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   Abstract—The Nesterov accelerated dynamical approach serves
as  an essential  tool  for  addressing convex optimization problems
with accelerated convergence rates.  Most previous studies in this
field  have  primarily  concentrated on unconstrained smooth con-
vex optimization problems. In this paper, on the basis of primal-
dual  dynamical  approach,  Nesterov  accelerated  dynamical
approach,  projection  operator  and  directional  gradient,  we
present  two  accelerated  primal-dual  projection  neurodynamic
approaches  with  time  scaling  to  address  convex  optimization
problems with smooth and nonsmooth objective functions subject
to linear and set constraints, which consist of a second-order ODE
(ordinary  differential  equation)  or  differential  conclusion  system
for the primal variables and a first-order ODE for the dual vari-
ables.  By  satisfying  specific  conditions  for  time  scaling,  we
demonstrate that the proposed approaches have a faster conver-
gence rate. This only requires assuming convexity of the objective
function. We validate the effectiveness of our proposed two accel-
erated primal-dual projection neurodynamic approaches through
numerical experiments.
    Index Terms—Accelerated projection neurodynamic approach, lin-
ear and set constraints, projection operators, smooth and nonsmooth
convex optimization, time scaling.
  

I.  Introduction

DUE  to  its  low  complexity  and  high  efficiency,  the  Nes-
terov  accelerated  gradient  algorithm [1] has  become  a

popular  methodology  for  tackling  large-scale  convex  opti-
mization problems. However, the acceleration phenomenon of
the  Nesterov  accelerated  algorithm  still  maintains  somewhat
mysterious. Su et al. [2] firstly reveal that a second-order ordi-
nary  differential  equation  (ODE)  with  vanishing  damping,

O(1/t2)

O(1/t2)

O(1/t2)

β (t) O(1/(t2β(t)))

known as the Nesterov accelerated dynamical approach, repre-
sents  the  continuous  limit  of  the  Nesterov  accelerated  gradi-
ent algorithm. Building on the work in [2], numerous acceler-
ated  dynamical  approaches  have  been  presented  to  address
unconstrained convex optimization problems with an acceler-
ated  convergence  rate  of .  Attouch  and  Chbani [3]
extended  the  results  in [2] by  combining  Hessian  driven
damping,  small  perturbation [4],  Tikhonov  regularization [5]
and maximally monotone operators [6], and they achieved an
accelerated  convergence  rate .  Drawing  inspiration
from  the  Bregman-Lagrangian  function,  Wibisono et  al. [7]
and Wilson et al. [8] devised second-order ordinary differen-
tial  equations  (ODEs)  that  give  rise  to  the  Nesterov  acceler-
ated  dynamical  approach  described  in [2].  Alimisis et  al. [9]
introduced an accelerated gradient-based dynamical approach
on a Riemannian manifold, drawing inspiration from the work
of  Wibisono et  al. [7].  Vassilis et  al. [10] investigated  the
accelerated  convergence  properties  of  Nesterov  accelerated
dynamical approach [2] by using the differential inclusion sys-
tem  for  solving  nonsmooth  and  convex  optimization  prob-
lems.  In  addition,  in  order  to  improve  accelerated  conver-
gence  rate  of ,  Attouch et  al. [11] proposed  a  Nes-
terov  accelerated  dynamical  approach  with  time  scaling  term

, resulting in a faster convergence rate of .
It  was  previously  mentioned  that  the  Nesterov  accelerated

dynamical  approaches and their  variants are only suitable for
unconstrained  convex  optimization  problems.  Neurodynamic
approaches  provide  a  methodology  for  tackling  constrained
convex  optimization  problems  from  a  continuous-time
(dynamical system) perspective. It can be mathematically for-
mulated  as  an  ordinary  differential  equation  or  differential
inclusion  system,  and  can  be  implemented  with  specialized
hardware,  providing  further  insights  into  classical  numerical
algorithms.

Since the 1980s, when Hopfield first proposed the Hopfield
neural network [12] as a method of solving the traveling sales-
man  problem,  a  variety  of  neurodynamic  approaches  have
been evolved to tackle a wide range of optimization problems.
Kennedy and Chua [13] utilized a penalty method to design a
nonlinear  programming  circuit  for  dealing  with  convex  con-
straint optimization problems. Xia and Feng [14] proposed an
array  of  projection  neurodynamic  approaches  intended  to
solve  monotone  variational  inequalities  and  constrained  non-
linear convex programming problems [15], etc. Hu and Wang
[16] generalized  the  PNN  to  address  the  quasi-convex  opti-
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mization  problems  with  nonlinear  constraints.  He et  al. [17]
proposed  an  inertial  projection  neural  network  for  handling
constrained  nonconvex  optimization  problems  and  demon-
strated  its  ability  to  capture  different  Karush-Kuhn-Tucker
(KKT)  points  by  adjusting  the  inertial  parameters.  Addition-
ally,  the  primal-dual  dynamical  approach,  also  known  as  the
Lagrange  neural  network,  provides  a  general  framework  for
solving  various  convex  optimization  problems  with  linear
constraints.  Zhang  and  Constantinides [18] were  the  first  to
investigate  the  use  of  a  Lagrange  programming  neural  net-
work (LPNN) for addressing constrained convex optimization
problems.  Since  then,  numerous  neurodynamic  approaches
based  on  LPNN have  been  studied  not  only  for  dealing  with
constrained convex optimization problems [19], [20] but also
for exploring new applications [21]–[27].

O(1/t)

O(1/t2)

O(1/t2)

O(1/t2)

O(1/t2)

However,  the  majority  of  existing  research  on  projection
neurodynamic  or  primal-dual  neurodynamic  approaches  only
provides asymptotic convergence properties or a slow conver-
gence  rate  of  for  constrained  convex  optimization
problems without strongly convex assumption. In [28], Krich-
ene et al. extended the work in [2] with non-Euclidean geome-
tries by introducing mirror operators, proposed an accelerated
mirror dynamical approach  convergence rate for con-
vex optimization problems that contains set constraints. Zhao
et  al. [29] were  influenced  by  the  Nesterov  accelerated
dynamical  approach  and  projection  operators.  They  intro-
duced  an  accelerated  projection  neurodynamic  approach
specifically  designed  for  smooth  convex  optimization  prob-
lems with  set  constraints.  Remarkably,  this  approach demon-
strates  a  convergence  rate  of .  For  smooth  convex
optimization problems with linear constraints, Zeng et al. [30]
proposed  a  dynamical  primal-dual  approach  based  on  Nes-
terov accelerated dynamical approach, and proved the primal-
dual  gap  of  objective  functions  has  a  convergence  rate

.  He et  al. [31] further  considered  an  accelerated  pri-
mal-dual dynamical approach with added perturbation for sep-
arable convex optimization problems and obtained some con-
vergence properties  similar  to  work in [30].  Boţ  and Nguyen
[32] made significant advancements in improving the conver-
gence rate discussed in the work of Zeng et al. [30]. Addition-
ally,  they  presented  a  weak  convergence  result  for  the  solu-
tions of the primal-dual problem. Attouch et al. [33] studied a
second-order  primal-dual  dynamical  approach  involving
damped inertial and time scaling for solving separable convex
optimization  problems  that  have  affine  constraint,  and
obtained  some  of  the  same  results  as [11].  He et  al. [34]
designed  a “second-order  primal”+“first-order  dual” dynami-
cal  approach  with  time  scaling  to  address  convex  optimiza-
tion problems only with linear constraints, and obtained some
results  identical  to  those  in [11].  Moreover,  Zhao et  al. [35]
recently proposed a second-order primal-dual mirror dynami-
cal approach for solving smooth and nonsmooth convex opti-
mization problems that have affine and set constraints, with a
convergence rate of .

