10^1$	$3.3517{ imes}10^1$	2.4806×10^{1}
	Rank	1	5	7	2	3	4	6
	Mean	$2.8433 imes 10^1$	5.2890×10^{1}	9.6116×10^{1}	3.5884×10^{1}	$3.0204{ imes}10^{1}$	3.4844×10^{1}	3.1488×10^{1}
\mathbf{F}_{5}	Std	6.8886×10°	$1.5025{ imes}10^{1}$	3.2690×10^{1}	$1.0115{ imes}10^1$	$8.8983 \times 10^{\circ}$	1.0983×10^{1}	$9.2242{ imes}10^{\circ}$
	Rank	1	6	7	5	2	4	3
	Mean	$1.7483 imes 10^{-7}$	1.6399×10^{-5}	$6.3664 imes 10^{\circ}$	9.4452×10^{-7}	$1.5005 imes 10^{-6}$	$2.8782 imes 10^{-4}$	2.0381×10^{-2}
\mathbf{F}_{6}	Std	$4.7524 imes 10^{-7}$	9.6428×10^{-6}	$3.1596 imes 10^{\circ}$	2.4080×10^{-6}	5.9643×10^{-6}	1.6254×10^{-4}	2.7102×10^{-2}
	Rank	1	4	7	2	3	5	6
	Mean	6.1055×10^{1}	7.5148×10^{1}	1.4460×10^2	6.7082×10^{1}	$5.9300 imes 10^{1}$	6.7675×10^{1}	6.4025×10^{1}
\mathbf{F}_7	Std	1.0851×10^{1}	1.3762×10^{1}	$4.6314{ imes}10^1$	1.1241×10^{1}	$9.4998 \times 10^{\circ}$	1.1520×10^{1}	1.1856×10^{1}
	Rank	2	6	7	4	1	5	3
	Mean	3.2489×10^{1}	5.6110×10^{1}	8.4662×10^{1}	3.6085×10^{1}	2.9446×10^{1}	$3.6138{ imes}10^1$	3.1775×10^{1}
\mathbf{F}_8	Std	1.2272×10^{1}	1.8774×10^{1}	2.5270×10^{1}	$8.8063 \times 10^{\circ}$	$7.9048 \times 10^{\circ}$	1.0081×10^{1}	$7.8884 \times 10^{\circ}$
	Rank	3	6	7	4	1	5	2
	Mean	$2.7362 imes 10^{-1}$	5.6225×10^{-1}	5.5392×10^{2}	$5.2270 imes 10^{-1}$	2.5931×10^{-1}	$8.8559 imes 10^{-2}$	$7.4159 \times 10^{\circ}$
F_9	Std	$4.8298\!\times\!10^{\scriptscriptstyle -1}$	$1.0209 \times 10^{\circ}$	$3.2695{ imes}10^2$	8.7374×10^{-1}	$4.6957\!\times\!10^{\scriptscriptstyle -1}$	$1.5656 imes 10^{-1}$	$6.7112{ imes}10^{\circ}$
	Rank	3	5	7	4	2	1	6

表 1 HCOAG 与其不完全算法的结果对比 (续表)

Table 1	Comparison results of HCOAG and its incomplete algorithms	(continued table)
Table I	comparison results of free and its meenpiete argorithms	(commuted table)

		1			1	0		
函数	标准	HCOAG	COA	GWO	HCOAG_5	$HCOAG_{10}$	ICOA	SGWO
	Mean	2.2671×10^{3}	2.7575×10^{3}	3.1862×10^{3}	2.5574×10^{3}	2.3435×10^{3}	$2.1380 imes 10^{3}$	2.1424×10^{3}
F_{10}	Std	6.1427×10^{2}	4.6685×10^{2}	9.7886×10^{2}	5.3524×10^{2}	6.0670×10^2	$5.6098 \! imes \! 10^2$	4.0691×10^{2}
	Rank	3	6	7	5	4	1	2
	Mean	$2.1678 imes 10^{1}$	4.1143×10^{1}	4.9771×10^2	2.9822×10^{1}	2.6698×10^{1}	2.2685×10^{1}	1.0908×10^{2}
F_{11}	Std	2.0907×10^{1}	$2.7367{ imes}10^{1}$	6.4235×10^2	2.6128×10^{1}	2.4059×10^{1}	2.0893×10^{1}	3.8218×10^{1}
	Rank	1	5	7	4	3	2	6
	Mean	9.8943×10^{3}	$1.2532{ imes}10^{5}$	4.0285×10^{7}	1.2577×10^{4}	1.0657×10^{4}	1.3660×10^{5}	2.0716×10^{5}
F_{12}	Std	6.0932×10^3	$1.2555 imes 10^5$	7.3849×10^{7}	6.4424×10^{3}	6.4606×10^{3}	9.3092×10^{4}	$1.9967{ imes}10^{5}$
	Rank	1	4	7	3	2	5	6
	Mean	1.9749×10^{3}	$2.0357{ imes}10^4$	2.8073×10^{6}	3.0265×10^{3}	3.1829×10^{3}	3.6293×10^2	1.3271×10^4
F_{13}	Std	$3.8565{ imes}10^{3}$	2.6333×10^4	1.6225×10^{7}	6.2901×10^{3}	8.0719×10^{3}	8.9975×10^{1}	$1.5283{ imes}10^4$
	Rank	2	6	7	3	4	1	5
	Mean	8.6436×10^{1}	8.0070×10^{1}	1.3112×10^{5}	7.7150×10^{1}	1.0134×10^{2}	$5.6726 imes 10^{1}$	$1.4132{ imes}10^4$
F_{14}	Std	4.3766×10^{1}	1.9915×10^{1}	2.3335×10^{5}	6.0071×10^{1}	9.2585×10^{1}	$1.4850 imes 10^{1}$	1.7944×10^{4}
	Rank	4	3	7	2	5	1	6
	Mean	1.8396×10^{3}	2.0792×10^{3}	3.3658×10^{5}	7.1579×10^{2}	1.7386×10^{3}	6.9111×10^{1}	6.6116×10^{3}
F_{15}	Std	2.9044×10^{3}	7.9984×10^{3}	7.9125×10^{5}	1.2272×10^{3}	2.9477×10^{3}	1.9083×10^{1}	8.3961×10^{3}
	Rank	4	5	7	2	3	1	6
	Mean	3.0243×10^{2}	7.9869×10^{2}	8.1416×10^{2}	3.3715×10^{2}	3.0883×10^2	4.6416×10^{2}	5.0252×10^{2}
F_{16}	Std	$2.0550 imes 10^2$	2.8651×10^2	2.6440×10^{2}	2.1415×10^{2}	1.8878×10^{2}	2.6962×10^{2}	2.4545×10^{2}
	Rank	1	6	7	3	2	4	5
	Mean	4.7111×10^{1}	2.2439×10^{2}	2.7004×10^{2}	6.4809×10^{1}	5.3120×10^{1}	$3.7365 imes 10^{1}$	1.3984×10^{2}
F_{17}	Std	4.0925×10^{1}	1.3518×10^{2}	1.3820×10^{2}	5.3991×10^{1}	4.7801×10^{1}	4.0654×10^{1}	8.0664×10^{1}
	Rank	2	6	7	4	3	1	5
	Mean	6.1013×10^4	6.9910×10^{4}	7.1643×10^{5}	5.1875×10^{4}	5.0376×10^{4}	3.9930×104	1.8454×10^{5}
F_{18}	Std	5.7031×10^{4}	1.0210×10^{5}	8.2799×10^{5}	3.6270×10^{4}	3.7592×10^4	2.0034×10^{4}	1.7045×10^{5}
	Rank	4	5	7	3	2	1	6
	Mean	3.4042×10^{1}	4.4886×10^{3}	4.6400×10^{5}	3.4163×10^{1}	3.0105×10^2	2.4678×10^{1}	5.4815×10^{3}
F_{19}	Std	2.0528×10^{1}	1.3325×10^{4}	5.4998×10^{5}	3.9687×10^{1}	1.1322×10^{3}	$7.1259 imes 10^{\circ}$	4.9859×10^{3}
	Rank	2	5	7	3	4	1	6
	Mean	$9.6665 imes 10^{1}$	2.4290×10^{2}	3.6059×10^{2}	1.0084×10^{2}	1.1637×10^{2}	1.0389×10^{2}	2.0165×10^2
F_{20}	Std	7.7834×10^{1}	1.4995×10^{2}	1.0264×10^{2}	6.6726×10^{1}	7.5890×10^{1}	8.7694×10^{1}	9.6673×10^{1}
	Rank	1	6	7	2	4	3	5
	Mean	$2.3023 imes 10^2$	2.5626×10^2	2.8298×10^{2}	2.3713×10^{2}	$2.3135{ imes}10^2$	2.3724×10^{2}	2.3289×10^{2}
\mathbf{F}_{21}	Std	$8.5095 imes 10^{\circ}$	1.6800×10^{1}	2.5684×10^{1}	1.0815×10^{1}	$9.8453 \times 10^{\circ}$	1.1261×10^{1}	$9.9428{ imes}10^{\circ}$
	Rank	1	6	7	4	2	5	3
	Mean	1.0010×10^{2}	1.9999×10^{3}	8.0434×10^2	$1.0005\! imes\!10^2$	1.0005×10^{2}	1.0005×10^2	$1.2974{ imes}10^2$
F_{22}	Std	$4.8096\!\times\!10^{\scriptscriptstyle -1}$	1.5970×10^{3}	1.1113×10^{3}	3.4354×10^{-1}	3.4444×10^{-1}	3.4443×10^{-1}	$2.0703{ imes}10^2$
	Rank	4	7	6	1	3	2	5
	Mean	$3.7755 imes 10^2$	4.1635×10^{2}	4.7029×10^{2}	3.8706×10^{2}	3.7831×10^2	3.8441×10^{2}	3.8854×10^2
F_{23}	Std	1.0911×10^{1}	1.6898×10^{1}	$2.9324{ imes}10^1$	1.3271×10^{1}	$8.1817 \times 10^{\circ}$	1.0543×10^{1}	1.3692×10^{1}
	Rank	1	6	7	4	2	3	5
	Mean	4.4827×10^{2}	5.4044×10^{2}	5.2489×10^{2}	4.5484×10^{2}	$4.4530 imes 10^2$	4.5862×10^{2}	4.5671×10^{2}
F_{24}	Std	1.0757×10^{1}	4.5778×10^{1}	$3.3902{ imes}10^1$	1.1783×10^{1}	1.1461×10^{1}	1.2203×10^{1}	1.1956×10^{1}
-	Rank	2	7	6	3	1	5	4

	Ta-	ble 1 Compa	rison results of	HCOAG and i	ts incomplete ε	algorithms (con	tinued table)	
函数	标准	HCOAG	COA	GWO	HCOAG_{5}	HCOAG_{10}	ICOA	SGWO
	Mean	3.8777×10^2	3.8706×10^2	4.7784×10^{2}	3.8747×10^2	3.8729×10^2	3.8698×10^2	4.0239×10^2
F_{25}	Std	$5.4462 \times 10^{\circ}$	8.0647×10^{-1}	2.3819×10^{1}	$1.5625 imes 10^{\circ}$	$1.2735 \times 10^{\circ}$	$5.4095 imes 10^{-1}$	$1.5135{\times}10^{\scriptscriptstyle 1}$
	Rank	5	2	7	4	3	1	6
	Mean	$1.2578{ imes}10^3$	1.6520×10^{3}	2.0116×10^{3}	1.3249×10^{3}	1.2449×10^3	$1.3138{ imes}10^3$	1.5024×10^{3}
F_{26}	Std	1.9807×10^{2}	1.7070×10^{2}	5.7618×10^{2}	3.1093×10^2	3.4947×10^{2}	1.9599×10^{2}	2.8691×10^2
	Rank	2	6	7	4	1	3	5
	Mean	5.1091×10^{2}	$5.0430 imes 10^2$	5.9279×10^2	5.1349×10^{2}	5.1088×10^{2}	5.0560×10^{2}	5.3331×10^{2}
F_{27}	Std	$7.7116 \times 10^{\circ}$	$8.2707 \times 10^{\circ}$	3.8462×10^{1}	$8.6401 \times 10^{\circ}$	$8.6837 \times 10^{\circ}$	$7.3827 \times 10^{\circ}$	$1.1175{\times}10^{\scriptscriptstyle 1}$
	Rank	4	1	7	5	3	2	6
	Mean	$3.3558{ imes}10^2$	4.0555×10^2	5.9941×10^2	$3.2930 imes 10^2$	3.3793×10^{2}	3.4828×10^{2}	4.5710×10^{2}
F_{28}	Std	5.3866×10^{1}	3.6156×10^{1}	6.9788×10^{1}	$5.1585 imes 10^{1}$	5.1950×10^{1}	5.3564×10^{1}	2.3392×10^{1}
	Rank	2	5	7	1	3	4	6
	Mean	4.5991×10^{2}	6.6978×10^{2}	8.5036×10^2	4.8821×10^{2}	4.6287×10^{2}	4.5683×10^2	6.2453×10^2
F_{29}	Std	4.4075×10^{1}	1.7459×10^{2}	1.8235×10^2	5.5772×10^{1}	4.3839×10^{1}	4.4800×10^{1}	1.1861×10^{2}
	Rank	2	6	7	4	3	1	5
	Mean	2.9823×10^{3}	6.0618×10^{3}	4.0643×10^{6}	3.1036×10^{3}	2.9323×10^3	1.9586×10^4	6.1880×10^{3}
F_{30}	Std	6.1135×10^2	4.7022×10^{3}	3.1688×10^{6}	8.4665×10^2	$5.9332 \! imes \! 10^2$	7.3086×10^{3}	2.8250×10^{3}
	Rank	2	4	7	3	1	6	5
Co	ount	10	1	0	4	5	10	0
Ave	rank	2.20	5.23	6.87	3.10	2.60	3.07	4.93
Tota	l rank	1	6	7	4	2	3	5

表 1 HCOAG 与其不完全算法的结果对比 (续表)

得最好的结果次数最多,表明 N_p 增大,在提高郊狼 生与死的全局搜索能力的同时,大幅度提高了 COA 的开采能力,即 HCOAG5 中高斯趋优成长和 GWO 搜索都采用当前全局最优郊狼引导, 不仅获 得更好的全局最优解,这种全局最优解又作用于下 一组郊狼的成长过程,如此形成正反馈机制: N_n越 大,开采越强,收敛速度越快.但容易陷入局部最 优,如在多峰函数上的表现不尽人意. HCOAG₁₀ 在 多峰函数上表现出了良好的优化性能,表明 N₂变 少,在提高组内郊狼成长的局部搜索能力的同时, 正反馈减弱,开采能力降低,即陷入局部最优的概 率也降低了. ICOA 中没有精简的 GWO, 整体来说 优于 COA, 表明对 COA 的改进是有效的. SGWO 在整体上优于 GWO, 表明 SGWO 提高了 GWO 搜索能力. 与 GWO 相比, COA 的优化性能更好, 即 COA 能更好地处理复杂优化问题. 在 7 个算法 中, HCOAG 的平均排名为 2.20, COA、GWO、 HCOAG₅、HCOAG₁₀、ICOA 和 SGWO 的平均排 名分别为 5.23、6.87、3.10、2.60、3.07 和 4.93, 总排 名的名次分别为 6、7、4、2、3 和 5. 在 HCOAG 与 6种对比算法中, HCOAG 获得了最好的优化性能, 这也说明本文提出的算法是有效的.