It  is  worth  noting  that  the  aforementioned  accelerated  pro-
jection  or  primal-dual  neurodynamic  approaches  do  not  have
the  capability  to  handle  smooth  convex  optimization  prob-

L1

lems  with  both  linear  and  set  constraints  while  maintaining
accelerated  convergence  properties.  However,  it  is  inevitable
for real-world engineering problems to have simultaneous set
and  affine  constraints.  For  example,  in  resource  allocation
problems,  resource  constraints,  physical  constraints,  or  other
business  rules  lead  to  both  set  and  linear  constraints  when
modeling the problem, and linear and set constraints as well as
multi-agents  consensus  constraints  exist  in  distributed  sparse
signal reconstruction. Moreover, in image classification, each
image may belong to multiple categories, which requires rep-
resenting categories as a set. At the same time, the boundaries
of the classifier can be defined by affine constraints to ensure
correct classification of data points. In logistics planning, con-
siderations  include  the  cargo  loading  capacity,  warehouse
storage capacity, as well as the capacity and route constraints
of transportation vehicles. These constraints can be described
using set constraints and affine constraints to ensure the feasi-
bility and efficiency of logistics planning. In wireless commu-
nication  networks,  factors  such  as  bandwidth  limitations  of
wireless channels, power constraints, and the capacity of user
devices need to be considered. These constraints can be mod-
eled  using  set  constraints  and  affine  constraints  to  optimize
the allocation of network resources and communication qual-
ity,  and  so  on.  In  addition,  the  accelerated  neurodynamic
approaches  mentioned  above  are  concerned  with  solving
smooth convex constrained optimization problems, and do not
involve  nonsmooth  convex  constrained  optimization  prob-
lems, which limits the applicability of them to a certain extent,
because the sparse signal reconstruction problem, the -regu-
larization  problems,  etc.,  are  all  nonsmooth  constrained  opti-
mization problems in practice. With the above considerations
in mind, we are motivated by studying fast primal-dual neuro-
dynamic  approaches  based  on  Nesterov  accelerated  dynami-
cal  approach,  primal-dual  dynamical  approach and time scal-
ing item to tackle convex optimization problems with smooth
and  nonsmooth  objective  functions,  subject  to  linear  and  set
constraints,  without  strongly  convex  assumption,  to  obtain
some  results  that  are  similar  with [34].  In  our  opinion,  there
are mainly three difficulties for designing accelerated primal-
dual projection neurodynamic approaches. The first challenge
lies  in  designing a  projection scheme that  is  compatible  with
the  accelerated  primal-dual  neurodynamic  approaches.  The
existing  projection  scheme  based  on  the  classical  Brouwer’s
fixed point theorem fails to achieve effective acceleration. The
second obstacle involves developing new Lyapunov functions
to analyze the accelerated convergence properties  of  the  pro-
posed  fast  primal-dual  neurodynamic  approaches.  The  Lya-
punov  functions  used  in  previous  works [30]–[34] are  no
longer applicable as they do not incorporate projection opera-
tors.  Lastly,  extending  the  fast  primal-dual  neurodynamic
approach  from the  smooth  case  to  the  nonsmooth  case  while
maintaining  the  same  accelerated  convergence  rate  poses  a
significant difficulty and challenge.

The major contributions of this paper are highlighted below:
1)  For  convex  optimization  problems  with  smooth  objec-

tive function, subject to linear and set constraints, we first pro-
pose  an  accelerated  primal-dual  projection  neurodynamic
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approach (APDPNA-S) by using Nesterov accelerated dynam-
ical approach with time scaling term, projection operators and
primal-dual  dynamical  approach.  By  using  the  Cauchy-Lips-
chitz-Picard theorem, proof by contradiction and properties of
projection  operators,  we  show  the  existence,  uniqueness  and
viability  of  the  strong  global  solution  of  APDPNA-S.  More-
over,  by  designing  a  new  Lyapunov  function,  we  prove  that
APDPNA-S has a fast convergence rate .

O(1/t2)

2) Compared to existing results in [31] and [33], APDPNA-
S has a  simpler  structure  since the updating of  the dual  vari-
ables  in  APDPNA-S is  a  first-order  ODE,  and faster  conver-
gence rate than  in [31]. Moreover, compared with the
existing inertial  primal-dual  dynamical  approaches [30]–[34],
our  proposed  APDPNA-S  can  address  convex  optimization
problems  that  contain  both  linear  and  set  constraints,  which
means our proposed APDPNA-S has a wider applicability.

3)  We  extend  APDPNA-S  into  a  differential  inclusion
dynamical  approach  (named  as  APDPNA-NS)  by  employing
directional derivative in place of exact gradients in APDPNA-
S.  By  computing  difference  quotient  of  Lyapunov  functions,
we  prove  that  the  APDPNA-NS  have  same  results  as
APDPNA-S.

The organization of this paper is summarized as follows. In
Section  II,  several  necessary  preliminaries  are  introduced
briefly.  In Section III,  two accelerated primal-dual  projection
neurodynamic  approaches,  i.e.,  APDPNA-S  and  APDPNA-
NS are proposed to deal with smooth and nonsmooth convex
optimization problems with linear and set constraints, and the
fast convergence properties of them are also discussed. In Sec-
tion  IV,  we  validate  the  effectiveness  of  our  proposed  two
neurodynamic approaches through numerical simulations. We
conclude this paper in Section V.  

II.  Preliminaries
  

A.  Subdifferential
g : Rn→ R∪{+∞}Definition 1 [36]: If  satisfies

 

g (ϖw+ (1−ϖ)v) ≥ϖg (w)+ (1−ϖ)g (v) , 0 < ϖ < 1 (1)
then, we called g is convex.

When the convex function g is differentiable (i.e., smooth),
then, it enjoys
 

g (v) ≥ g (w)+∇g (w)T (v−w) , ∀w, v ∈ Rn (2)
∇g (w)where  the  is  the  gradient  of g with  respect  of w.  In

addition,  if g is  convex  and  nondifferentiable  (i.e.,
nonsmooth), then, it fulfills
 

g (v) ≥ g (w)+hT (v−w) , ∀w, v ∈ Rn (3)
where the h is a subgradient of g at the point w. Thus, the set
of
 

∂g (w) =
{
h ∈ Rn|g (v)−g (w) ≥ hT (v−w) , ∀w, v ∈ Rn

}
(4)

is called the subdifferential of g at w.  

B.  Projection Operators
PΩ (w) ΩDefinition 2 [37]: The projection operator  of  with

Ω

respect  to  the  variable w for  a  nonempty,  closed  and  convex
set  is given by
 

PΩ (w) = arg min
u∈Ω
∥w−u∥ = (I+NΩ)−1 w (5)

NΩ (w) = {u ∈ Rn|⟨u,v−w⟩ ≤ 0,∀v ∈Ω}
Ω

where  is  the  normal
cone to  at point w.

PΩ
Ω

Lemma 1: In general, a closed-form solution for the projec-
tion operator is not always available. However, there are cases
where  the  projection  operator  can  be  expressed  in  a
closed-form when  satisfies specific structures. For example:

Ω Ω = {w ∈ Rn | wmin
i ≤ wi ≤ wmax

i ,

i = 1, . . . ,n}
i) When  is a box set, i.e., 

, its projection operator is
 

PΩ (wi) =min
{
max

{
wi,wmin

i

}
,wmax

i

}
.

Ω Ω = {w ∈ Rn | ∥w−
v∥ ≤ r, v ∈ Rn, r > 0}

ii)  When  is  a  Euclidean  ball  set,  i.e., 
, then

 

PΩ (w) =


w, ∥w− v∥ ≤ r

v+
r (w− v)
∥w− v∥ , ∥w− v∥ > r.

Ω Ω = {w ∈ Rn | Bw = c,
B ∈ Rm×n, rank(B) = m,m ≤ n

}iii)  When  is  an  affine  set,  i.e., 
, then

 

PΩ (w) = w+BT
(
BBT

)−1
(c−Bw) . (6)

More  information  on  projection  operators  that  have  closed
form solutions can be found in [37].

Ω

Lemma 2 [14]: The projection operator satisfies the follow-
ing inequalities when  is a nonempty, closed and convex set
(see Fig. 1):
 

⟨w−PΩ (w) ,v−PΩ (w)⟩ ≤ 0,∀w ∈ Rn,v ∈Ω

∥PΩ (w)−PΩ (u)∥ ≤ ∥w−u∥ ,∀w,u ∈ Rn. (7)

 
 

w

u

v

Ω

PΩ(w)

||w − u||

PΩ(w) − PΩ(u) PΩ(u)

 
Fig. 1.     The presentation diagram of the projection operators inequalities in
Lemma 2.
 

φ (w,v) : Rn×Rn→ RLemma 3 [29]: Let  be
 

φ (w,v) =
1
2

(
∥w−PΩ (v)∥2−∥w−PΩ (w)∥2

)
(8)

then, one has
φ (w,v) ≥ 1

2 ∥PΩ (w)−PΩ (v)∥2i) .
φ (w,v)

∇wφ (w,v) = PΩ (w)−PΩ (v)
ii)  is continuously differentiable with respect of the

variable w, and its gradient is .  
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III.  Accelerated Primal-Dual Projection Neurody-
namic Approaches With Time Scaling

Consider a convex optimization problem with linear and set
constraints as
 

min
ξ∈Rn

g (ξ)

s.t. Bξ = c, ξ ∈Ω (9)
B ∈ Rm×n c ∈ Rm, Ω ⊆ Rn

g : Rn→ R∪{+∞}
where ,  is  a  nonempty,  closed  and
convex  set,  is  closed,  proper  lower  semi-
continuous convex function (not necessarily differentiable).

The  problem (9)  serves  as  a  fundamental  model  in  various
significant  applications,  including  signal  and  image  process-
ing  problems [38], [39],  resource  allocation  problems [40]–
[42],  machine  learning  problems [43],  and  distributed  con-
strained convex optimization problems [44], etc.

Lµ (ξ,ζ)Define the augmented Lagrangian function  associ-
ated with (9) is
 

Lµ (ξ,ζ) = g (ξ)+ ζT (Bξ− c)+
µ

2
∥Bξ− c∥2 (10)

ζ ∈ Rm µ ≥ 0 ∥Bξ− c∥2

ξ∗

ζ∗ ∈ Rm (ξ∗, ζ∗) ∈Ω×Rm

where  is the Lagrange multiplier,  and 
is the augmented item. According to convex optimization the-
ory,  is  the  optimal  solution  of  problem  (9)  if  and  only  if
there  exists  such  that  forms  a  sad-
dle point, satisfying the following inequality:
 

Lµ
(
ξ∗, ζ

) ≤ Lµ
(
ξ∗, ζ∗

) ≤ Lµ
(
ξ,ζ∗

)
∀ (ξ,ζ) ∈Ω×Rm. (11)

  

A.  The Problem (9) With Smooth Convex Objective Function g
In  order  to  address  problem  (9)  with  a  smooth  convex

objective function g and achieve a rapid convergence rate, we
introduce  an  accelerated  primal-dual  projection  neurody-
namic approach, denoted as APDPNA-S. This approach inte-
grates  the  Nesterov  accelerated  dynamical  approach,  time
scaling element, primal-dual dynamical approach, and projec-
tion operator.
 

ξ̇ (t) =
α

t
(PΩ (y (t))− ξ (t))

ẏ (t) = − t
α
β (t)

(
∇g (ξ (t))+µBT (Bξ (t)− c)

+BT ζ (t)+ y (t)−PΩ (y (t))
)
− ξ̇ (t)

ζ̇ (t) = tβ (t) (BPΩ (y (t))− c)

ξ0 ∈Ω, t ≥ t0 > 0

(12)

α ≥ 2 β (t) : [t0,+∞)→ (0,+∞) β̇ (t) ≤
(α−2)

t β (t)
where ,  and  it  satisfies 

.
(ξ0,y0, ζ0) ∈Ω×Rn×Rm

(ξ̄, ȳ, ζ̄)
(ξ̄, ȳ, ζ̄) = (ξ∗,y∗, ζ∗) ξ∗ = ξ̄

Theorem  1: For  any  initial  value ,
 is an equilibrium point to APDPNA-S (12) if and only

if  satisfies  KKT  condition,  i.e.,  is
the  optimal  solution  of  the  problem  (9)  with  smooth  convex
objective function g.

ξ∗

ζ∗ ξ∗ =

Proof: 1)  Sufficiency: In  accordance  with  KKT conditions,
if  is  the  optimal  solution  of  the  problem (9)  with  smooth
convex  objective  function g,  then  there  exists  and 

PΩ (y∗) satisfying
 

∇g
(
ξ∗

)
+BT ζ∗+NΩ

(
ξ∗

) ∋ 0 (13a)
 

Bξ∗− c = 0. (13b)
µ ≥ 0

∇g (ξ∗)+µBT (Bξ∗− c)+BT ζ∗+NΩ (ξ∗) ∋ 0

ξ∗ = PΩ (y∗) ⟨y∗−PΩ (y∗) ,v−
PΩ (y∗)⟩ ≥ 0,∀v ∈Ω y∗−PΩ (y∗) ∈ NΩ (ξ∗)

By  combining  with  (13b),  (13a)  can  be  rewritten  as
.  With  the  help  of

Definition  2  and  projection  inequalities  in  Lemma 2,  we  can
obtain  that  if ,  one  has 

,  which  means .
Thus, (13a) can be rewritten as
 

0 = ∇g
(
ξ∗

)
+µBT (

Bξ∗− c
)
+BT ζ∗+ y∗−PΩ

(
y∗

)
ξ∗ = PΩ

(
y∗

)
. (14)

By combining (13b) and (14), we can obtain that
 
ξ∗ = PΩ (y∗)

0 = ∇g (ξ∗)+µBT (Bξ∗− c)+BT ζ∗+ y∗−PΩ (y∗)

Bξ∗− c = 0.

(15)

(ξ∗, ζ∗) ∈Ω×RmTherefore,  is  an  equilibrium  point  of
APDPNA-S (12). (

ξ̄, ȳ, ζ̄
)
∈Ω×Rn×Rm2) Necessity: When  is an equilibrium

point of APDPNA-S (12), then it satisfies
 

ξ̄ = PΩ (ȳ)

0 = ∇g
(
ξ̄
)
+µBT

(
Bξ̄− c

)
+BT ζ̄ + ȳ−PΩ (ȳ)

Bξ̄− c = 0.