4.3 在经典函数上的优化性能对比

为验证 HCOAG 的性能,首先将其用于经典函数的优化实验,并将其结果与 COA、GWO、HFPSO和 DEBBO 的结果进行对比,实验结果见表 2.

为了能说明问题,选择 6 个经典的、具有代表 性的基准函数的实验结果作为示例进行分析和讨 论,这 6 个函数的信息如表 3 所示,其中 $f_1 \sim f_3$ 和 $f_4 \sim f_6$ 分别作为单峰函数和多峰函数的代表.在此 实验中,由于 HCOAG 是 COA 和 GWO 的混合算 法,故选择 COA 和 GWO 作为对比算法. HFPSO 和 DEBBO 是目前两种较为优秀的混合算法,故选 为 HCOAG 的对比算法.

从表 2 可以看出, 在 D = 10 和 D = 30 上, COA 无论是在单峰还是在多峰函数上优化性能最差, 说 明 COA 在处理这些经典函数优化问题上无优势. 在单峰函数的均值和方差上, 除了 f_3 外, GWO 均 优于 HCOAG 以及其他 3 种对比算法, 证明了 GWO 具有较好的开采能力. 在多峰函数上, HCOAG 的 性能最佳, 说明 GWO 与全局搜索能力强的 COA 混合有效.

从整体上看,在 D = 10 和 D = 30 上, HCO-

		Table 2 Co	omparison results o	n the 6 classic funct	tions	
	1-20			D = 10		
函数	标准	HCOAG	COA	GWO	HFPSO	DEBBO
	Mean	$6.0684 imes 10^{-9}$	1.7833×10^{2}	$9.0799 imes 10^{-15}$	$3.4157{ imes}10^{-5}$	$6.7086 imes 10^{-2}$
f_1	Std	$4.8458\!\times\!10^{-\!9}$	6.3524×10^{1}	2.4849×10^{-14}	2.4485×10^{-5}	$3.1056 imes 10^{-2}$
	Rank	2	5	1	3	4
	Mean	8.4133×10^{-6}	$2.3737 { imes} 10^{\circ}$	$1.3222\! imes\!10^{-9}$	$1.3703 imes 10^{-3}$	$2.8483{ imes}10^{-2}$
f_2	Std	$3.7531\!\times\!10^{-6}$	4.0964×10^{-1}	$1.1382\! imes\!10^{-9}$	$6.5582{ imes}10^{-4}$	7.0993×10^{-3}
	Rank	2	5	1	3	4
	Mean	0	1.6180×10^2	1.0000×10^{-1}	0	0
f_3	Std	0	5.0787×10^{1}	$3.0513{ imes}10^{{ imes}1}$	0	0
	Rank	1	5	4	1	1
	Mean	$1.2498 \! imes \! 10^{-10}$	$4.0253 \times 10^{\circ}$	$1.5325\!\times\!10^{\text{-6}}$	$3.5760 imes 10^{-7}$	$1.8575 imes 10^{-3}$
f_4	Std	$2.0501 imes 10^{-10}$	$1.6104 \times 10^{\circ}$	9.4192×10^{-7}	4.1539×10^{-7}	$1.0158{ imes}10^{-3}$
	Rank	1	5	3	2	4
	Mean	$2.0046 imes 10^{-8}$	$7.1619{\times}10^2$	$2.4093 imes 10^{-5}$	4.6770×10^{-6}	$2.6132{ imes}10^{-2}$
f_5	Std	$5.9686\!\times\!10^{\!-\!8}$	1.5819×10^3	1.4121×10^{-5}	5.6661×10^{-6}	$1.0613{ imes}10^{-2}$
	Rank	1	5	3	2	4
	Mean	$4.1921\!\times\!10^{_{-10}}$	$1.7228 \times 10^{\circ}$	1.2593×10^{-2}	4.9377×10^{-7}	$3.5149{ imes}10^{{ imes}3}$
f_6	Std	$4.3501\!\times\!10^{_{-10}}$	$5.1829{ imes}10^{-1}$	$6.8779 imes 10^{-2}$	$4.8665{\times}10^{_{-7}}$	$1.5826{ imes}10^{-3}$
	Rank	1	5	4	2	3
				D = 30		
	Mean	$1.3966 imes 10^{-17}$	$3.2554{ imes}10^1$	$5.4432 imes 10^{-41}$	7.2595×10^{-9}	2.7076×10^{-4}
f_1	Std	$3.2255{ imes}10^{{ imes}17}$	$5.9567{ imes}10^{\circ}$	$7.1605 imes 10^{-41}$	7.3446×10^{-9}	1.1010×10^{-4}
	Rank	2	5	1	3	4
	Mean	$2.8862{ imes}10^{{ imes}10}$	$1.3998 \times 10^{\circ}$	$6.0158\! imes\!10^{-24}$	$5.3463{ imes}10^{-5}$	$1.3264{ imes}10^{{ imes}3}$
f_2	Std	$4.6435{ imes}10^{{ imes}10}$	$1.9835{ imes}10^{-1}$	$6.2049 imes 10^{-24}$	3.9178×10^{-5}	$2.3103{ imes}10^{-4}$
	Rank	2	5	1	3	4
	Mean	0	3.3700×10^{1}	3.3333×10^{-2}	0	0
f_3	Std	0	$7.9877 \times 10^{\circ}$	$1.8257{\times}10^{{\scriptscriptstyle-}1}$	0	0
	Rank	1	5	4	1	1
	Mean	$1.0451 imes 10^{-17}$	$3.8002 \times 10^{\circ}$	$1.5129 {\times} 10^{{\scriptscriptstyle-}2}$	1.7278×10^{-2}	$6.4886 imes 10^{-5}$
f_4	Std	3.0738×10^{-17}	$1.3163{ imes}10^{\scriptscriptstyle 0}$	1.0471×10^{-2}	$3.9296 imes 10^{-2}$	$2.7878 imes 10^{-5}$
	Rank	1	5	3	4	2
	Mean	$5.3309 imes 10^{-17}$	1.8376×10^{1}	1.6587×10^{-1}	3.2962×10^{-3}	$5.0150{ imes}10^{-4}$
f_5	Std	$1.5184 imes 10^{-16}$	$5.8919 \times 10^{\circ}$	1.1940×10^{-1}	5.1211×10^{-3}	$2.1237{ imes}10^{-4}$
	Rank	1	5	4	3	2
	Mean	$1.2484 imes 10^{-18}$	$1.8049 \times 10^{\circ}$	$7.9738 imes 10^{-1}$	8.2480×10^{-3}	$8.5930 imes 10^{-5}$
f_6	Std	$1.7135 imes 10^{-18}$	$4.9152{ imes}10^{-1}$	$7.4565{\times}10^{{\scriptscriptstyle-}1}$	$4.5176{\times}10^{-2}$	$3.9292{ imes}10^{{\scriptscriptstyle-5}}$
	Rank	1	5	4	3	2
Co	ount	8	0	4	2	2
Ave	e rank	1.33	5.00	2.75	2.50	2.92
Tota	al rank	1	5	3	2	4

AG的总体平均排名为 1.33, 其他算法的平均排名 依次为: HFPSO (2.50)、GWO (2.75)、DEBBO (2.92)和 COA (5.00). 这些结果表明, HCOAG 不

是对所有优化问题都有绝对优势, 在单峰函数上优化性能稍差.而 GWO 在单峰函数上具有优势, 对HCOAG 的性能具有一定的贡献.从整体上看,

		Table 5 Details of 0 classical benchmark functions		
类型	函数名称	函数表达式	搜索范围	最小值
	Sphere	$f_1(x) = \sum_{i=1}^D x_i^2$	[-100, 100]	0
单峰函数	Schwefel 2.22	$f_2(x) = \sum_{i=1}^{D} x_i + \prod_{i=1}^{D} x_i $	[-10, 10]	0
	Step	$f_3(x) = \sum_{i=1}^D \left(\lfloor x_i + 0.5 floor ight)^2$	[-100, 100]	0
多峰函数	Penalized 1	$f_4(x) = \frac{\pi}{D} \left\{ 10\sin^2(\pi y_i) + \sum_{\substack{i=1\\D}}^{D-1} (y_i - 1)^2 \left[1 + 10\sin^2(\pi y_{i+1}) \right] + (y_D - 1)^2 \right\} + \sum_{\substack{i=1\\D}}^{D} u(x_i, 10, 100, 4)$ $y_i = 1 + \frac{1}{4} (x_i + 1)$ $u(x_i, a, k, m) = \begin{cases} k(x_i - a)^m, & x_i > a\\ 0, & -a \le x_i \le a\\ k(-x_i - a)^m, & x_i < -a \end{cases}$	[-50, 50]	0
	Penalized 2	$f_5(x) = 0.1 \left\{ \sin^2(\pi x_1) + \sum_{i=1}^{D-1} (x_i - 1)^2 \left[1 + \sin^2(3\pi x_{i+1}) \right] + (x_D - 1) \left[1 + \sin^2(2\pi x_D) \right] \right\} + \sum_{i=1}^{D} u(x_i, 5, 100, 4)$	[-50, 50]	0
	Levy	$f_6(x) = \sum_{\substack{i=1\\ \sin^2(3\pi x_1) + x_D - 1 }}^{D-1} \left[1 + \sin^2(3\pi x_{i+1}) \right] + \frac{1}{2} \left[1 + \sin^2(3\pi x_D) \right]$	[-10, 10]	0

HCOAG 在经典函数上具有较好的优化性能.

为直观显示 HCOAG、COA、GWO、HFPSO 和 DEBBO 的收敛性能,给出了这 5 个算法的收敛 图.限于篇幅,本节在 *D* = 30 上选取 2 个单峰函 数 (*f*₁ 和 *f*₂) 和 2 个多峰函数 (*f*₅ 和 *f*₆),如图 5 所示. 在单峰函数上,与 HCOAG、COA、HFPSO 和 DEBBO 算法相比,GWO 收敛速度更快,表现出更好的收 敛性能.在多峰函数上,与 COA、GWO、HFPSO 和 DEBBO 算法相比,HCOAG 表现出了更好的收 敛性能.综上所述,表 2 和图 5 说明了 GWO 具有 较好的局部搜索能力和收敛性能,也部分证明了利 用 GWO 局部搜索能力强的优势对 COA 的混合改 进是必要和可行的.

4.4 在 CEC2017 复杂函数上的优化性能对比

为了进一步验证 HCOAG 的搜索能力,将其用 在 CEC2017 复杂函数上实验,并将其结果与 9 个 代表性的先进算法 COA、GWO、MEGWO、 HFPSO、DEBBO、SaDE、SE04、FWA 和 TLBO 的实验结果进行比较,其结果见表 4,其中 SaDE 和 SE04 的实验数据直接来自文献 [20].

在均值和方差上,与 MEGWO 相比, HCO-

AG 优于 23 次. 与同为混合算法的 HFPSO 和 DEBBO 相比, HCOAG 分别优于 29 次和 23 次. 与 SaDE 和 SE04 相比, HCOAG 分别优于 28 次 和 29 次. 与 FWA 和 TLBO 相比, HCOAG 分别优 于 30 次和 29 次. 在总排名上, HCOAG 排名第一, 接下来依次为 MEGWO、DEBBO、SaDE、SE04、 COA、TLBO、HFPSO、FWA、GWO. 因此, HCO-AG 的性能优于 9 个先进对比算法的性能.

4.5 **收敛性能分析**

为了验证 HCOAG 的收敛性能, 给出 HCOAG 与 COA、MEGWO、DEBBO、TLBO 和 HFPSO 在 CEC2017 测试集中 30 维函数的收敛图. 受篇幅 所限,本文仅选取有代表性的函数作为示例进行对 比分析. 在 $F_1 ~ F_3$ 中选取 1 个单峰函数,即 F_1 , 在 $F_4 ~ F_{10}$ 中选取 F_5 , F_7 , F_8 这 3 个多峰函数, 在 $F_{11} ~ F_{20}$ 中选取 F_{11} , F_{12} , F_{16} , F_{17} 这 4 个混合函 数, 在 $F_{21} ~ F_{30}$ 中选取 F_{21} , F_{23} , F_{24} , F_{29} 这 4 个复 合函数,其收敛图见图 6.