(16)

ξ̄ = PΩ(ȳ) ȳ ∈ ξ̄+NΩ(ξ̄)
ȳ−PΩ(ȳ) ∈ NΩ(ξ̄) 0 = ∇g(ξ̄)+µBT (Bξ̄− c)+

BT ζ̄ + ȳ−PΩ(ȳ) 0 ∈ ∇g(ξ̄)+
µBT (Bξ̄− c)+BT ζ̄ +NΩ(ξ̄) Bξ̄− c = 0

(ξ̄, ζ̄)

From ,  one  can  obtain ,  and  further
get .  Therefore, 

 can  be  equivalently  written  as 
.  It  combines  to  obtain

that  satisfies  KKT  condition  to  the  problem  (9)  with
smooth convex objective function g. ■

Z = (ξ,y, ζ) : [t0,+∞)→Ω×Rn×RmDefinition 3 [45]: The 
is  called  a  strong  global  solution  of  APDPNA-S  (12)  if  the
following conditions hold:

Z (t)i)  is locally absolutely continuous;
Z (t0) = (ξ (t0) ,y (t0) , ζ (t0)) ∈Ω×Rn×Rmii) ;

Z (t0) t ∈
[t0,+∞)

iii)  The  APDPNA-S  (12)  holds  with  and  for 
.

x : [t0,+∞)→ Rn

[t0,T ] T > 0

Remark 1: A function  is said to be locally
absolutely  continuous,  if  it  is  absolutely  continuous on every
interval , ,  i.e.,  the  following  equivalent  proper-
ties hold [46]:

ℵ : [t0,T ]→ Rna)  There exists  an integrable  function  such
that
 

x (t) = x (t0)+
w t

t0
ℵ (s)ds, ∀t ∈ [t0,T ] . (17)

[t0,T ]
b) x is continuous and its distributional derivative is Lebes-

gue integrable on .
ε > 0 γ > 0

Ik = (ak,bk) ⊆ [t0,T ]
c) For every , there exists  such that for any finite

family of intervals , one has 
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Ik ∩ I j = ∅ and
∑

k

|bk −ak | < γ
⇒∑

k

∥x (bk)− x (ak)∥ < ε.

(18)

ẋ = ℵ

(ak,bk)

i)  From  (17),  we  can  obtain  that  an  absolutely  continuous
function  is  differentiable  almost  everywhere,  its  derivative
coincides with its distributional derivative almost everywhere
and one can recover the function from its derivative . In
addition, an absolutely continuous function with non-positive
derivative, i.e.,  is nonincreasing.

x : [t0,T ]→ Rn T > 0
B : Rn→ Rn y y ≥ 0

z =B◦ x

[t0,T ]
∥ż (t)∥ ≤ y∥ẋ (t)∥ t ∈ [t0,T ]

ii)  If  with  is  absolutely  continuous
and  is -Lipschitz continuous for , then the
function  is absolutely continuous, too. This is easily
evident by using the characterization of absolute continuity in
third  equivalent  definition  mentioned  above.  Moreover, z is
differentiable almost everywhere on  and the inequality

 holds for any .
(ξ0,y0, ζ0) ∈Ω×Rn×Rm

ξ (t) ∈Ω,
∀t ≥ t0 > 0

Theorem  2: For  any  initial  value ,
APDPNA-S (12) has a unique strong global solution. In addi-
tion, the solution of APDPNA-S (12) is viable,  i.e., 

.
Z (t) = (ξ (t) ,y (t) ,

ζ (t)) ∈Ω×Rn×Rm
Proof: Existence  and  uniqueness:  Let 

,  then  the  APDPNA-S  (12)  can  be  rep-
hrased as follows:
 Ż (t) = F (t,Z (t))

Z (t0) = (ξ (t0) ,y (t0) , ζ (t0))
(19)

F : [t0,+∞)×Ω×Rn×Rmwhere  and
 

F (t,Z (t)) =
(
α

t
(PΩ (y (t))− ξ (t)) ,

− t
α
β (t)

(
∇g (ξ (t))+µBT (Bξ (t)− c)

+BT ζ (t)+ y (t)−PΩ (y (t))
)
− ξ̇ (t) ,

tβ (t) (BPΩ (y (t))− c)
)
.

The APDPNA-S (12) possesses a unique strong global solu-
tion,  as  guaranteed  by  the  Cauchy-Lipschitz-Picard  theorem,
under the following two conditions:

F (t, ·) l (t) l(·) ∈ L1
loc([t0,

+∞),Ω×Rn×Rm) t ∈ [t0,+∞)
i)  is -Lipschitz  continuous  and 

 for any .
Z ∈Ω×Rn×Rm F(·,Z) ∈ L1

loc([t0,+∞),
Ω×Rn×Rm) t ∈ [t0,+∞)

ii) For any , we have 
 for any .

t ∈ [t0,+∞)
∇g PΩ lg 1

∥X1+X2∥2 ≤ 2∥X1∥2+
2∥X2∥2 ∀ X1,X2 ∈ Rn Z, Ẑ ∈Ω×Rn×Rm

For i), let  be fixed and use the Lipschitz proper-
ties  of  and  (i.e.,  they  have  and  Lipschitz  con-
stants,  respectively)  and  inequality 

,  then, for , one has
 ∥∥∥∥F (t,Z (t))−F

(
t, Ẑ (t)

)∥∥∥∥
≤

((
2α2

t2 +

(
2+α2 ∥B∥2

)
t2β2 (t)

α2

)
×∥PΩ (y (t))−PΩ (ŷ (t))∥2

+

(
2α2

t2 +
t2β2 (t)

(
1+ lg+α2 ∥B∥2

)
α2

 

+
t2β2 (t)µ2

α2

∥∥∥BT B
∥∥∥2

)∥∥∥ξ (t)− ξ̂ (t)
∥∥∥2

+

(
t2β2 (t)
α2 ∥B∥2

)∥∥∥ζ (t)− ζ̂ (t)
∥∥∥2

) 1
2

≤
( (3+ (

2α2+1
)
∥B∥2+ lg+µ2

∥∥∥BT B
∥∥∥2

)
t2β2 (t)

α2

+
4α2

t2

) 1
2 ∥∥∥Z (t)− Ẑ (t)

∥∥∥ .
l (t) =

 4α2

t2
+

(
3+

(
2α2+1

)
∥B∥2+l f+µ2∥BT B∥2

)
t2β2(t)

α2


1
2

l (t) [t0,+∞) l (·)
[t0,T ] 0 < t0 < T < +∞

Let . It is wor-

th noting that  is continuous on , then, one has 
is integrable on  where .

Z ∈Ω×Rn×RmFor ii), given any , we have
 w T

t0
∥F (t,Z (t))∥dt ≤

(
∥PΩ (y (t))∥2+ ∥∇g (ξ (t))∥2

+ ∥ζ (t)∥2+ ∥ξ (t)∥2+ ∥y (t)∥2
) 1

2

×
w T

t0

(
t2β2 (t) (2+2µ2∥BT B∥2)

α2

+
t2β2 (t) (2α2+1)∥B∥2

α2 +
4α2

t2

) 1
2

dt

and conclusion ii) is true according to the following condition:
 

t→ 4α2

t2 +

t2β2 (t)
(
2+2µ2

∥∥∥BT B
∥∥∥2

)
α2

+
t2β2 (t)

(
2α2+1

)
∥B∥2

α2 .

Conditions i) and ii) imply the existence and uniqueness of
the strong global solution (12) of APDPNA-S.

ξ̇ (t) = αt (PΩ (y (t))− ξ (t))

ξ̇ (t) Ω ξ (t)
Ω

Viability: Intuitively,  since ,  the
derivative  will point towards , i.e., making variable 
always in the feasible set .

ξ(t) Ω

t ≥ t0 > 0 t1 > 0
ξ1 = ξ (t1) <Ω

ξ1 Ω Ω

v ∈ Rn ⟨v, ξ1−ω⟩ > 0 ⟨v, ξ−ω⟩ < 0,
∀ξ ∈Ω d (ξ) = ⟨v, ξ−ω⟩
ξ (t) t→ d (ξ (t))

ḋ (ξ (t)) = ⟨v, ξ̇ (t)⟩

We rigorously prove variable  remains in feasible set 
for  all .  Suppose  there  exists ,  such  that

.  A  hyperplane  exists  that  strictly  separates  the
variables  and  since  is a closed convex set, i.e.,  there
exist ω, ,  such  that  and 

. Denote . Since the solution trajectory
 is continuously differentiable,  is also continu-

ously differentiable, and .
ξ0 ∈Ω d(ξ0) < 0

d(ξ1) > 0 τ† d(ξ†) = 0 d(ξ1) > 0,∀t ∈
(t†, t1] t† ξ(t)

t† sup{t : d(ξ(t)) < 0} d(ξ1)− d(ξ†) >
0 t‡ ∈ [t†, t1]

Since  initial  value ,  we  can  obtain  and
. Thus there is  so that  and 

,  that  is,  is  the  last  time  crosses  the  separating
hyperplane  (  is  simply ). 