从图 6 中可以看出,在 3 个函数 F_1 , F_5 和 F_8 上,随着函数评价次数的增加,在收敛速度上, HCOAG 较对比算法要快得多,优势明显.在其余

图 5 HCOAG 与对比算法在 4 个经典函数上的收敛图 Fig.5 Convergence curves of HCOAG and the comparison algorithms on the 4 classical benchmark functions

表 4 在 30 维 CEC2017 复杂函数上的优化结果对比 Table 4 Comparison results on the 30-dimensional complex functions from CEC2017

函数	标准	HCOAG	COA	GWO	MEGWO	HFPSO	DEBBO	SaDE	SE04	FWA	TLBO
	Mean	7.4494×10^{-4}	1.2099×10^{3}	1.2813×10^{9}	4.5517×10^{3}	3.9338×10^3	2.7849×10^{3}	$3.0714{ imes}10^3$	3.2930×10^{3}	4.3987×10^{6}	2.9846×10^{3}
\mathbf{F}_1	Std	1.4801×10^{-3}	1.2998×10^{3}	9.6388×10^{8}	1.0677×10^{3}	5.3689×10^{3}	4.0364×10^{3}	$3.5072{ imes}10^3$	4.2328×10^{3}	1.4055×10^{6}	3.1471×10^{3}
	Rank	1	2	10	8	7	3	5	6	9	4
	Mean	1.1941×10^{1}	$2.9013{ imes}10^{21}$	3.1831×10^{32}	2.8884×10^{8}	5.3485×10^{4}	1.5057×10^{17}	$8.6275 imes 10^{-1}$	3.0802×10^{13}	4.1397×10^{15}	1.0448×10^{16}
\mathbf{F}_2	Std	$2.4077{\times}10^{\scriptscriptstyle1}$	1.1462×10^{22}	1.5894×10^{33}	$8.0571{\times}10^{\rm s}$	3.2847×10^{5}	$3.5179{ imes}10^{17}$	$4.9357 \times 10^{\circ}$	1.1694×10^{14}	1.5680×10^{16}	4.7082×10^{16}
	Rank	2	9	10	4	3	8	1	5	6	7
	Mean	9.5410×10^{-1}	6.0573×10^{4}	2.8342×10^{4}	2.2633×10^{2}	$1.5595 imes 10^{-7}$	3.6772×10^{4}	3.0045×10^{2}	9.7974×10^{3}	2.4748×10^{4}	4.0488×10^{-4}
\mathbf{F}_3	Std	$1.9288 \times 10^{\circ}$	$1.0177{ imes}10^4$	9.2323×10^{3}	$1.7031{ imes}10^2$	2.3334×10^{-7}	5.8394×10^{3}	$7.3017{ imes}10^2$	$3.4377{ imes}10^3$	6.3467×10^{3}	1.6647×10^{-3}
	Rank	3	10	8	4	1	9	5	6	7	2
	Mean	1.8113×10^{1}	8.4041×10^{1}	2.0825×10^{2}	2.4815×10^{1}	6.9386×10^{1}	8.4851×10^{1}	6.0423×10^{1}	8.5881×10^{1}	1.1370×10^{2}	5.9054×10^{1}
\mathbf{F}_4	Std	2.7696×10^{1}	$8.5306 \times 10^{\circ}$	8.4445×10^{1}	2.8995×10^{1}	2.1364×10^1	2.2848×10^{-1}	2.9825×10^{1}	$1.1251{\times}10^{\scriptscriptstyle 1}$	$1.7315{\times}10^{\scriptscriptstyle 1}$	$3.0429{ imes}10^1$
	Rank	1	6	10	2	5	7	4	8	9	3
	Mean	2.8433×10^{1}	5.2890×10^{1}	9.6116×10^{1}	5.6912×10^{1}	8.5624×10^{1}	5.8216×10^{1}	5.6192×10^{1}	4.1688×10^{1}	1.8456×10^{2}	8.5717×10^{1}
\mathbf{F}_5	Std	6.8886×10°	$1.5025{\times}10^{\scriptscriptstyle 1}$	$3.2690{ imes}10^1$	$1.0725{\times}10^{\scriptscriptstyle 1}$	$1.7427{\times}10^{\scriptscriptstyle1}$	$6.5957{ imes}10^{\circ}$	$1.4216{ imes}10^1$	$8.1545 \times 10^{\circ}$	$3.3933{ imes}10^1$	1.8601×10^{1}
	Rank	1	3	9	5	7	6	4	2	10	8
	Mean	1.7483×10^{-7}	1.6399×10^{-5}	$6.3664 \times 10^{\circ}$	2.4470×10^{-1}	$1.0170 \times 10^{\circ}$	$1.1369 imes 10^{-13}$	8.9317×10^{-2}	7.5481×10^{-6}	$5.1770 \times 10^{\circ}$	$7.2903 \times 10^{\circ}$
\mathbf{F}_{6}	Std	$4.7524{ imes}10^{-7}$	9.6428×10^{-6}	$3.1596 \times 10^{\circ}$	$8.1620 imes 10^{-2}$	$2.3644 \times 10^{\circ}$	0	1.3955×10^{-1}	$3.9880 imes 10^{-5}$	$3.1351 \times 10^{\circ}$	$4.4538{ imes}10^{\circ}$
	Rank	2	4	9	6	7	1	5	3	8	10

张新明等: 灰狼与郊狼混合优化算法及其聚类优化

表 4 在 30 维 CEC2017 复杂函数上的优化结果对比 (续表)

ble 4	Comparison	results on	the 30-dimensional	complex	functions	from	CEC2017 (continued	table)
	*								

	Та	able 4 Cor	nparison re	sults on the	e 30-dimens	ional comp	lex function	s from CEO	C2017 (cont	inued table	e)
函数	标准	HCOAG	COA	GWO	MEGWO	HFPSO	DEBBO	SaDE	SE04	FWA	TLBO
	Mean	6.1055×10^{1}	7.5148×10^1	1.4460×10^{2}	8.9106×10^1	$1.0407{\times}10^2$	9.9725×10^{1}	9.4945×10^{1}	$7.2448{ imes}10^1$	$2.0998{ imes}10^2$	1.3661×10^{2}
\mathbf{F}_7	Std	1.0851×10^{1}	$1.3762{ imes}10^1$	$4.6314{ imes}10^1$	$1.0935{ imes}10^1$	$1.9791{\times}10^{\scriptscriptstyle 1}$	$6.4285 \times 10^{\circ}$	1.9879×10^{1}	$7.3495 \times 10^{\circ}$	4.4817×10^{1}	2.4846×10^{1}
	Rank	1	3	9	4	7	6	5	2	10	8
	Mean	3.2489×10^{1}	$5.6110{ imes}10^1$	8.4662×10^{1}	$5.9398{ imes}10^1$	$7.2842{\times}10^{\scriptscriptstyle 1}$	$5.9299{ imes}10^1$	$5.3942{\times}10^{\scriptscriptstyle 1}$	$4.4194{ imes}10^1$	$1.4508{ imes}10^2$	$7.1339{ imes}10^1$
F_8	Std	1.2272×10^{1}	1.8774×10^{1}	$2.5270{ imes}10^{\scriptscriptstyle 1}$	1.0663×10^{1}	1.7967×10^{1}	$6.0788 \times 10^{\circ}$	$1.2792{ imes}10^1$	$6.5834{ imes}10^{\circ}$	$2.1470{ imes}10^1$	1.4852×10^{1}
	Rank	1	4	9	6	8	5	3	2	10	7
	Mean	$2.7362{\times}10^{{\scriptscriptstyle-}1}$	5.6225×10^{-1}	$5.5392{ imes}10^2$	$7.8267 \times 10^{\circ}$	$3.2733{ imes}10^1$	$4.0125\!\times\!10^{_{-14}}$	$8.3556{\times}10^{\scriptscriptstyle 1}$	3.0839×10^{-1}	$3.5295{ imes}10^3$	2.4197×10^{2}
\mathbf{F}_{9}	Std	$4.8298 {\times} 10^{\scriptscriptstyle -1}$	$1.0209 \times 10^{\circ}$	$3.2695{ imes}10^2$	1.1815×10^{1}	$1.3249{ imes}10^2$	$5.4870 imes 10^{-14}$	$6.2643{\times}10^{\scriptscriptstyle 1}$	8.4139×10^{-1}	$9.5511{ imes}10^2$	1.4491×10^{2}
	Rank	2	4	9	5	6	1	7	3	10	8
	Mean	2.2671×10^{3}	2.7575×10^{3}	3.1862×10^{3}	2.4369×10^{3}	2.9908×10^{3}	3.2911×10^{3}	$2.3253{\times}10^{\scriptscriptstyle3}$	2.3267×10^{3}	3.7800×10^{3}	6.0667×10^{3}
\mathbf{F}_{10}	Std	6.1427×10^{2}	4.6685×10^{2}	9.7886×10^{2}	4.4542×10^{2}	5.9210×10^{2}	2.7284×10^{2}	$4.9247{\times}10^{\scriptscriptstyle 2}$	$2.8457{\times}10^{\scriptscriptstyle 2}$	$5.9660 imes 10^2$	1.0625×10^{3}
	Rank	1	5	7	4	6	8	2	3	9	10
	Mean	2.1678×10^{1}	4.1143×10^{1}	4.9771×10^{2}	$2.9612{\times}10^{\scriptscriptstyle 1}$	$1.1553{\times}10^{\scriptscriptstyle 2}$	3.7430×10^{1}	$1.0032{ imes}10^2$	$4.1343{\times}10^{1}$	$1.6164{ imes}10^2$	$1.2672{\times}10^{\scriptscriptstyle 2}$
\mathbf{F}_{11}	Std	2.0907×10^{1}	$2.7367{\times}10^{\scriptscriptstyle 1}$	$6.4235{\times}10^{\scriptscriptstyle 2}$	$1.0347{\times}10^{\scriptscriptstyle 1}$	3.9628×10^{1}	2.3672×10^{1}	4.3101×10^{1}	$2.7994{\times}10^{\scriptscriptstyle 1}$	4.5263×10^{1}	$4.5717{\times}10^{\scriptscriptstyle 1}$
	Rank	1	4	10	2	7	3	6	5	9	8
	Mean	9.8943×10^{3}	$1.2532{\times}10^{\scriptscriptstyle 5}$	4.0285×10^{7}	$1.5983{ imes}10^4$	9.9670×10^4	1.3866×10^{5}	6.8629×10^4	1.1143×10^{6}	4.6351×10^{6}	3.3042×10^4
\mathbf{F}_{12}	Std	6.0932×10^{3}	$1.2555{\times}10^{\scriptscriptstyle 5}$	7.3849×10^{7}	4.0434×10^{3}	1.0658×10^{5}	9.2097×10^{4}	$3.8252{\times}10^4$	8.1422×10^{5}	3.1121×10^{6}	2.8646×10^4
	Rank	1	6	10	2	5	7	4	8	9	3
	Mean	1.9749×10^{3}	$2.0357{\times}10^4$	2.8073×10^{6}	$2.0450 imes 10^2$	3.0927×10^4	8.1265×10^{3}	1.1211×10^4	4.6063×10^{3}	$3.7320{ imes}10^4$	$1.4857{ imes}10^4$
F_{13}	Std	$3.8565 imes 10^3$	$2.6333{\times}10^4$	1.6225×10^{7}	2.7028×10^{1}	2.7301×10^4	7.8066×10^{3}	1.0535×10^4	4.8590×10^{3}	2.6480×10^{4}	1.7072×10^{4}
	Rank	2	7	10	1	8	4	5	3	9	6
	Mean	8.6436×10^{1}	8.0070×10^{1}	1.3112×10^{5}	6.1985×10^{1}	6.7377×10^{3}	4.9240×10^{3}	4.3238×10^{3}	7.1204×10^{4}	2.6955×10^{5}	3.5454×10^{3}
F_{14}	Std	4.3766×10^{1}	$1.9915{ imes}10^1$	2.3335×10^{5}	8.6647×10°	$5.5695 imes 10^{3}$	3.2902×10^{3}	$5.7159{ imes}10^3$	$5.9323{ imes}10^4$	2.4525×10^{5}	4.1276×10^{3}
	Rank	3	2	9	1	7	6	5	8	10	4
	Mean	1.8396×10^{3}	2.0792×10^{3}	3.3658×10^{5}	5.1634×10^{1}	9.7487×10^{3}	4.9944×10^{3}	2.1676×10^{3}	2.2013×10^{3}	3.2784×10^{3}	3.9091×10^{3}
F_{15}	Std	2.9044×10^{3}	7.9984×10^{3}	7.9125×10^{5}	1.0713×10^{1}	1.2114×10^{4}	6.6468×10^{3}	3.0178×10^{3}	1.9756×10^{3}	1.9819×10^{3}	4.3347×10^{3}
	Rank	2	3	10	1	9	8	4	5	6	7
	Mean	3.0243×10^{2}	7.9869×10^{2}	8.1416×10^{2}	4.4823×10^{2}	7.7229×10^{2}	3.9643×10^{2}	5.6072×10^{2}	4.9392×10^{2}	1.2266×10^{3}	5.0039×10^{2}
F_{16}	Std	$2.0550 imes 10^{2}$	2.8651×10^2	2.6440×10^{2}	1.3443×10^{2}	2.2590×10^{2}	1.1932×10^{2}	2.0850×10^{2}	$1.7309{ imes}10^2$	3.0034×10^2	2.7575×10^{2}
	Rank	1	8	9	3	7	2	6	4	10	5
	Mean	4.7111×10^{1}	2.2439×10^{2}	2.7004×10^{2}	6.9544×10^{1}	2.5591×10^{2}	8.1642×10^{1}	8.7684×10^{1}	1.4116×10^{2}	5.5825×10^{2}	2.3994×10^{2}
F_{17}	Std	4.0925×10^{1}	1.3518×10^{2}	1.3820×10^{2}	1.7296×10^{1}	1.2971×10^{2}	2.2037×10^{1}	9.1289×10^{1}	8.5026×10^{1}	2.3401×10^{2}	8.8703×10^{1}
	Rank	1	6	9	2	8	3	4	5	10	7
	Mean	6.1013×10^{4}	6.9910×10^{4}	7.1643×10^{5}	$2.0505 imes 10^2$	1.1409×10^{5}	3.2225×10^{5}	1.0034×10^{5}	2.1361×10^{5}	9.8409×10^{5}	2.0609×10^{5}
F_{18}	Std	5.7031×10^{4}	1.0210×10^{5}	8.2799×10^{5}	$4.7536 imes 10^{1}$	1.1535×10^{5}	1.2197×10^{5}	1.1019×10^{5}	1.3261×10^{5}	1.1184×10^{6}	1.5131×10^{5}
	Rank	2	3	9	1	5	8	4	7	10	6
-	Mean	3.4042×10^{1}	4.4886×10^{3}	4.6400×10^{5}	2.9977×10^{1}	8.6631×10^{3}	8.3686×10^{3}	5.9612×10^{3}	2.0723×10^{3}	5.2207×10^{3}	6.3203×10^{3}
F_{19}	Std	2.0528×10^{1}	1.3325×10^{4}	5.4998×10^{5}	$3.3897 imes 10^{\circ}$	1.9974×10^{4}	9.2795×10^{3}	7.1112×10^{3}	2.1685×10^{3}	3.9175×10^{3}	1.0793×10^{4}
	Rank	2	4	10	1	9	8	6	3	5	7
-	Mean	9.6665×10^{1}	2.4290×10^{2}	3.6059×10^{2}	1.1363×10^{2}	2.6516×10^{2}	$5.5205 imes 10^{1}$	1.2989×10^{2}	1.7303×10^{2}	4.6345×10^{2}	2.4392×10^{2}
F_{20}	Std	7.7834×10^{1}	1.4995×10^{2}	1.0264×10^{2}	5.2411×10^{1}	1.1737×10^{2}	$3.5413 imes 10^1$	7.0970×10^{1}	7.2015×10^{1}	1.7129×10^{2}	8.4432×10^{1}
	Rank	2	6	9	3	8	1	4	5	10	7
_	Mean	2.3023×10^{2}	2.5626×10^{2}	2.8298×10^{2}	2.5458×10^{2}	2.7446×10^{2}	2.5950×10^{2}	2.4896×10^{2}	2.5047×10^{2}	3.7768×10^{2}	2.6988×10^{2}
F_{21}	Std	$8.5095 imes 10^{\circ}$	1.6800×10^{1}	2.5686×10^{1}	3.3247×10^{1}	1.9517×10^{1}	$7.6690 \times 10^{\circ}$	1.3195×10^{1}	$8.4442 \times 10^{\circ}$	7.9462×10^{1}	1.9589×10^{1}
	Rank	1	5	9	4	8	6	2	3	10	7

2770

	Та	ble 4 Con	parison res	sults on the	30-dimensi	onal compl	ex functions	from CEC	2017 (cont)	inued table	e)
函数	标准	HCOAG	COA	GWO	MEGWO	HFPSO	DEBBO	SaDE	SE04	FWA	TLBO
	Mean	1.0010×10^{2}	1.9999×10^{3}	$8.0434{\times}10^2$	$1.0022{ imes}10^2$	$1.4532{ imes}10^3$	1.0000×10^{2}	1.0228×10^2	1.0211×10^{3}	2.1380×10^{3}	$1.0232{ imes}10^2$
F_{22}	Std	$4.8096{\times}10^{{\scriptscriptstyle-}1}$	1.5970×10^{3}	1.1113×10^{3}	$4.3917{\times}10^{-2}$	1.8286×10^{3}	$2.3100 imes 10^{-13}$	$3.2279 \times 10^{\circ}$	1.2872×10^{3}	2.2149×10^{3}	$4.0114 \times 10^{\circ}$
	Rank	2	9	6	3	8	1	4	7	10	5
	Mean	$3.7755 imes 10^2$	$4.1635{\times}10^2$	$4.7029{\times}10^2$	$3.8959{ imes}10^2$	4.8447×10^{2}	4.0323×10^{2}	$4.1472{ imes}10^2$	$4.0247{\times}10^2$	5.8963×10^{2}	4.5003×10^{2}
F_{23}	Std	1.0911×10^{1}	1.6898×10^{1}	$2.9324{ imes}10^{\scriptscriptstyle 1}$	6.8787×10^{1}	4.4709×10^{1}	$5.6348 \times 10^{\circ}$	1.8742×10^{1}	$8.1687 \times 10^{\circ}$	8.8792×10^{1}	3.0546×10^{1}
	Rank	1	6	8	2	9	4	5	3	10	7
	Mean	4.4827×10^{2}	5.4044×10^{2}	5.2489×10^{2}	4.8972×10^{2}	5.6079×10^{2}	4.7430×10^{2}	4.8169×10^{2}	4.9840×10^{2}	7.9489×10^{2}	5.0152×10^{2}
F_{24}	Std	$1.0757\! imes\!10^{\scriptscriptstyle 1}$	$4.5778{\times}10^{\scriptscriptstyle 1}$	3.3902×10^{1}	1.6597×10^{1}	5.7847×10^{1}	$6.0055 \times 10^{\circ}$	2.0610×10^{1}	1.3899×10^{1}	8.6391×10^{1}	2.3700×10^{1}
	Rank	1	8	7	4	9	2	3	5	10	6
	Mean	3.8777×10^{2}	3.8706×10^{2}	4.7784×10^{2}	3.8374×10^{2}	3.8818×10^{2}	3.8691×10^2	4.0124×10^{2}	3.8779×10^{2}	4.1099×10^{2}	4.0877×10^{2}
F_{25}	Std	$5.4462 \times 10^{\circ}$	8.0647×10^{-1}	2.3819×10^{1}	1.8246×10^{-1}	$3.4076 \times 10^{\circ}$	$7.5524 imes 10^{-2}$	1.9489×10^{1}	$1.1319 \times 10^{\circ}$	$2.1657{\times}10^{\scriptscriptstyle 1}$	2.2401×10^{1}
	Rank	4	3	10	1	6	2	7	5	9	8
	Mean	1.2578×10^{3}	1.6520×10^{3}	2.0116×10^{3}	2.5051×10^{2}	1.4922×10^{3}	1.4821×10^{3}	1.7344×10^{3}	1.5337×10^{3}	2.2418×10^{3}	1.8645×10^{3}
F_{26}	Std	1.9807×10^{2}	1.7070×10^{2}	$5.7618{ imes}10^2$	4.1112×10^{1}	9.6940×10^{2}	7.2015×10^{1}	$7.1347{ imes}10^2$	1.9051×10^{2}	1.7373×10^{3}	1.0276×10^{3}
	Rank	2	6	9	1	4	3	7	5	10	8
	Rank Mean	2 5.1091×10 ²	$6 \\ 5.0430 \times 10^2$	9 5.9279×10 ²	1 5.1286×10 ²	4 5.3523×10 ²	3 4.9807×10 ²	7 5.4289×10 ²	$5 \\ 5.0744 \times 10^2$	10 5.7919×10 ²	$\frac{8}{5.3827 \times 10^2}$
	Rank Mean Std	2 5.1091×10 ² 7.7116×10 ⁰	6 5.0430×10 ² 8.2707×10 ⁰	9 5.9279×10 ² 3.8462×10 ¹	$\begin{array}{c} 1 \\ 5.1286 \times 10^2 \\ 6.1632 \times 10^0 \end{array}$	$\begin{array}{c} 4 \\ 5.3523 \times 10^2 \\ 2.1095 \times 10^1 \end{array}$	3 4.9807×10 ² 4.7270×10 ⁰	$\begin{array}{c} 7 \\ 5.4289 \times 10^2 \\ 1.7086 \times 10^1 \end{array}$	5 5.0744×10 ² 3.6242×10 ⁰	$\begin{array}{c} 10 \\ 5.7919 \times 10^2 \\ 3.5317 \times 10^1 \end{array}$	$\frac{8}{5.3827 \times 10^2}$ 1.6907×10^1
F ₂₇	Rank Mean Std Rank	$\begin{array}{c} 2 \\ 5.1091 \times 10^2 \\ 7.7116 \times 10^0 \\ 4 \end{array}$	6 5.0430×10 ² 8.2707×10 ⁰ 2	9 5.9279×10 ² 3.8462×10 ¹ 10	$ 1 5.1286 \times 10^2 6.1632 \times 10^0 5 $	$\begin{array}{c} 4 \\ 5.3523 \times 10^2 \\ 2.1095 \times 10^1 \\ 6 \end{array}$	3 4.9807×10² 4.7270×10⁰ 1	$7 \\ 5.4289 \times 10^{2} \\ 1.7086 \times 10^{1} \\ 8$	$5 \\ 5.0744 \times 10^2 \\ 3.6242 \times 10^0 \\ 3 \\ 3$	$ \begin{array}{r} 10 \\ 5.7919 \times 10^2 \\ 3.5317 \times 10^1 \\ 9 \\ \end{array} $	$\frac{8}{5.3827 \times 10^2}$ 1.6907×10^1 7
F ₂₇	Rank Mean Std Rank Mean	$\begin{array}{c} 2 \\ 5.1091 \times 10^2 \\ 7.7116 \times 10^0 \\ 4 \\ 3.3558 \times 10^2 \end{array}$	$ \begin{array}{r} 6 \\ 5.0430 \times 10^2 \\ 8.2707 \times 10^0 \\ 2 \\ 4.0555 \times 10^2 \end{array} $	$\begin{array}{c} 9 \\ 5.9279 \times 10^2 \\ 3.8462 \times 10^1 \\ 10 \\ 5.9941 \times 10^2 \end{array}$	$ \begin{array}{r} 1 \\ 5.1286 \times 10^2 \\ 6.1632 \times 10^0 \\ 5 \\ 3.6492 \times 10^2 \\ \end{array} $	$\begin{array}{c} 4 \\ 5.3523 \times 10^2 \\ 2.1095 \times 10^1 \\ 6 \\ 3.5331 \times 10^2 \end{array}$	3 4.9807×10 ² 4.7270×10 ⁰ 1 3.2281×10 ²	$7 \\ 5.4289 \times 10^{2} \\ 1.7086 \times 10^{1} \\ 8 \\ 3.3257 \times 10^{2}$	$5 \\ 5.0744 \times 10^{2} \\ 3.6242 \times 10^{0} \\ 3 \\ 4.1364 \times 10^{2} \\$	$\begin{array}{c} 10 \\ 5.7919 \times 10^2 \\ 3.5317 \times 10^1 \\ 9 \\ 4.6256 \times 10^2 \end{array}$	$\frac{8}{5.3827 \times 10^2}$ 1.6907×10^1 $\frac{7}{3.6806 \times 10^2}$
F ₂₇	Rank Mean Std Rank Mean Std	$\begin{array}{c} 2 \\ 5.1091 \times 10^2 \\ 7.7116 \times 10^0 \\ 4 \\ 3.3558 \times 10^2 \\ 5.3866 \times 10^1 \end{array}$	$\begin{array}{c} 6 \\ 5.0430 \times 10^2 \\ 8.2707 \times 10^0 \\ 2 \\ 4.0555 \times 10^2 \\ 3.6156 \times 10^1 \end{array}$	$\begin{array}{c} 9 \\ 5.9279 \times 10^2 \\ 3.8462 \times 10^1 \\ 10 \\ 5.9941 \times 10^2 \\ 6.9788 \times 10^1 \end{array}$	$\begin{array}{c} 1 \\ 5.1286 \times 10^2 \\ 6.1632 \times 10^0 \\ 5 \\ 3.6492 \times 10^2 \\ 3.2477 \times 10^1 \end{array}$	$\begin{array}{c} 4 \\ 5.3523 \times 10^2 \\ 2.1095 \times 10^1 \\ 6 \\ 3.5331 \times 10^2 \\ 5.9179 \times 10^1 \end{array}$	$\begin{array}{c} 3 \\ \textbf{4.9807} \times 10^2 \\ \textbf{4.7270} \times 10^0 \\ 1 \\ \textbf{3.2281} \times 10^2 \\ \textbf{3.7880} \times 10^1 \end{array}$	$\begin{array}{c} 7 \\ 5.4289 \times 10^2 \\ 1.7086 \times 10^1 \\ 8 \\ 3.3257 \times 10^2 \\ 5.2165 \times 10^1 \end{array}$	$5 \\ 5.0744 \times 10^{2} \\ 3.6242 \times 10^{0} \\ 3 \\ 4.1364 \times 10^{2} \\ 2.5577 \times 10^{1} \\ $	$\begin{array}{c} 10 \\ 5.7919 \times 10^2 \\ 3.5317 \times 10^1 \\ 9 \\ 4.6256 \times 10^2 \\ 2.3601 \times 10^1 \end{array}$	$\frac{8}{5.3827 \times 10^2}$ 1.6907×10^1 7 3.6806×10^2 5.3388×10^1
F ₂₇	Rank Mean Std Rank Mean Std Rank	$\begin{array}{c} 2 \\ 5.1091 \times 10^2 \\ 7.7116 \times 10^0 \\ 4 \\ 3.3558 \times 10^2 \\ 5.3866 \times 10^1 \\ 3 \end{array}$	$\frac{6}{5.0430 \times 10^{2}}$ 8.2707×10^{0} $\frac{2}{4.0555 \times 10^{2}}$ 3.6156×10^{1} 7	$\begin{array}{c} 9 \\ 5.9279 \times 10^2 \\ 3.8462 \times 10^1 \\ 10 \\ 5.9941 \times 10^2 \\ 6.9788 \times 10^1 \\ 10 \end{array}$	$\frac{1}{5.1286 \times 10^{2}}$ 6.1632×10 ⁰ 5 3.6492×10 ² 3.2477×10 ¹ 5	$\begin{array}{c} 4 \\ 5.3523 \times 10^2 \\ 2.1095 \times 10^1 \\ \hline 6 \\ 3.5331 \times 10^2 \\ 5.9179 \times 10^1 \\ \hline 4 \end{array}$	$\begin{array}{c} 3 \\ 4.9807 \times 10^2 \\ 4.7270 \times 10^0 \\ 1 \\ 3.2281 \times 10^2 \\ 3.7880 \times 10^1 \\ 1 \end{array}$	$\begin{array}{c} 7 \\ 5.4289 \times 10^2 \\ 1.7086 \times 10^1 \\ 8 \\ 3.3257 \times 10^2 \\ 5.2165 \times 10^1 \\ 2 \end{array}$	$5 \\ 5.0744 \times 10^{2} \\ 3.6242 \times 10^{0} \\ 3 \\ 4.1364 \times 10^{2} \\ 2.5577 \times 10^{1} \\ 8 \\ \end{cases}$	$\begin{array}{c} 10 \\ 5.7919 \times 10^2 \\ 3.5317 \times 10^1 \\ 9 \\ 4.6256 \times 10^2 \\ 2.3601 \times 10^1 \\ 9 \end{array}$	$\frac{8}{5.3827 \times 10^2}$ 1.6907×10^1 $\frac{7}{3.6806 \times 10^2}$ 5.3388×10^1 6
F ₂₇	Rank Mean Std Rank Mean Std Rank	$\begin{array}{c} 2 \\ 5.1091 \times 10^2 \\ 7.7116 \times 10^0 \\ 4 \\ 3.3558 \times 10^2 \\ 5.3866 \times 10^1 \\ 3 \\ \textbf{4.5991} \times 10^2 \end{array}$	$\begin{array}{c} 6 \\ 5.0430 \times 10^2 \\ 8.2707 \times 10^0 \\ 2 \\ 4.0555 \times 10^2 \\ 3.6156 \times 10^1 \\ 7 \\ 6.6978 \times 10^2 \end{array}$	$\begin{array}{c} 9 \\ 5.9279 \times 10^2 \\ 3.8462 \times 10^1 \\ 10 \\ 5.9941 \times 10^2 \\ 6.9788 \times 10^1 \\ 10 \\ 8.5036 \times 10^2 \end{array}$	$\begin{array}{c} 1 \\ 5.1286 \times 10^2 \\ 6.1632 \times 10^0 \\ 5 \\ 3.6492 \times 10^2 \\ 3.2477 \times 10^1 \\ 5 \\ 5.4385 \times 10^2 \end{array}$	$\begin{array}{c} 4 \\ 5.3523 \times 10^2 \\ 2.1095 \times 10^1 \\ 6 \\ 3.5331 \times 10^2 \\ 5.9179 \times 10^1 \\ 4 \\ 6.7006 \times 10^2 \end{array}$	$\frac{3}{4.9807 \times 10^{2}}$ 4.7270×10^{0} 1 3.2281×10^{2} 3.7880×10^{1} 1 5.1851×10^{2}	$\begin{array}{c} 7 \\ 5.4289 \times 10^2 \\ 1.7086 \times 10^1 \\ 8 \\ 3.3257 \times 10^2 \\ 5.2165 \times 10^1 \\ 2 \\ 5.5826 \times 10^2 \end{array}$	$5 \\ 5.0744 \times 10^{2} \\ 3.6242 \times 10^{0} \\ 3 \\ 4.1364 \times 10^{2} \\ 2.5577 \times 10^{1} \\ 8 \\ 5.4778 \times 10^{2} \\ \end{cases}$	$\begin{array}{c} 10 \\ 5.7919 \times 10^2 \\ 3.5317 \times 10^1 \\ 9 \\ 4.6256 \times 10^2 \\ 2.3601 \times 10^1 \\ 9 \\ 1.0120 \times 10^3 \end{array}$	$\frac{8}{5.3827 \times 10^2}$ 1.6907×10^1 7 3.6806×10^2 5.3388×10^1 6 7.8922×10^2
F ₂₇ F ₂₈ F ₂₉	Rank Mean Std Mean Std Rank Mean Std	$\frac{2}{5.1091 \times 10^2}$ 7.7116×10^0 4 3.3558×10^2 5.3866×10^1 3 4.5991×10^2 4.4075×10^1	$\begin{array}{c} 6 \\ 5.0430 \times 10^2 \\ 8.2707 \times 10^0 \\ 2 \\ 4.0555 \times 10^2 \\ 3.6156 \times 10^1 \\ 7 \\ 6.6978 \times 10^2 \\ 1.7459 \times 10^2 \end{array}$	$\begin{array}{c} 9 \\ 5.9279 \times 10^2 \\ 3.8462 \times 10^1 \\ 10 \\ 5.9941 \times 10^2 \\ 6.9788 \times 10^1 \\ 10 \\ 8.5036 \times 10^2 \\ 1.8235 \times 10^2 \end{array}$	$\begin{array}{c} 1 \\ 5.1286 \times 10^2 \\ 6.1632 \times 10^0 \\ 5 \\ 3.6492 \times 10^2 \\ 3.2477 \times 10^1 \\ 5 \\ 5.4385 \times 10^2 \\ 5.4241 \times 10^1 \end{array}$	$\begin{array}{c} 4 \\ 5.3523 \times 10^2 \\ 2.1095 \times 10^1 \\ 6 \\ 3.5331 \times 10^2 \\ 5.9179 \times 10^1 \\ 4 \\ 6.7006 \times 10^2 \\ 1.4475 \times 10^2 \end{array}$	$\begin{array}{c} 3 \\ \textbf{4.9807} \times 10^2 \\ \textbf{4.7270} \times 10^0 \\ 1 \\ \textbf{3.2281} \times 10^2 \\ \textbf{3.7880} \times 10^1 \\ 1 \\ 5.1851 \times 10^2 \\ \textbf{3.4859} \times 10^1 \end{array}$	$\begin{array}{c} 7 \\ 5.4289 \times 10^2 \\ 1.7086 \times 10^1 \\ 8 \\ 3.3257 \times 10^2 \\ 5.2165 \times 10^1 \\ 2 \\ 5.5826 \times 10^2 \\ 1.0040 \times 10^2 \end{array}$	$5 \\ 5.0744 \times 10^{2} \\ 3.6242 \times 10^{0} \\ 3 \\ 4.1364 \times 10^{2} \\ 2.5577 \times 10^{1} \\ 8 \\ 5.4778 \times 10^{2} \\ 8.1960 \times 10^{1} \\ \end{cases}$	$\begin{array}{c} 10 \\ 5.7919 \times 10^2 \\ 3.5317 \times 10^1 \\ 9 \\ 4.6256 \times 10^2 \\ 2.3601 \times 10^1 \\ 9 \\ 1.0120 \times 10^3 \\ 2.1872 \times 10^2 \end{array}$	$\frac{8}{5.3827 \times 10^2}$ 1.6907×10^1 7 3.6806×10^2 5.3388×10^1 6 7.8922×10^2 1.3560×10^2