, from Taylor’s theorem, there exists , such that
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d
(
ξ1

)
− d

(
ξ†

)
= ḋ

(
ξ
(
t‡
))
= ⟨v, ξ̇ (t‡)⟩

=
α

t
⟨v,PΩ

(
t‡
)− ξ (t‡)⟩

=
α

t
d
(
PΩ

(
t‡
)− d (ξ (t‡))) < 0 (20)

PΩ
(
t‡
) ∈Ωsince .  This  is  a  contradiction,  from  which  the

proof is derived, and is shown in Fig. 2. ■
 
 

x(t1) = x1

x(t‡) = x‡

x(t†) = x†

x(t0) = x0

PΩ(y(t‡))

Ω

 
Fig. 2.     The illustration of the viability of APDPNA-S (12).
 

β : [t0,+∞)→ (0,+∞)
β̇(t) ≤ ((α−2)β(t))/t

(ξ∗,y∗, ζ∗) (ξ(t),y(t), ζ(t)) ∈Ω×Rn×Rm

(ξ(t0),y(t0), ζ(t0)) ∈Ω×Rn×Rm

Theorem 3: Assume that  is a continu-
ous differentiable function and it satisfies 
and  let  and  be  opti-
mal solution and a strong global solution of APDPNA-S (12)
respectively.  Then  for  any ,
the following conditions hold:
ξ (t) PΩ (y (t)) = t

α ξ̇ (t)+ ξ (t) ζ (t)i) , ,  are bounded.
ξ (t) ∈Ω, t ∈ [t0,+∞)ii) For any , we have

 

Lµ
(
ξ (t) , ζ∗

)−Lµ
(
ξ∗, ζ (t)

) ≤ α2V (t0)
β (t) t2

∥Bξ (t)− c∥ ≤
α
√

2V(t0)
µ

t
√
β (t)

.

iii)
 w +∞

t0
t
(
α2β (t)−2β (t)− β̇ (t) t

α2

)
×

(
Lµ

(
ξ (t) , ζ∗

)−Lµ
(
ξ∗, ζ (t)

))
dt < +∞

w +∞
t0

µβ (t) t
2α

∥Bξ (t)− c∥2dt < +∞

w +∞
t0

t
α2

∥∥∥ξ̇ (t)
∥∥∥2

dt < +∞,
∥∥∥ξ̇ (t)

∥∥∥ = O
(

1
t

)
.

V : [t0,+∞)→ RProof: Construct  a  Lyapunov  function  as
follows:
 

V (t) =
β (t) t2

α2

(
Lµ

(
ξ (t) , ζ∗

)−Lµ
(
ξ∗, ζ

))
+

1
2α

(∥∥∥y (t)−PΩ
(
y∗

)∥∥∥2−∥y (t)−PΩ (y (t))∥2
)

+
1

2α

∥∥∥ξ (t)− ξ∗
∥∥∥2
+

1
2

∥∥∥ζ (t)− ζ∗
∥∥∥2 (21)

(ξ∗,y∗, ζ∗) ξ∗

PΩ (y∗) = ξ∗

where  is  the equilibrium point  (i.e.,  is  the opti-
mal  solution  of  problem  (9))  to  APDPNA-S  (12)  with

.
V (t)
V (t) = 0 (ξ (t) ,y (t) , ζ (t)) = (ξ∗,

y∗, ζ∗) V (t) > 0 (ξ (t) ,y (t) , ζ (t)) , (ξ∗,y∗, ζ∗)
ξ (t) ζ (t) ∥ζ (t)− ζ∗∥2 ≥ 0 ∥ξ (t)−

x∗∥2 ≥ 0 ∥y (t)−PΩ (y∗)∥2−∥y (t)−PΩ (y (t))∥2 ≥ 0

The  Lyapunov  function  is  continuously  differentiable
and  positive  definite  (i.e., ,  if 

; ,  if  and  radially
unbounded  of ,  due  to , 

,  (see  Lem-
ma 3) and
 

g (ξ (t))+
(
ζ∗

)T (Bξ (t)− c)+
µ

2
∥Bξ (t)− c∥2−g

(
ξ∗

)
= g (ξ (t))+

(
BT ζ∗

)T (
ξ (t)− ξ∗)

+
µ

2
∥Bξ (t)− c∥2− f

(
ξ∗

)
∈ g (ξ (t))−g

(
ξ∗

)−∇g
(
ξ∗

)T (
ξ (t)− ξ∗)

−NΩ
(
ξ∗

)T (
ξ (t)− ξ∗)+ µ

2
∥Bξ (t)− c∥2

≥ IΩ
(
ξ∗

)− IΩ (ξ (t))+
µ

2
∥Bξ (t)− c∥2

=
µ

2
∥Bξ (t)− c∥2 ≥ 0 (22)

Bξ∗ = c
BT ζ∗ ∈ −∇g (ξ∗)−

NΩ (ξ∗)
IΩ

ξ (t)

where  the  first  equation  holds  due  to ,  the  inclusion
equation  holds  according  to  (13a),  i.e., 

, the first inequality is satisfied by using the convexity
of g and , and the second equality holds due to the Viability
of  in Theorem 1.

According to the chain rule of derivation, we get
 

V̇ (t) =
(

2β (t) t+ β̇ (t) t
α2

) (
g (ξ (t))−g

(
ξ∗

)
+ (Bξ (t)− c)T ζ∗+

µ

2
∥Bξ (t)− c∥2

)
+
β (t) t
α

×
(
∇g (ξ (t))+BT ζ∗+µBT B

(
ξ (t)− ξ∗))T

×
(

PΩ (y (t))− ξ (t)
)
+

tβ (t)
α

(
ζ (t)− ζ∗)T

×B
(
PΩ (y (t))− ξ∗)− β (t) t

α

(
PΩ (y (t))−PΩ

(
y∗

))T

×
(
∇g (ξ (t))+µBT B

(
ξ (t)− ξ∗)+BT ζ (t)

+ y (t)−PΩ (y (t)))+
1
α

(
ξ (t)− ξ∗)T ξ̇ (t)

− 1
α

(
PΩ (y (t))−PΩ

(
y∗

))T ξ̇ (t)

≤
(

2β (t) t+ β̇ (t) t
α2

) (
g (ξ (t))−g

(
ξ∗

)
+ (Bξ (t)− c)T ζ∗+

µ

2
∥Bξ (t)− c∥2

)
+
β (t) t
α

×
(
∇g (ξ (t))+BT ζ∗+µBT B

(
ξ (t)− ξ∗))T

× (
PΩ

(
y∗

)− ξ (t)
)− t
α2

∥∥∥ξ̇ (t)
∥∥∥2
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≤
(

2β (t) t+ β̇ (t) t
α2

) (
g (ξ (t))−g

(
ξ∗

)
+ (Bξ (t)− c)T ζ∗+

µ

2
∥Bξ (t)− c∥2

)
− β (t) t
α

(
g (ξ (t))−g

(
ξ∗

)
+µ∥Bξ (t)− c∥2

+ (Bξ (t)− c)T ζ∗
)
− t
α2

∥∥∥ξ̇ (t)
∥∥∥2

=

(
2β (t) t+ β̇ (t) t2

α2 − β (t) t
α

)
− t
α2

∥∥∥ξ̇ (t)
∥∥∥2

×
(
g (ξ (t))+ (Bξ (t)− c)T ζ∗ −g

(
ξ∗

)
+
µ

2
∥Bξ (t)− c∥2

)
− µβ (t) t

2α
∥Bξ (t)− c∥2 ≤ 0 (23)

−(PΩ (y (t))−
PΩ (y∗))T (y (t)−PΩ (y (t))) ≤ 0

β̇ (t) ≤ ((α−2)β (t))/t

where  the  first  inequality  can  be  obtained  by 
 in  Lemma  2,  the  second

inequality  holds  thanks  to  the  convexity  of g,  and  the  third
inequality is satisfied since .