F ₂₇ F ₂₈ F ₂₉	Rank Mean Std Mean Std Rank Mean Std Rank	$\frac{2}{5.1091 \times 10^2}$ 7.7116×10^0 4 3.3558×10^2 5.3866×10^1 3 4.5991×10^2 4.4075×10^1 1	$\frac{6}{5.0430 \times 10^{2}}$ 8.2707×10^{0} 2 4.0555×10^{2} 3.6156×10^{1} 7 6.6978×10^{2} 1.7459×10^{2} 6	$\begin{array}{c} 9 \\ 5.9279 \times 10^2 \\ 3.8462 \times 10^1 \\ 10 \\ 5.9941 \times 10^2 \\ 6.9788 \times 10^1 \\ 10 \\ 8.5036 \times 10^2 \\ 1.8235 \times 10^2 \\ 9 \end{array}$	$\frac{1}{5.1286 \times 10^{2}}$ 6.1632×10 ⁰ 5 3.6492×10 ² 3.2477×10 ¹ 5 5.4385×10 ² 5.4385×10 ² 3.4241×10 ¹ 3	$\begin{array}{c} 4 \\ 5.3523 \times 10^2 \\ 2.1095 \times 10^1 \\ 6 \\ 3.5331 \times 10^2 \\ 5.9179 \times 10^1 \\ 4 \\ 6.7006 \times 10^2 \\ 1.4475 \times 10^2 \\ 7 \end{array}$	$\frac{3}{4.9807 \times 10^{2}}$ $\frac{4.7270 \times 10^{9}}{1}$ $\frac{1}{3.2281 \times 10^{2}}$ $\frac{3.7880 \times 10^{1}}{1}$ $\frac{1}{5.1851 \times 10^{2}}$ $\frac{3.4859 \times 10^{1}}{2}$	$\frac{7}{5.4289 \times 10^{2}}$ 1.7086×10^{1} $\frac{8}{3.3257 \times 10^{2}}$ 5.2165×10^{1} $\frac{2}{5.5826 \times 10^{2}}$ 1.0040×10^{2} 5	$\frac{5}{5.0744 \times 10^{2}}$ 3.6242×10^{0} $3}$ 4.1364×10^{2} 2.5577×10^{1} 8 5.4778×10^{2} 8.1960×10^{1} 4	$ \begin{array}{r} 10 \\ 5.7919 \times 10^{2} \\ 3.5317 \times 10^{1} \\ 9 \\ 4.6256 \times 10^{2} \\ 2.3601 \times 10^{1} \\ 9 \\ 1.0120 \times 10^{3} \\ 2.1872 \times 10^{2} \\ 10 \\ \end{array} $	$\frac{8}{5.3827 \times 10^{2}}$ 1.6907×10^{1} 7 3.6806×10^{2} 5.3388×10^{1} 6 7.8922×10^{2} 1.3560×10^{2} 8
F ₂₇ F ₂₈ F ₂₉	Rank Mean Std Mean Std Rank Mean Std Rank Mean	$\frac{2}{5.1091 \times 10^2}$ 7.7116×10^0 4 3.3558×10^2 5.3866×10^1 3 4.5991×10^2 4.4075×10^1 1 2.9823×10^3	$\begin{array}{c} 6 \\ 5.0430 \times 10^2 \\ 8.2707 \times 10^0 \\ 2 \\ 4.0555 \times 10^2 \\ 3.6156 \times 10^1 \\ 7 \\ 6.6978 \times 10^2 \\ 1.7459 \times 10^2 \\ 6 \\ 6.0618 \times 10^3 \end{array}$	$\begin{array}{c} 9 \\ 5.9279 \times 10^2 \\ 3.8462 \times 10^1 \\ 10 \\ 5.9941 \times 10^2 \\ 6.9788 \times 10^1 \\ 10 \\ 8.5036 \times 10^2 \\ 1.8235 \times 10^2 \\ 9 \\ 4.0643 \times 10^6 \end{array}$	$\begin{array}{c} 1 \\ 5.1286 \times 10^2 \\ 6.1632 \times 10^0 \\ 5 \\ 3.6492 \times 10^2 \\ 3.2477 \times 10^1 \\ 5 \\ 5.4385 \times 10^2 \\ 5.4241 \times 10^1 \\ 3 \\ 3.6855 \times 10^3 \end{array}$	$\begin{array}{c} 4 \\ 5.3523 \times 10^2 \\ 2.1095 \times 10^1 \\ 6 \\ 3.5331 \times 10^2 \\ 5.9179 \times 10^1 \\ 4 \\ 6.7006 \times 10^2 \\ 1.4475 \times 10^2 \\ 7 \\ 1.8733 \times 10^4 \end{array}$	$\frac{3}{4.9807 \times 10^{2}}$ 4.7270×10^{0} 1 3.2281×10^{2} 3.7880×10^{1} 1 5.1851×10^{2} 3.4859×10^{1} 2 5.9405×10^{3}	$\begin{array}{c} 7 \\ 5.4289 \times 10^2 \\ 1.7086 \times 10^1 \\ 8 \\ 3.3257 \times 10^2 \\ 5.2165 \times 10^1 \\ 2 \\ 5.5826 \times 10^2 \\ 1.0040 \times 10^2 \\ 5 \\ 5.0147 \times 10^3 \end{array}$	$\begin{array}{c} 5 \\ 5.0744 \times 10^2 \\ 3.6242 \times 10^0 \\ 3 \\ 4.1364 \times 10^2 \\ 2.5577 \times 10^1 \\ 8 \\ 5.4778 \times 10^2 \\ 8.1960 \times 10^1 \\ 4 \\ 4.9671 \times 10^3 \end{array}$	$\begin{array}{c} 10 \\ 5.7919 \times 10^2 \\ 3.5317 \times 10^1 \\ 9 \\ 4.6256 \times 10^2 \\ 2.3601 \times 10^1 \\ 9 \\ 1.0120 \times 10^3 \\ 2.1872 \times 10^2 \\ 10 \\ 1.5965 \times 10^4 \end{array}$	$\frac{8}{5.3827 \times 10^2}$ 1.6907×10^1 7 3.6806×10^2 5.3388×10^1 6 7.8922×10^2 1.3560×10^2 8 5.9572×10^3
F_{27} F_{28} F_{29} F_{30}	Rank Mean Std Mean Std Rank Std Rank Mean Std	$\frac{2}{5.1091 \times 10^2}$ 7.7116×10^0 4 3.3558×10^2 5.3866×10^1 3 4.5991×10^2 4.4075×10^1 1 2.9823×10^3 6.1135×10^2	$\begin{array}{c} 6 \\ 5.0430 \times 10^2 \\ 8.2707 \times 10^0 \\ 2 \\ 4.0555 \times 10^2 \\ 3.6156 \times 10^1 \\ 7 \\ 6.6978 \times 10^2 \\ 1.7459 \times 10^2 \\ 6 \\ 6.0618 \times 10^3 \\ 4.7022 \times 10^3 \end{array}$	$\begin{array}{c} 9 \\ 5.9279 \times 10^2 \\ 3.8462 \times 10^1 \\ 10 \\ 5.9941 \times 10^2 \\ 6.9788 \times 10^1 \\ 10 \\ 8.5036 \times 10^2 \\ 1.8235 \times 10^2 \\ 9 \\ 4.0643 \times 10^6 \\ 3.1688 \times 10^6 \end{array}$	$\begin{array}{c} 1 \\ 5.1286 \times 10^2 \\ 6.1632 \times 10^0 \\ 5 \\ 3.6492 \times 10^2 \\ 3.2477 \times 10^1 \\ 5 \\ 5.4385 \times 10^2 \\ 5.4241 \times 10^1 \\ 3 \\ 3.6855 \times 10^3 \\ 3.3042 \times 10^2 \end{array}$	$\begin{array}{c} 4 \\ 5.3523 \times 10^2 \\ 2.1095 \times 10^1 \\ 6 \\ 3.5331 \times 10^2 \\ 5.9179 \times 10^1 \\ 4 \\ 6.7006 \times 10^2 \\ 1.4475 \times 10^2 \\ 7 \\ 1.8733 \times 10^4 \\ 3.4470 \times 10^4 \end{array}$	$\begin{array}{c} 3 \\ \textbf{4.9807} \times 10^2 \\ \textbf{4.7270} \times 10^0 \\ 1 \\ \textbf{3.2281} \times 10^2 \\ \textbf{3.7880} \times 10^1 \\ 1 \\ 5.1851 \times 10^2 \\ 3.4859 \times 10^1 \\ 2 \\ 5.9405 \times 10^3 \\ 2.3158 \times 10^3 \end{array}$	$\begin{array}{c} 7 \\ 5.4289 \times 10^2 \\ 1.7086 \times 10^1 \\ 8 \\ 3.3257 \times 10^2 \\ 5.2165 \times 10^1 \\ 2 \\ 5.5826 \times 10^2 \\ 1.0040 \times 10^2 \\ 5 \\ 5.0147 \times 10^3 \\ 1.9712 \times 10^3 \end{array}$	$\frac{5}{5.0744 \times 10^{2}}$ 3.6242×10^{0} $3}\\4.1364 \times 10^{2}$ 2.5577×10^{1} $8}\\5.4778 \times 10^{2}$ 8.1960×10^{1} 4 4.9671×10^{3} 2.0934×10^{3}	$\begin{array}{c} 10 \\ 5.7919 \times 10^2 \\ 3.5317 \times 10^1 \\ 9 \\ 4.6256 \times 10^2 \\ 2.3601 \times 10^1 \\ 9 \\ 1.0120 \times 10^3 \\ 2.1872 \times 10^2 \\ 10 \\ 1.5965 \times 10^4 \\ 8.7877 \times 10^3 \end{array}$	$\frac{8}{5.3827 \times 10^{2}}$ 1.6907×10^{1} 7 3.6806×10^{2} 5.3388×10^{1} 6 7.8922×10^{2} 1.3560×10^{2} 8 5.9572×10^{3} 3.9139×10^{3}
F_{27} F_{28} F_{29} F_{30}	Rank Mean Std Aank Std Rank Std Rank Mean Std Std	$\frac{2}{5.1091 \times 10^{2}}$ 7.7116×10^{0} 4 3.3558×10^{2} 5.3866×10^{1} 3 4.5991×10^{2} 4.4075×10^{1} 1 2.9823×10^{3} 6.1135×10^{2} 1	$\begin{array}{c} 6 \\ 5.0430 \times 10^2 \\ 8.2707 \times 10^0 \\ 2 \\ 4.0555 \times 10^2 \\ 3.6156 \times 10^1 \\ 7 \\ 6.6978 \times 10^2 \\ 1.7459 \times 10^2 \\ 6 \\ 6.0618 \times 10^3 \\ 4.7022 \times 10^3 \\ 7 \end{array}$	9 5.9279×10^2 3.8462×10^1 10 5.9941×10^2 6.9788×10^1 10 8.5036×10^2 1.8235×10^2 9 4.0643×10^6 3.1688×10^6 10	$\frac{1}{5.1286 \times 10^2}$ 6.1632 × 10 ⁰ 5 3.6492 × 10 ² 3.2477 × 10 ¹ 5 5.4385 × 10 ² 5.4241 × 10 ¹ 3 3.6855 × 10 ³ 3.3042 × 10 ² 2	$\begin{array}{c} 4 \\ 5.3523 \times 10^2 \\ 2.1095 \times 10^1 \\ 6 \\ 3.5331 \times 10^2 \\ 5.9179 \times 10^1 \\ 4 \\ 6.7006 \times 10^2 \\ 1.4475 \times 10^2 \\ 7 \\ 1.8733 \times 10^4 \\ 3.4470 \times 10^4 \\ 9 \end{array}$	$\begin{array}{c} 3 \\ 4.9807 \times 10^2 \\ 4.7270 \times 10^0 \\ 1 \\ 3.2281 \times 10^2 \\ 3.7880 \times 10^1 \\ 1 \\ 5.1851 \times 10^2 \\ 3.4859 \times 10^1 \\ 2 \\ 5.9405 \times 10^3 \\ 2.3158 \times 10^3 \\ 5 \end{array}$	$\begin{array}{c} 7 \\ 5.4289 \times 10^2 \\ 1.7086 \times 10^1 \\ 8 \\ 3.3257 \times 10^2 \\ 5.2165 \times 10^1 \\ 2 \\ 5.5826 \times 10^2 \\ 1.0040 \times 10^2 \\ 5 \\ 5.0147 \times 10^3 \\ 1.9712 \times 10^3 \\ 4 \end{array}$	$\frac{5}{5.0744 \times 10^2}$ 3.6242×10^0 3 4.1364×10^2 2.5577×10^1 8 5.4778×10^2 8.1960×10^1 4 4.9671×10^3 2.0934×10^3 3	$\begin{array}{c} 10 \\ 5.7919 \times 10^2 \\ 3.5317 \times 10^1 \\ 9 \\ 4.6256 \times 10^2 \\ 2.3601 \times 10^1 \\ 9 \\ 1.0120 \times 10^3 \\ 2.1872 \times 10^2 \\ 10 \\ 1.5965 \times 10^4 \\ 8.7877 \times 10^3 \\ 8 \end{array}$	$\frac{8}{5.3827 \times 10^2}$ 1.6907×10^1 7 3.6806×10^2 5.3388×10^1 6 7.8922×10^2 8 5.9572×10^3 3.9139×10^3 6
F_{27} F_{28} F_{29} F_{30} Co	Rank Mean Std Mean Std Rank Mean Std Rank Std Rank	$\frac{2}{5.1091 \times 10^2}$ $\frac{3.3558 \times 10^2}{5.3866 \times 10^1}$ $\frac{3}{4.5991 \times 10^2}$ $\frac{4.4075 \times 10^1}{1}$ $\frac{1}{6.1135 \times 10^2}$ $\frac{1}{15}$	$\begin{array}{c} 6 \\ 5.0430 \times 10^2 \\ 8.2707 \times 10^0 \\ 2 \\ 4.0555 \times 10^2 \\ 3.6156 \times 10^1 \\ 7 \\ 6.6978 \times 10^2 \\ 1.7459 \times 10^2 \\ 6 \\ 6.0618 \times 10^3 \\ 4.7022 \times 10^3 \\ 4.7022 \times 10^3 \\ 7 \\ 0 \end{array}$	9 5.9279×10^2 3.8462×10^1 10 5.9941×10^2 6.9788×10^1 10 8.5036×10^2 1.8235×10^2 9 4.0643×10^6 3.1688×10^6 10 0	$\begin{array}{c} 1 \\ 5.1286 \times 10^2 \\ 6.1632 \times 10^0 \\ 5 \\ 3.6492 \times 10^2 \\ 3.2477 \times 10^1 \\ 5 \\ 5.4385 \times 10^2 \\ 5.4241 \times 10^1 \\ 3 \\ 3.6855 \times 10^3 \\ 3.3042 \times 10^2 \\ 2 \\ 7 \end{array}$	$\begin{array}{c} 4 \\ 5.3523 \times 10^2 \\ 2.1095 \times 10^1 \\ 6 \\ 3.5331 \times 10^2 \\ 5.9179 \times 10^1 \\ 4 \\ 6.7006 \times 10^2 \\ 1.4475 \times 10^2 \\ 7 \\ 1.8733 \times 10^4 \\ 3.4470 \times 10^4 \\ 9 \\ 1 \end{array}$	$\begin{array}{c} 3 \\ 4.9807 \times 10^2 \\ 4.7270 \times 10^0 \\ 1 \\ 3.2281 \times 10^2 \\ 3.7880 \times 10^1 \\ 1 \\ 5.1851 \times 10^2 \\ 3.4859 \times 10^1 \\ 2 \\ 5.9405 \times 10^3 \\ 2.3158 \times 10^3 \\ 5 \\ 6 \end{array}$	$\begin{array}{c} 7 \\ 5.4289 \times 10^2 \\ 1.7086 \times 10^1 \\ 8 \\ 3.3257 \times 10^2 \\ 5.2165 \times 10^1 \\ 2 \\ 5.5826 \times 10^2 \\ 1.0040 \times 10^2 \\ 5 \\ 5.0147 \times 10^3 \\ 1.9712 \times 10^3 \\ 4 \\ 1 \end{array}$	$\frac{5}{5.0744 \times 10^2}$ 3.6242×10^0 3 4.1364×10^2 2.5577×10^1 8 5.4778×10^2 8.1960×10^1 4 4.9671×10^3 2.0934×10^3 3 0	$\begin{array}{c} 10 \\ 5.7919 \times 10^2 \\ 3.5317 \times 10^1 \\ 9 \\ 4.6256 \times 10^2 \\ 2.3601 \times 10^1 \\ 9 \\ 1.0120 \times 10^3 \\ 2.1872 \times 10^3 \\ 1.5965 \times 10^4 \\ 8.7877 \times 10^3 \\ 8 \\ 0 \end{array}$	$\frac{8}{5.3827 \times 10^2}$ 1.6907×10^1 7 3.6806×10^2 5.3388×10^1 6 7.8922×10^2 1.3560×10^2 8 5.9572×10^3 3.9139×10^3 6 0
F ₂₇ F ₂₈ F ₂₉ F ₃₀ Co Ave	Rank Mean Std Mean Std Rank Mean Std Rank Std Rank unt	$\frac{2}{5.1091 \times 10^{2}}$ 7.7116×10^{0} 4 3.3558×10^{2} 5.3866×10^{1} 3 4.5991×10^{2} 4.4075×10^{1} 1 2.9823×10^{3} 6.1135×10^{2} 1 15 1.73	$\begin{array}{c} 6 \\ 5.0430 \times 10^2 \\ 8.2707 \times 10^0 \\ 2 \\ 4.0555 \times 10^2 \\ 3.6156 \times 10^1 \\ 7 \\ 6.6978 \times 10^2 \\ 1.7459 \times 10^2 \\ 6 \\ 6.0618 \times 10^3 \\ 4.7022 \times 10^3 \\ 7 \\ 0 \\ 5.27 \end{array}$	9 5.9279×10^2 3.8462×10^1 10 5.9941×10^2 6.9788×10^1 10 8.5036×10^2 1.8235×10^2 9 4.0643×10^6 3.1688×10^6 10 0 9.10	$\frac{1}{5.1286 \times 10^2}$ 6.1632 × 10 ⁰ 5 3.6492 × 10 ² 3.2477 × 10 ¹ 5 5.4385 × 10 ² 5.4241 × 10 ¹ 3 3.6855 × 10 ³ 3.3042 × 10 ² 2 7 3.17	$\begin{array}{c} 4 \\ 5.3523 \times 10^2 \\ 2.1095 \times 10^1 \\ 6 \\ 3.5331 \times 10^2 \\ 5.9179 \times 10^1 \\ 4 \\ 6.7006 \times 10^2 \\ 1.4475 \times 10^2 \\ 7 \\ 1.8733 \times 10^4 \\ 3.4470 \times 10^4 \\ 9 \\ 1 \\ 6.67 \end{array}$	$\begin{array}{c} 3 \\ 4.9807 \times 10^2 \\ 4.7270 \times 10^0 \\ 1 \\ 3.2281 \times 10^2 \\ 3.7880 \times 10^1 \\ 1 \\ 5.1851 \times 10^2 \\ 3.4859 \times 10^1 \\ 2 \\ 5.9405 \times 10^3 \\ 2.3158 \times 10^3 \\ 5 \\ 6 \\ 4.37 \end{array}$	$\begin{array}{r} 7 \\ 5.4289 \times 10^2 \\ 1.7086 \times 10^1 \\ 8 \\ 3.3257 \times 10^2 \\ 5.2165 \times 10^1 \\ 2 \\ 5.5826 \times 10^2 \\ 1.0040 \times 10^2 \\ 5 \\ 5.0147 \times 10^3 \\ 1.9712 \times 10^3 \\ 4 \\ 1 \\ 4.53 \end{array}$	$\frac{5}{5.0744 \times 10^2}$ 3.6242×10^9 3 4.1364×10^2 2.5577×10^1 8 5.4778×10^2 8.1960×10^1 4 4.9671×10^3 2.0934×10^3 3 0 4.63	$\begin{array}{c} 10 \\ 5.7919 \times 10^2 \\ 3.5317 \times 10^1 \\ 9 \\ 4.6256 \times 10^2 \\ 2.3601 \times 10^1 \\ 9 \\ 1.0120 \times 10^3 \\ 2.1872 \times 10^2 \\ 10 \\ 1.5965 \times 10^4 \\ 8.7877 \times 10^3 \\ 8 \\ 0 \\ 9.03 \end{array}$	$\frac{8}{1.6907 \times 10^{2}}$ 1.6907×10^{1} 7 3.6806×10^{2} 5.3388×10^{1} 6 7.8922×10^{2} 1.3560×10^{2} 8 5.9572×10^{3} 3.9139×10^{3} 6 0 6.50

表 4 在 30 维 CEC2017 复杂函数上的优化结果对比 (续表)

9个函数上,虽然 HCOAG 的收敛速度优势不是很明显,但在收敛性能上也优于其他对比算法.总之, 无论在单峰函数和多峰函数上,还是在混合函数和 复合函数上,HCOAG 的收敛速度都比其他对比算 法的收敛速度快,表明 HCOAG 具有更优秀的收敛 性能.这些都说明,本文提出的高斯全局趋优成长 算子、动态调整组内郊狼数方案以及简化操作的 GWO 搜索算子等的采用都为收敛速度的提升做出 了贡献,这些策略的融合使用是有效可行的.

4.6 时间对比分析

为了考察 HCOAG 的运行时间,直接采用第 4.4节的实验.因为 HCOAG 是 COA 和 GWO 的 混合算法,故仅记录 HCOAG、COA 和 GWO 在 30 维 CEC2017 函数上的耗时,它们在独立运行 30 次获得不同函数类型的平均耗时结果见图 7. 横坐标为不同的函数类型,纵坐标为平均时间 (s).

从图 7 可以看出, 在单峰函数上, HCOAG 耗时 (2.4443 s) 是 COA 耗时 (2.9988 s) 的 81.51%, GWO 耗时 (2.4222 s) 是 HCOAG 耗时 (2.4443 s) 的 99.10%; 在多峰函数上, HCOAG 耗时 (2.9211 s) 分别是 COA(3.5503 s) 和 GWO(2.9233 s) 耗时的 84.25% 和 99.92%; 在混合函数上, HCOAG 耗时 (3.6246 s) 是 COA 耗时 (4.2034 s) 的 86.23%, GWO 耗时 (3.4981 s) 是 HCOAG 耗时 (3.6246 s) 的 96.51%; 在复合函数上, HCOAG 耗时 (6.1480 s) 是 COA 耗时 (7.0897 s) 的 86.72%, GWO 耗时 (6.0822 s) 是 HCOAG 耗时 (6.1480 s) 的 98.93%.