V̇ (t) ≤ 0From (23), i.e., , we get
 

V (t) ≤ V (t0) ,∀ ξ (t) ∈Ω, t ∈ [t0,+∞) . (24)
V (t)

ξ (t) ∈Ω
t ∈ [t0,+∞)

Based  on  the  above  inequality,  the  definition  of  and
Lemma  3,  it  can  be  concluded  that  for  any  and

, the following holds:
 

1
2α

∥∥∥ξ (t)− ξ∗
∥∥∥2
+

1
2α

∥∥∥PΩ (y (t))−PΩ
(
y∗

)∥∥∥2

+
1
2

∥∥∥ζ (t)− ζ∗
∥∥∥2 ≤ V (t) ≤ V (t0) < +∞

ξ (t) PΩ (y (t)) = t
α ξ̇ (t)+ ξ (t) ζ (t)which  means  that , ,  are

bounded, i.e.,
 

sup
t∈[t0,+∞)

t
∥∥∥ξ̇ (t)

∥∥∥ < +∞ (25)

∥ξ̇ (t)∥ = O(1/t)which implies .
Furthermore, from (21) and (24), one has

 

Lµ
(
ξ (t) , ζ∗

)−Lµ
(
ξ∗, ζ (t)

) ≤ α2V (t0)
β (t) t2

∥Bξ (t)− c∥ ≤
α
√

2V(t0)
µ

t
√
β (t)

. (26)

0 +∞Integrating (23) from  to  yields
 w +∞

t0
t
(
α2β (t)−2β (t)− β̇ (t) t

α2

)
×

(
Lµ

(
ξ (t) , ζ∗

)−Lµ
(
ξ∗, ζ (t)

))
dt < +∞

w +∞
t0

µβ (t) t
2α

∥Bξ (t)− c∥2dt < +∞
w +∞

t0

t
α2

∥∥∥ξ̇ (t)
∥∥∥2

dt < +∞. (27)

■
β̇ (t) ≤ ((α−2)β (t))/

t β (t) = θtη θ > 0 0 < η ≤ (α−2)
Remark 2: In Theorem 3, the assumption 

 holds  if  choosing  with  and ,

β̇ (t)/β (t) = η/t [t0, t]
thus  the  conclusions  in  Theorem  3  are  true.  In  this  case

. Integrating the above equation from , we
have
 

lnβ (t)− lnβ (t0) = η (ln t− ln t0)

⇒ β (t) =
β (t0)
(t0)η

tη =
β(t0)
(t0)η =θ>0

θtη.

θ > 0, 0 < η ≤ (α−2) , β (t) = θtη
Next,  we  will  discuss  the  optimal  convergence  of  APD-

PNA-S  (12)  when .  Before
presenting the following theorem we need to provide a neces-
sary lemma as follows:

φ : [t0,+∞)→ Rn

t0 > 0 a ≥ 0 b ≥ 0
Lemma  4 [34]: Let  be  a  continuous  dif-

ferentiable function and , , , and if
 

∥aφ (t)+ tφ̇ (t)∥ ≤ b∀t ≥ t0

supt≥t0 ∥tφ̇ (t)∥ < +∞holds, then, one has .
(ξ∗,y∗,λ∗) (ξ (t) ,y (t) , ζ (t)) ∈Ω×Rn×

Rm

β (t) = θtη θ > 0 0 < η ≤ (α−
2) (ξ (t0) ,y (t0) , ζ (t0)) ∈Ω×Rn×Rm

Corollary  1: Let  and 
 be  an  optimal  solution  and  a  strong  global  solution  of

APDPNA-S (12) when  with  and 
. Then for any , one has

 ∣∣∣g (ξ(t))−g
(
ξ∗

)∣∣∣ = O
(

1
tη+2

)
∥Bξ (t)− c∥ = O

(
1

tη+2

)
. (28)

λ̇ (t) = tβ (t) (BPΩ(y (t))−
c) t0

Proof: Integrating the both side of 
 from  to t, one has

 

λ (t)−λ (t0) =
w t

t0
λ̇ (t)ds

=
w t

t0
sβ (s) (BPΩ (y (s))− c)ds

=
w t

t0
sβ (s) (Bξ (s)− c)ds+

w t

t0

1
α

s2β (s)d (Bξ (s)− c)

=
1
α

s2β (s) (Bξ (s)− c) |s=t
s=t0

+
1
α

w t

t0
s
(
(α−2)β (s)− sβ̇ (s)

)
(Bξ (s)− c)ds

=
1
α
θtη+2 (Bξ (t)− c)− 1

α
θtη+2

0 (Bξ (t0)− c)

+
1
α
θ
w t

t0
(α−2−η) tη+1 (Bξ (s)− c)ds. (29)

λ (t)From Theorem 3, we conclude that the dual variable  is
bounded, this together (29) implies
 ∥∥∥∥∥∥ (α−2−η)

w t

t0
tη+1 (Bξ (s)− c)ds

+ tη+2 (Bξ (t)− c)

∥∥∥∥∥∥ ≤ D (30)

where
 

D =
α

θ
sup

t∈[t0,+∞)
∥λ (t)−λ (t0)∥+

∥∥∥∥tη+2
0 (Bξ (t0)− c)

∥∥∥∥ < +∞. (31)

φ (t) =
r t

t0
tη+1 (Bξ (s)− c)ds a = α−By  Lemma  4  with , 

ZHAO et al.: ACCELERATED PRIMAL-DUAL PROJECTION NEURODYNAMIC APPROACH WITH TIME SCALING 1491 



2−η b = D and , we obtain
 

sup
t∈[t0,+∞)

∥∥∥tη+2 (Bξ (t)− c)
∥∥∥ < +∞

which implies
 

∥Bξ (t)− c∥ = O
(

1
tη+2

)
.

This in combination with Theorem 3 implies
 ∣∣∣g (ξ (t))−g

(
ξ∗

)∣∣∣ ≤ Lµ
(
ξ (t) , ζ∗

)−Lµ
(
ξ∗, ζ (t)

)
+

∥∥∥ζ∗∥∥∥∥Bξ (t)− c∥

= O
(

1
tη+2

)
. (32)

　　 ■  

B.   The  Problem  (9)  With  Nonsmooth  Convex  Objective  Func-
tion g

∂g(ξ)

ẏ(t) ∈ − t
αβ(t)(∂g(ξ) + µ(Bξ(t)− c) +

BT ζ(t)−PΩ(y(t))+ y(t))

V(t)

V(t)

g(ξ; ξ̇) = suph∈∂g(ξ)⟨h, ξ̇⟩

In  this  subsection,  our  objective  is  to  address  the  problem
(9) which involves nonsmooth objective functions, the subdif-
ferential  of g at ξ is a closed and convex set since g is a
closed  and  proper,  nonsmooth  convex  function.  A  classical
attempt to directly extend APDPNA-S (12) to be able to solve
nonsmooth  convex  optimization  problems  is  to  substitute
the  second  differential  equation  in  APDPNA-S (12)  with  the
differential  inclusion 