图 6 HCOAG、COA、MEGWO、DEBBO、TLBO 和 HFPSO 的收敛图 Fig.6 Convergence curves of HCOAG, COA, MEGWO, DEBBO, TLBO, and HFPSO

故无论是单峰函数和多峰函数, 还是混合函数和复合函数, HCOAG 的耗时都与 GWO 耗时大致持平. 其主要原因是: 1) HCOAG 与 GWO 都采用并行计 算模式, 但 GWO 结构简单, 而其产生新解的计算 复杂度 (见式 (12)) 较高; 2) HCOAG 虽然采用精 简 GWO, 但需要分组并在组内寻优, 结构复杂, 故 二者耗时大致持平 (HCOAG 耗时稍多于 GWO 的 耗时). 在耗时上, HCOAG 较 COA 少, 主要原因 是: 1) 在成长过程的目标函数评价上, 后者采用串 行计算, 前者采用并行计算减少了运行时间; 2) 虽 然在成长过程中嵌入了 GWO 搜索, 但采用精简的 GWO 搜索方式并未增加多少计算成本; 3) 前者没 有郊狼被驱离和接纳操作,节省了运行时间; 4) 动 态调整方案减少了生与死操作次数.

综合第 4.3 ~ 4.6 节, HCOAG 在较短的时间内 能获得最好的优化性能, 说明了其优化效率高.

4.7 上下界分析

为了能够更充分地评价 HCOAG 的性能,本节 对其进行上下界分析,即在一个优化问题上,独立 运行一定次数后考察其最坏结果和最优结果.

因为本文将 HCOAG 应用于 CEC2017 复杂函

数集上,此函数集有 30 个不同的优化问题,其全局 最优解对应的最优值不同,故其获得的上下界也不 同.限于篇幅,在 CEC2017 四类函数上分别选取了 同样的一个函数 (F_1 , F_5 , F_{11} , F_{29})进行上下界讨 论,即在 51 次的运行结果中选择最好值和最差值 分别作为本文提出算法在该函数上的上下界,并与 对比算法中结果最好的算法 (在 F_1 和 F_5 上选用 COA;在 F_{11} 和 F_{29} 上选用 DEBBO)获得的上下 界进行对比.

为了直观和方便对比,对3个算法获得的结果 进行了统一的处理:即将每个算法每次独立运行结 果减去理想的最优函数值作为最终结果,让每个函 数的理想最优值为0.在4个函数上的上下界结果 见表5.

表 5 在 30 维 CEC2017 复杂函数上的上下界结果对比 Table 5 Comparison of upper and lower bounds on the 30-dimensional complex functions from CEC2017

		1		
函数一	HCC	DAG	COA/I	DEBBO
	下界	上界	下界	上界
\mathbf{F}_1	3.8942×10^{-9}	7.8898×10^{-3}	$3.5001 \times 10^{\circ}$	5.0055×10^{3}
\mathbf{F}_{5}	$1.2935{ imes}10^1$	$4.1788{ imes}10^1$	2.6865×10^{1}	9.2083×10^{1}
\mathbf{F}_{11}	$4.0954 \times 10^{\circ}$	7.5899×10^{1}	1.3819×10^{1}	8.8108×10^{1}
F_{29}	$3.7200{ imes}10^2$	$6.0977{ imes}10^2$	4.4500×10^{2}	6.2345×10^2

从表 5 可以看出, 在 4 个函数上, 无论上界还 是下界, HCOAG 都比对比算法小, 说明本文提出 的算法比对比算法好, 也证明了本文提出算法的有 效性.

4.8 渐进收敛性分析

依据文献 [23] 的随机泛函分析方法原理,本节 对 HCOAG 的收敛性进行分析.从算法 3 的描述 和 HCOAG 流程图 (图 4) 可以看出, HCOAG 由 3 个算子完成新解的产生,即高斯全局趋优成长算子、 简化 GWO 搜索算子以及生与死算子.高斯全局趋 优成长算子类似 DE (Differential evolution)中的 DE/rand-to-best/1/bin 变异算子;简化 GWO 搜 索算子类似 DE 中的 DE/best/1/bin 变异算子;生 与死算子相当于遗传算法中的变异算子.3个算子 产生的新解都采用贪心算法严格基于优胜劣汰策 略,通过淘汰新解与原解中较差者产生更优的新一 代个体.故对于最小优化问题,HCOAG 评价函数 序列为单调非递增序列.为了证明 HCOAG 的渐近 收敛性,首先做如下定义.

定义 1. 设 Q(t) 表示 X(t) 的中间群体, $V_{c,j}(t+1) \in Q(t+1)$,则 HCOAG 搜索算子定义如下:

高斯全局趋优成长与简化 GWO 搜索混合算 子定义为

生与死算子定义为

$$V_j(t+1) = \begin{cases} X_{cr_1, j}, & r_j < P_s \text{ or } j = j_1 \\ X_{cr_2, j}, & r_j \ge P_s + P_a \ ext{i} \ j = j_2 \ R_j, & j \in \mathbb{N} \end{cases}$$
(32)

假设 f(X)为最小优化函数, 解空间 $S = X | X = {x_1, x_2, \dots, x_D}$ 且 $L_j \le x_j \le U_j, j = 1, 2, \dots, D$ 为 D 维欧氏空间 \mathbb{R}^D 的有界子空间.为了在进行数 值计算时不受计算精度的限制, 设定 HCOAG 的计 算精度保留到小数点后第 k 位数字.

定义 2. 两种算子的混合策略是一种按照概率 *CR/D*和(1-*CR/D*)对群体中个体向量的每一维 分量分别采用简化 GWO 搜索算子和高斯全局趋 优成长算子以及在每一组中最差郊狼上采用生与死 算子进行重组变换的过程,它是解空间上的一种随 机映射 $\psi: \Omega \times S \rightarrow S^2$,可定义为

$$\mu \{ \omega | \boldsymbol{\psi} (\omega, \boldsymbol{X}) = \langle \boldsymbol{X}, \boldsymbol{V} \rangle \} = \\ \mu \{ \boldsymbol{V} = F (\boldsymbol{X}, \boldsymbol{X}_c, \boldsymbol{X}_j, \boldsymbol{X}_k, \boldsymbol{X}_{\text{mod}}) \}$$
(33)

其中, (Ω, M, μ) 是完全概率测度空间, Ω 是非空 抽象集合, 其元素 ω 为基本事件, $M \in \Omega$ 的某些子 集所构成的 σ 代数, $\mu \in M$ 上的概率测度. X_{mod} 表 示郊狼为 **GP**, **alpha** 或**cult**, $F(X, X_c, X_j, X_k, X_{mod})$ 由式 (31) 和式 (32) 确定.

由于 HCOAG 与 DE 一样采用贪心算法更新 种群,因此在每次迭代过程中相当于 3 种算子所对 应的随机映射 ψ 和贪心选择所对应的映射逆序 ψ_2 合成的映射 ψ' 作用于当前群体,即 $X(t+1) = \psi'(\omega, X(t)) = \psi_2(\psi(\omega, X(t)))$.这样在映射 ψ' 的作 用下,HCOAG 每次迭代种群产生的 *GP* 的适应度 值构成的序列 { $f(X_{GP}(t))$ }_{1 ≤ t ≤ MaxDT} 是一个单 调非递增序列.同样, ψ' 可重新定义为 $B_{t+1} = \psi'(\omega,$ $B_t) = \psi_2(\psi(\omega, B_t)), B_{t+1}$ 和 B_t 分别为X(t+1)和 X(t)的最优个体.因此类似于文献 [23]中的定理 1, 可得到如下定理.

定理 1. HCOAG 的一次迭代所形成的随机映 射 ψ' 是一个随机压缩算子.

再依据文献 [23] 引理 2, 即可得到 HCOAG 渐 进收敛的结论, 即定理 2.

定理 2. 设 ψ' 为 HCOAG 形成的随机压缩算 子, 则 ψ' 具有唯一的随机不动点, 即 HCOAG 是渐 进收敛的.

4.9 Wilcoxon 符号秩检验和 Friedman 检验

Wilcoxon 符号秩检验方法^[24] 是一种非参数统 计性检验方法,目的在于检验两个样本均值之间的 显著差异.其中p值由 R^+ 和 R^- 计算可得, R^+ 表示 正秩总和, R^- 表示负秩总和,具体见式(34)和式 (35), d_i 为两种算法在n 个问题中第i 个问题上的 性能分数的差值. 当 HCOAG 算法与对比算法性能 相同时, 对应的秩平分给 R^+ 和 R^- . 为检验 HCO-AG 与表 4 中对比算法的显著性差异, 在软件 IBM SPSS Statistics 24 上实现 Wilcoxon 检验, 结果如 表 6 所示. 表 6 中, n/w/t/l表示在n 个函数上 HCOAG 分别优于对比算法 w 次, 与对比算法相等t 次, 劣 于对比算法 l次.

$$R^{+} = \sum_{d_{i} > 0} \operatorname{rank}(d_{i}) + \frac{1}{2} \sum_{d_{i} = 0} \operatorname{rank}(d_{i}) \qquad (34)$$

$$R^{-} = \sum_{d_i < 0} \operatorname{rank} (d_i) + \frac{1}{2} \sum_{d_i = 0} \operatorname{rank} (d_i) \qquad (35)$$

从表 6 可以看出,与 COA 和 GWO 相比, p 值 分别为 1.3039×10^{-7} 和 1.8626×10^{-9} ,均小于 0.05, 表明 HCOAG 显著优于 COA 和 GWO,再一次说 明 COA 和 GWO 二者的改进与混合是有效的. HCOAG 与 MEGWO、HFPSO、DEBBO、SaDE、 SE04、FWA 和 TLBO 相比的 p 值均小于 0.05,表 明 HCOAG 也显著优于这些对比算法.

Friedman 检验是一种非参数双向方差分析方 法^[24],目的在于检测两个或多个观测数据之间的显 著性差异.具体实现过程分为 3 步:1)收集每个算 法或者问题的观测结果;2)对于每个问题*i*的从 1 (最好结果)到*k*(最差结果)的排名值,定义为 r_i^j (1 $\leq j \leq k$);3)在所有问题中求出每个算法的平均 排名,得到最后排名 $R_j = \frac{1}{n} \sum_{i=1}^{n} r_i^j$.在零假设下所 有算法的行为相似(它们的秩 R_j 相等),Friedman 统计值 F_f 的计算方式如式(36),当n和k足够大 时(根据经验n > 10, k > 5),它是按照k - 1自由 度的 x^2 分布的.为了再次验证 HCOAG 的显著性, 依据表 4 对 HCOAG 和对比算法在软件 IBM

表 6 Wilcoxon 符号秩检验结果 Table 6 Wilcoxon sign rank test results

	p	a = 0.05	R^+	R^{-}	n/w/t/l
HCOAG vs COA	1.3039×10^{-7}	YES	453	12	30/27/0/3
HCOAG vs GWO	1.8626×10^{-9}	YES	465	0	30/30/0/0
HCOAG vs MEGWO	2.7741×10^{-2}	YES	339	126	30/23/0/7
HCOAG vs HFPSO	$5.5879 imes 10^{-9}$	YES	463	2	30/29/0/1
HCOAG vs DEBBO	9.0000×10^{-6}	YES	429	36	30/23/0/7
HCOAG vs SaDE	$3.5390 imes 10^{-8}$	YES	458	7	30/28/0/2
HCOAG vs SE04	1.3039×10^{-8}	YES	461	4	30/29/0/1
HCOAG vs FWA	1.8626×10^{-9}	YES	465	0	30/30/0/0
HCOAG vs TLBO	3.7253×10^{-9}	YES	464	1	30/29/0/1

SPSS Statistics 24 上实现 Friedman 检验, 其结果如表 7 所示.

$$F_f = \frac{12n}{k(k+1)} \left[\sum_j R_j^2 - \frac{k(k+1)^2}{4} \right]$$
(36)

从表 7 可以看出,在 30 维复杂函数上,通过 Friedman 检验获得的渐进显著性 p 值为 6.3128× 10⁻³¹,由于得到的渐进显著性小于 0.01,所以在 30 维上 HCOAG 与对比算法之间存在显著性的差异. HCOAG 算法的秩均值 (1.73)最小,随后依次是 MEGWO、DEBBO、SaDE、SE04、COA、TLBO、 HFPSO、FWA 和 GWO,表明 HCOAG 的优化性 能最好.结合 Wilcoxon 符号秩检验和 Friedman 检 验结果可以得出, HCOAG 总体上明显优于先进的 对比算法.

5 HCOAG 在 K-Means 聚类优化上的 应用

聚类在数据挖掘领域发挥着十分重要的作用, 通过对聚类的数据分析可以得到数据的具体分布情 况以及掌握数据类型的特点[25].其中,最常用的聚 类方法是 K-Means 方法^[26], 其在 n 个样本数据中的 具体实现过程如下: 首先随机产生 K个初始聚类中 心,然后计算每个样本与各聚类中心的距离,接着 将样本与距离最近的聚类中心划分到一个组内,形 成 K个组, 最后重新计算每个组内所有样本的均值 作为新聚类中心并进行下一次划分,如此迭代执行 划分过程直到满足终止条件为止. K-Means 方法具 有原理简单、可伸缩性好以及效率高等优势,但存 在对初始点敏感和易陷于局部最优等问题.目前已 有研究将 SIOA 运用到 K-Means 聚类中, 很好地解 决了 K-Means 算法存在的一些问题[25, 27]. 本节采用 HCOAG 优化 K-Means 聚类以解决其对初始点敏 感等问题,其中,目标函数的定义为

$$E = \sum_{k=1}^{K} \sum_{x_i \in C_k} \|x_i - c_k\|^2$$
(37)

其中, *E* 是数据集中所有数据点到所属聚类的聚类 中心的距离和, *K* 是聚类中心个数, c_k 是第 k 个聚 类中心位置, C_k 是第 k 个聚类簇, x_i 是聚类族 C_k 中第 i 个数据点. 将 HCOAG 应用到 K-Means上, 首先假设每头郊狼由 k 个聚类中心组成, 则解向量 的维数应等于 k × 数据样本的特征数,目标函数采 用式 (37);接着执行 HCOAG,直到满足算法的终 止条件,输出最优聚类中心.

实验采用 UCI 数据库 (http://archive.ics.uci.edu/ ml/datasets.php)中7个标准数据集(见表8第 1列)来验证 HCOAG 在 K-Means 聚类优化上的 有效性,数据集名称后的括号内的数字为样本数、 属性数和聚类数.选取的5个对比算法包括:COA、 MEGWO、HFPSO、擅长聚类优化的改进的粒子群 优化算法 (Improved PSO, IPSO)和改进的遗传算 法 (Improved genetic algorithm, IGA).其中, IPSO和 IGA 来自"http://yarpizcom/64/ypml101evolutionary-clustering".所有算法的公共参数设 置相同: N = 50, MaxDT = 200, Num = 30. 表8 是6种算法独立运行 30次获得的均值、方差和排 名结果.

从表 8 可知, HCOAG 在 7 个数据集上的均值 和方差得到排名第一 5 次,其次是 HFPSO 和 IPSO 均为 1 次, COA、MEGWO 和 IGA 均获得 0 次第一. HCOAG 的平均排名为 1.43,其他算法的 平均排名顺序依次为: IPSO、IGA、MEGWO、 HFPSO 和 COA.以上结果都表明 HCOAG 在 K-Means 聚类上的优化性能最好.总之,HCOAG 在 K-Means 聚类优化中获得竞争性的优化性能,能够 更好地处理聚类优化问题.

6 结束语

针对 COA 存在的不足,本文提出了一种 COA 与 GWO 的混合算法 (HCOAG). 首先,改进 COA (ICOA). 1) 在成长过程中,提出一种高斯全局趋优 成长算子,提高了搜索能力;2)提出一种动态调整 组数方案,搜索前期采用较少组数,减弱全局最优 解的正反馈作用,强化探索能力,后期采用较多组数,增强全局最优解的正反馈作用,强化开采能力,并提高可操作性. 然后,对 GWO 进行改进,提出了一种精简的 GWO (SGWO),在发挥其局部搜索能力强的优势同时,提高了可操作性.最后,采用正弦交叉策略将 ICOA 与 SGWO 有机融合,很好地平衡了组内郊狼的探索与开采能力,从而获得了最佳优化性能.大量经典函数与 CEC2017复杂函数优化的实验结果表明,在经典函数上,COA不及 GWO; 在复杂函数上,GWO 不及 COA; 而 HCOAG 在两

表 7 Friedman 检验结果 Table 7 Friedman test results

D	p	HCOAG	COA	GWO	MEGWO	HFPSO	DEBBO	SaDE	SE04	FWA	TLBO	
30	$6.3128 imes 10^{-31}$	1.73	5.27	9.10	3.17	6.67	4.37	4.53	4.63	9.03	6.50	

表 8 6 种算法在 K-Means 聚类优化上的结果对比 Table 8 Comparison results of the 6 algorithms on K-Means clustering optimization

		-	_	-	-	-	_
数据集		HCOAG	COA	MEGWO	HFPSO	IPSO	IGA
	Mean	88.6271	116.7307	91.5916	93.622	89.8617	89.564
Wine (178, 13, 3)	Std	3.4479×10^{-2}	$2.9398 \times 10^{\circ}$	$2.5237 \times 10^{\circ}$	$6.7353 \times 10^{\circ}$	$3.9148 \times 10^{\circ}$	$2.0321 \times 10^{\circ}$
	Rank	1	6	4	5	3	2
	Mean	283.7680	295.3786	284.5731	284.7653	285.0072	284.4112
Heart $(270, 13, 2)$	Std	$3.9989 imes 10^{-3}$	$2.3404 \times 10^{\circ}$	2.3896×10^{-1}	$2.3804 \times 10^{\circ}$	$5.2425 imes 10^{\circ}$	$2.1715 \times 10^{\circ}$
	Rank	1	6	3	4	5	2
	Mean	29.2053	31.0511	29.2659	29.3578	29.3578	29.2607
Iris $(150, 4, 3)$	Std	$8.8033 imes 10^{-2}$	5.7768×10^{-1}	1.3448×10^{-1}	$1.0048 \times 10^{\circ}$	$1.0048 \times 10^{\circ}$	9.2414×10^{-2}
	Rank	1	6	3	4	4	2
	Mean	55.0255	75.4621	68.8816	62.7114	57.3102	60.8651
Glass $(214, 9, 6)$	Std	$2.2242\! imes\!10^{\scriptscriptstyle 0}$	$2.1402 \times 10^{\circ}$	$2.8975 \times 10^{\circ}$	$3.7975 imes 10^{\circ}$	$3.5444 \times 10^{\circ}$	$3.5855 imes 10^{\circ}$
	Rank	1	6	5	4	2	3
	Mean	40.0538	42.0033	40.4736	41.8087	40.8213	41.9155
Newthyroid $(215, 5, 3)$	Std	$9.8154 imes 10^{-3}$	$7.6493 {\times} 10^{\scriptscriptstyle -1}$	4.0104×10^{-1}	$2.8501 \times 10^{\circ}$	$2.0086 \times 10^{\circ}$	$2.8122 \times 10^{\circ}$
	Rank	1	6	2	4	3	5
	Mean	90.3443	93.5344	90.3849	91.0246	90.3365	90.3698
Liver disorders $(345, 6, 2)$	Std	3.8530×10^{-4}	$1.0160 \times 10^{\circ}$	2.8148×10^{-2}	$2.6310 \times 10^{\circ}$	2.1424×10^{-2}	2.0447×10^{-2}
	Rank	2	6	4	5	1	3
	Mean	356.1247	357.6041	356.502	356.0165	356.0802	356.4092
Balance (625, 4, 3)	Std	2.3618×10^{-1}	4.0943×10^{-1}	$3.3785{ imes}10^{-1}$	$1.5930 imes 10^{-1}$	2.0303×10^{-1}	$1.4966\!\times\!10^{\scriptscriptstyle -1}$
	Rank	3	6	5	1	2	4
Count		5	0	0	1	1	0
Ave rank		1.43	6.00	3.71	3.86	2.86	3.00
Total rank		1	6	4	5	2	3

类优化问题上都有更好的性能,说明二者混合有必要和有效;与其他先进的对比算法相比,HCOAG 具有更好的优化性能.K-Means 聚类优化结果表明,与对比算法相比,HCOAG 获得了竞争性的优 化性能.

总之,与 COA 相比, HCOAG 具有如下优势: 1) 普适性强,经典函数和复杂函数优化以及聚类优 化 3 组实验结果表明, HCOAG 都有更好的表现; 2) 耗时少,因此有更好的搜索效率; 3) 更好的收敛 质量; 4) 更强的稳定性和鲁棒性, 5) 可操作性更强.

COA 是最近提出的一种 SIOA, 尚有许多地方 需要探讨和完善, 本文仅是一种混合改进研究的尝 试. 未来将进一步改进 COA, 对其进行深入的理论 研究, 并拓展其应用领域.

References

- Liu San-Yang, Jin An-Zhao. A co-evolutionary teaching-learningbased optimization algorithm for constrained optimization problems. Acta Automatica Sinica, 2018, 44(9): 1690-1697 (刘三阳, 靳安钊. 求解约束优化问题的协同进化教与学优化算法. 自动化学报, 2018, 44(9): 1690-1697)
- 2 Lv Bai-Quan, Zhang Jing-Jing, Li Zhan-Pei, Liu Ting-Zhang. Fuzzy particle swarm optimization based on filled function and transformation function. Acta Automatica Sinica, 2018, 44(1): 74–86

(吕柏权,张静静,李占培,刘廷章.基于变换函数与填充函数的模 糊粒子群优化算法.自动化学报,2018,44(1):74-86)

- 3 Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer. Advances in Engineering Software, 2014, 69: 46–61
- 4 Pierezan J, Coelho L D S. Coyote optimization algorithm: A new metaheuristic for global optimization problems. In: Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC). Rio de Janeiro, Brazil, USA: IEEE, 2018.
- 5 Peng Xi-Yuan, Peng Yu, Dai Yu-Feng. Swarm intelligence theory and applications. Acta Electronica Sinica, 2003, 12A(31): 1982-1988 (彭喜元,彭宇,戴毓丰. 群智能理论及应用. 电子学报, 2003, 12A(31): 1982-1988)
- 6 Wolpert D H, Macready W G. No free lunch theorems for optimization. *IEEE Transactions on Evolutionary Computation*, 1997, 1(1): 67–82
- 7 Zhang Xin-Ming, Wang Xia, Kang Qiang, Cheng Jin-Feng. Hybrid grey wolf optimizer with artificial bee colony and its application to clustering optimization. Acta Electronica Sinica, 2018, 46(10): 2430-2442 (张新明, 王霞, 康强, 程金凤. GWO与ABC的混合优化算法及其聚类优化. 电子学报, 2018, 46(10): 2430-2442)
- 8 Zhang X M, Kang Q, Cheng J F, Wang X. A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer. *Applied Soft Computing*, 2018, 67: 197–214
- 9 Teng Z J, Lv J L, Guo L W. An improved hybrid grey wolf optimization algorithm. Soft Computing, 2019, 23(15): 6617–6631
- 10 Arora S, Singh H, Sharma M, Sharma S, Anand P. A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection. *IEEE Access*, 2019, 7: 26343–26361

- Long Wen, Wu Tie-Bin, Tang Ming-Zhu, Xu Ming, Cai Shao-Hong. Grey wolf optimizer algorithm based on lens imaging learning strategy. Acta Automatica Sinica, 2020, 46(10): 2148-2164 (龙文, 伍铁斌, 唐明珠, 徐明, 蔡绍洪. 基于透镜成像学习策略的灰 狼优化算法. 自动化学报, 2020, 46(10): 2148-2164)
- 12 Zhang Xin-Ming, Wang Dou-Dou, Chen Hai-Yan, Mao Wen-Tao, Dou Zhi, Liu Shang-Wang. Best and worst coyotes strengthened coyote optimization algorithm and its application to QAP. Journal of Computer Applications, 2019, **39**(10): 2985-2991 (张新明, 王豆豆, 陈海燕, 毛文涛, 窦智, 刘尚旺. 强化最优和最差 狼的郊狼优化算法及其QAP应用. 计算机应用, 2019, **39**(10): 2985-2991)
- 13 Omran M G H, Mahdavi M. Global-best harmony search. Applied Mathematics and Computation, 2008, 198(2): 643–656
- 14 Draa A, Bouzoubia S, Boukhalfa I. A sinusoidal differential evolution algorithm for numerical optimization. Applied Soft Computing, 2015, 27: 99–126
- 15 Awad N H, Ali M Z, Liang J J, Qu B Y, Suganthan P N. Problem definitions and evaluation criteria for the CEC 2016 special session and competition on single objective bound constrained real-parameter numerical optimization. In: Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University, Singapore, 2016.
- 16 Tu Q, Chen X C, Liu X C. Multi-strategy ensemble grey wolf optimizer and its application to feature selection. Applied Soft Computing, 2019, 76: 16–30
- 17 Gong W Y, Cai Z H, Ling C X. DE/BBO: A hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Computing, 2010, 15(4): 645–665
- 18 Avdilek I B. A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Applied Soft Computing, 2018, 66: 232–249
- 19 Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization. *IEEE Transactions on Evolutionary Computation*, 2009, 13(2): 398–417
- 20 Tang D Y. Spherical evolution for solving continuous optimization problems. Applied Soft Computing, 2019, 81: 1–20
- 21 Tan Y, Zhu Y C. Fireworks algorithm for optimization. International Conference in Swarm Intelligence, 2010: 355–364
- 22 Rao R V, Savsani V J, Vakharia D P. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. *Computer-Aided Design*, 2011, 43(3): 303–315
- 23 He Yi-Chao, Wang Xi-Zhao, Liu Kun-Qi, Wang Yan-Qi. Convergent analysis and algorithmic improvement of differential evolution. *Journal of Software*, 2010, **21**(5): 875-885 (贺毅朝, 王熙照, 刘坤起, 王彦祺. 差分演化的收敛性分析与算法 改进. 软件学报, 2010, **21**(5): 875-885)
- 24 Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. *Swarm and Evolutionary Computation*, 2011, 1(1): 3–18
- 25 Das P, Das D K, Dey S. A modified bee colony optimization (MBCO) and its hybridization with k-means for an application to data clustering. *Applied Soft Computing*, 2018, **70**: 590–603
- 26 Jain A K. Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 2010, 31(8): 651–666
- 27 Luo Ke, Li Lian, Zhou Bo-Xiang. Artificial bee colony rough clustering algorithm based on mutative precision search. Control and Decision, 2014, 29(5): 838-842 (罗可,李莲,周博翔. 基于变异精密搜索的蜂群聚类算法. 控制与 决策, 2014, 29(5): 838-842)

张新明 河南师范大学教授.主要研究方向为智能优化算法,图像去噪, 图像增强和图像分割.本文通信作者. E-mail: xinmingzhang@126.com (ZHANG Xin-Ming Professor at Henan Normal University. His research interest covers intelligence

optimization algorithm, image denoising, image enhancement, and image segmentation. Corresponding author of this paper.)

姜 云 河南师范大学硕士研究生. 主要研究方向为智能优化算法和图像 分割.

E-mail: jiangyun951120@163.com (**JIANG Yun** Master student at Henan Normal University. Her research interest covers intelligence

optimization algorithm and image segmentation.)

刘尚旺河南师范大学副教授. 主要 研究方向为图像处理和计算机视觉. E-mail: shwl08@126.com (**LIU Shang-Wang** Associate professor at Henan Normal University. His research interest covers image processing and computer vision.)

刘国奇河南师范大学副教授. 主要 研究方向为图像分割和偏微分方程. E-mail: liuguoqi080408@163.com (**LIU Guo-Qi** Associate professor at Henan Normal University. His research interest covers image segmentation and partial differential

equation.)

 第 智 河南师范大学讲师. 主要研 究方向为算法及数字图像处理.
 E-mail: 619534345@163.com
 (DOU Zhi Lecturer at Henan Normal University. His research interest covers algorithms and digital image processing.)

刘 艳 河南师范大学实验师. 主要 研究方向为优化算法和图像分割. E-mail: liu_yan122@sina.com (**LIU Yan** Laboratory teacher at Henan Normal University. Her research interest covers optimization algorithm and image segmentation.)