.  It  may not  be  sufficient,  as  we shall
see below, to ensure the decreasing of the Lyapunov function

 according  to  a  continuous  trajectory  of  solution.  As  we
will  observe,  this  approach  may  not  be  enough  to  guarantee
the decrease of the Lyapunov function  along continuous
solution  trajectories.  It  follows  from [36] that  the  directional
derivative  in  the  nondifferentiable
case  plays  a  central  role  in  the  derivation  of  the  correct
dynamics.

d (ξ;z)
∂g (ξ)

From the work in [28], one can associate the set of subgra-
dients that have reached their maximum value to  (since

 is the compact set in this case, the upper limit value is
reached). Let’s represent this set
 

d (ξ;z) = argmax
h∈∂g(ξ)

⟨h,z⟩. (33)

Based on the preceding discussion,  we propose the follow-
ing  accelerated  primal-dual  projection  neurodynamic
approach  (abbreviated  as  APDPNA-NS)  for  the  solving  the
problem (9) with nonsmooth objective function g as follows:
 

ξ̇ (t) =
α

t
(PΩ (y (t))− ξ (t))

ẏ (t) ∈ − t
α
β (t)

(
d
(
ξ (t) ; ξ̇ (t)

)
+µBT (Bξ (t)− c)

+BT ζ (t)+ y (t)−PΩ (y (t))
)
− ξ̇ (t)

ζ̇ (t) = tβ (t) (BPΩ (y (t))− c)

(34)

α ≥ 2 β (t) : [t0,+∞)→ (0,+∞) β̇ (t) ≤
α−2

t β (t)
where ,  and  it  satisfies 

.
ξ̇(t) =

α
t (PΩ(y(t))− ξ(t)) ξ̇(t)

Remark  3: It  is  notable  that  the  same  equation 
 is used for the dynamic trajectory of  in

ξ(t)
ξ(t) ∈Ω,∀t ≥ t0 > 0

ξ(t)

APDPNA-S  (12)  and  APDPNA-NS (34).  Thus,  according  to
Theorem  2,  the  solution  of  APDPNA-NS  (34)  is  also
viable,  i.e., .  Nevertheless,  note  that  in
APDPNA-NS  (34),  we  do  not  investigate  the  existence  and
uniqueness of its solution . In addition, since the objective
function in problem (9) is nonsmooth, the KKT conditions of
problem (9) become
 

∂g
(
ξ∗

)
+BTλ∗+NΩ

(
ξ∗

) ∋ 0

Bξ∗− c = 0.

Thus the optimality of solution of APDPNA-NS (34) can be
proved employing a similar approach as in Theorem 1.

β : [t0,+∞)→ (0,+∞)
β̇ (t) ≤ ((α−2)β (t))/t

(ξ∗,y∗, ζ∗) (ξ (t) ,y (t) , ζ (t)) ∈Ω×Rn×Rm

(ξ (t0) ,y (t0) , ζ (t0)) ∈Ω×Rn×
Rm

Theorem 4: Assume that  is a continu-
ous differentiable function and it satisfies 
and  let  and  be  opti-
mal  solution  and  a  strong  global  solution  of  APDPNA-NS
(34)  respectively.  Then  for  any 

, the following conditions hold:
ξ (t) PΩ (y (t)) = t

α ξ̇ (t)+ ξ (t) ζ (t)i) , ,  are bounded.
ξ (t) ∈Ω, t ∈ [t0,+∞)ii) For any , we have

 

Lµ
(
ξ (t) , ζ∗

)−Lµ
(
ξ∗, ζ (t)

) ≤ α2E (t0)
β (t) t2

∥Bξ (t)− c∥ ≤
α
√

2E(t0)
µ

t
√
β (t)

.

β (t) = θtη θ > 0 0 < η ≤ (α−2)iii)  Let  with  and ,  then  one
has
 ∣∣∣g (ξ(t))−g

(
ξ∗

)∣∣∣ = O
(

1
tη+2

)
∥Bξ (t)− c∥ = O

(
1

tη+2

)
. (35)

E (t)Proof: Constructing  a  Lyapunov  function  which  is
almost identical to Theorem 3, except that the objective func-
tion g is nonsmooth, and it is
 

E (t) =
µ (t) t2

α2

(
Lβ

(
ξ (t) , ζ∗

)−Lµ
(
ξ∗, ζ(t)

))
+

1
2α

(∥∥∥y (t)−PΩ
(
y∗

)∥∥∥2−∥y (t)−PΩ (y (t))∥2
)

+
1
2

∥∥∥ζ (t)− ζ∗
∥∥∥2
+

1
2α

∥∥∥ξ (t)− x∗
∥∥∥2

=
β (t) t2

α2

(
g (ξ (t))+

(
ζ∗

)T (Bξ (t)− c)

+
µ

2
∥Bx (t)− c∥2−g

(
ξ∗

))
+

1
2α

(∥∥∥y (t)−PΩ
(
y∗

)∥∥∥2−∥y (t)−PΩ (y (t))∥2
)

+
1

2α

∥∥∥ξ (t)− ξ∗
∥∥∥2
+

1
2

∥∥∥ζ (t)− ζ∗
∥∥∥2
. (36)

E (t)
ϵ > 0

For  proving  the  differentiability  of  the  Lyapunov  function
,  we  use  the  difference  quotient,  which  is  defined  as
. 
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∆t (ϵ) =
E (t+ ϵ)−E (t)

ϵ

=
1
ϵ

(
β (t+ ϵ) (t+ ϵ)2

α2

((
ζ∗

)T (Bξ (t+ ϵ)− c)

+
β

2
∥Bξ (t+ ϵ)− c∥2+g (ξ (t+ ϵ))−g

(
ξ∗

))
+

1
2

∥∥∥ζ (t+ ϵ)− ζ∗
∥∥∥2
+

1
2α

(∥∥∥y (t+ ϵ)−PΩ
(
y∗

)∥∥∥2

− ∥y (t+ ϵ)−PΩ (y (t+ ϵ))∥2
)
− 1

2

∥∥∥ζ (t)− ζ∗
∥∥∥2

+
1

2α

∥∥∥ξ (t+ ϵ)− ξ∗
∥∥∥2− 1

2α

∥∥∥ξ (t)− ξ∗
∥∥∥2

− β (t) t2

α2

(
g (ξ (t))+

β

2
∥Bξ (t)− c∥2−g

(
ξ∗

)
+

(
ζ∗

)T (Bξ (t)− c)
)
− 1

2α

(∥∥∥y (t)−PΩ
(
y∗

)∥∥∥2

− ∥y (t)−PΩ (y (t))∥2
))
. (37)

g(ξ+o(ϵ)) = g(ξ)+o(ϵ) 1
2α (∥y(t)−

PΩ(y∗)∥2−∥y(t)−PΩ(y(t))∥2) (λ∗)T (Bξ(t)− c)+ β2 ∥Bξ(t)− c∥2
∥ξ(t)− ξ∗∥2 ∥ζ(t)− ζ∗∥2

Based  on  the  fact  that  the  convex  function  is  locally  Lips-
chitz  (so  that ),  and  that 

, ,
 and  are differentiable, we have

 

∆t (ϵ) =
β (t) t2

α2

(
g
(
ξ (t)+ ϵξ̇ (t)

)
−g (ξ (t))

)
ϵ

+o (1)

+
β (t) t2

α2
d
dt

((
ζ∗

)T (Bξ (t)− c)+
β

2
∥Bx (t)− c∥2

)
+
β̇ (t) t2+β (t)2t

α2

(
g (ξ (t))−g

(
ξ∗

))
+

1
2α

d
dt
∥ξ (t)− ξ (t)∥2+ 1

2
d
dt

∥∥∥ζ (t)− ζ∗
∥∥∥2

+
β̇ (t) t2+β (t)2t

α2 (B (ξ (t))− c)T ζ∗

+
β̇ (t) t2+β (t)2t

α2

(
β

2
∥Bξ (t)− c∥2

)
+

1
2α

d
dt

(∥∥∥y (t)−PΩ
(
y∗

)∥∥∥2−∥y (t)−PΩ (y (t))∥2
)
. (38)

By using
 

lim
ϵ→0,ϵ>0

g
(
ξ (t)+ ϵξ̇ (t)

)
−g (ξ (t))

ϵ
= g′

(
ξ (t) ; ξ̇ (t)

)
d
dt

((
ζ∗

)T (Bξ (t)− c)+
β

2
∥Bξ (t)− c∥2

)
=

(
ζ∗

)T Bξ̇ (t)+ (Bξ (t)− c)T Bξ̇ (t)

1
2α

d
dt
∥ξ (t)− ξ (t)∥2 = 1

α
(ξ (t)− ξ (t))T ξ̇ (t)

 

1
2

d
dt

∥∥∥ζ (t)− ζ∗
∥∥∥2
=

(
ζ (t)− ζ∗)T ζ̇ (t)

1
α

d
dt

(∥∥∥y (t)−PΩ
(
y∗

)∥∥∥2−∥y (t)−PΩ (y (t))∥2
)

=
1
α

(
PΩ (y (t))−PΩ

(
y∗

))T ẏ (t)

we have
 

lim
ϵ→0,ϵ>0

∆t (ϵ)

=
β (t) t2

α2

(
g′

(
ξ (t) ; ξ̇ (t)

)
+
α

t
(
ζ∗

)T B (PΩ (y (t))− ξ (t))

+
αµ

t
(Bξ (t)− c)T B (PΩ (y (t))− ξ (t))

)
+
β̇ (t) t2+β (t)2t

α2

(
(ζ∗)T (Bξ (t)− c)

+ g (ξ (t))−g
(
ξ∗

)
+
µ

2
∥Bξ (t)− c∥2

)
+

t
α
β (t)

(
ζ (t)− ζ∗)T (BPΩ (y (t))− c)

− t
α
β (t)

(
PΩ (y (t))−PΩ

(
y∗

))T
(
d
(
ξ (t) ; ξ̇ (t)

)
+µ (Bξ (t)− c)+BT ζ (t)+ y (t)−PΩ (y (t))

)
− 1
α

(
PΩ (y (t))−PΩ

(
y∗

))T ẋ (t)+
1
α

(ξ (t)− ξ (t))T ẋ (t)

≤ β (t) t2

α2

(
g′

(
ξ (t) ; ξ̇ (t)

)
−d

(
ξ (t) ; ξ̇ (t)

)T
ξ̇ (t)

)
− t
α2

∥∥∥ξ̇ (t)
∥∥∥2
+
β̇ (t) t2+β (t)2t

α2

(
g (ξ (t))−g

(
ξ∗

)
+

(
ζ∗

)T (Bξ (t)− c)+
µ

2
∥Bξ (t)− c∥

)
+

tβ (t)
α
+

(
g
(
ξ∗

)− µ
2
∥Bξ (t)− c∥2 −g (x (t))

− µ
2
∥Bξ (t)− c∥2− (

ζ∗
)T (Bξ (t)− c)

)
+

tβ (t)
α

(
g (ξ (t))−g

(
ξ∗

)−d
(
ξ (t) ; ˙ξ (t)

)T (
ξ∗− ξ (t)

))
≤ β (t) t2

α2

(
g′

(
x (t) ; ξ̇ (t)

)
−d

(
ξ (t) ; ˙ξ (t)

)T
ξ̇ (t)

)
+

(
β̇ (t) t2+β (t)2t

α2 − tβ (t)
α

) (
g (ξ (t))−g

(
ξ∗

)
+

(
ζ∗

)T (Bξ (t)− c)+
µ

2
∥Bξ (t)− c∥2

)
− tβ (t)
α

µ

2
∥Bξ (t)− c∥2− t

α2

∥∥∥ξ̇ (t)
∥∥∥2 ≤ 0 (39)

−(PΩ(y(t))−
PΩ(y∗))T (y(t)−PΩ(y(t))) ≤ 0

β̇(t) ≤ ((α−2)β(t))/t

where  the  first  inequality  holds  due  to 
 in Lemma 2, the second inequal-

ity  is  satisfied  from  the  convexity  of  the  function f,  and  the
third inequality is satisfied due to .

The  above  conclusions  hold  with  a  similar  proof  to  Theo-
rem  3  and  Corollary  1.  To  avoid  duplicating  the  proof,  we
omit it here. ■
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ẏ(t) ∈ − t
αβ(t)(∂g(ξ(t)) + µBT (Bξ(t)− c) + BT ζ(t)−PΩ(y(t)) +

y(t)) ∂g(ξ(t)) g′(ξ(t);
ξ̇(t))−d(ξ(t); ξ̇(t))T ξ̇(t)

E(t)
ẏ(t) ∈

− t
αβ(t)(d(ξ(t); ẋ(t))+µBT (Bξ(t)− c)+BT ζ(t)+ y(t)−PΩ(y(t)))

d(ξ(t); ξ̇(t)) ξ(t)
⟨·, ξ(t)⟩ g′(ξ(t); ξ̇(t))−d(ξ(t);

ξ̇(t))T ξ̇(t) limϵ→0,ϵ>0∆t(ϵ)
≤ 0

Remark  4: It’s  worth  noting  from  (39)  that  if  we  use
 

 (in  other  words,  is  a  subgradient  of 
 is  non-negative  by  (33),  and  one  can-

not conclude that the Lyapunov function  is diminishing.
It  drives  us  to  select  the  subgradient.  Indeed,  when 

,
where  is a subgradient of g at  that maximizes
the  linear  functional ),  the 

 term  in  (39)  is  non-positive,  thus 
.

Ω

ξ0 = PΩ(x0) ∈Ω x0 ∈ Rn

ξ0 Ω

Remark 5: The choice of an initial point within the feasible
set  is  a  crucial  aspect  addressed  in  this  manuscript,  as  it  can
impact  the  feasibility  and  convergence  of  the  solutions  in
APDPNA-S (12) and APDPNA-NS (34). Since the projection
operator  has a closed-form solution (refer to Lemma 1), it is
straightforward  to  use ,  where ,  to
obtain the initial value  that satisfies the feasible set .  

IV.  Numerical Simulations

z ∈ Rn

c = Az ∈ Rm

m≪ n

A ∈ Rm×n m≪ n

m≪ n

In this section, to demonstrate the effectiveness and superi-
ority of the proposed APDPNA-S (12) and its extended nons-
mooth version APDPNA-NS (34),  we discuss  the  sparse  sig-
nal  reconstruction  problem in  the  compressed  sensing.  Com-
pressed  sensing,  also  known  as  compressive  sampling,  is  a
novel sampling theory that leverages the sparsity of signals. It
achieves this by acquiring discrete samples of signals through
random sampling at a much lower rate than the Nyquist sam-
pling  rate.  Subsequently,  it  employs  nonlinear  reconstruction
algorithms  to  perfectly  reconstruct  the  signals.  This  concept
has gained significant attention in various fields such as infor-
mation  theory,  image  processing,  earth  science,  microwave
imaging,  pattern  recognition,  wireless  communication,  and
biomedical  engineering.  The  problem  of  recovering  sparse
signals, which is a key aspect of compressed sensing, involves
reconstructing the sparse signal  from small  number of
linear  measurements  (linear  constraints)  with

.  The  dimensions  of  these  measurements  are  much
smaller  than  the  spatial  dimensions  of  the  signal.  Here,

 (with ) represents the measurement matrix or
dictionary. It is important to note that the sparse signal recov-
ery problem is generally ill-posed and challenging due to the
imbalance between the number of measurements and the sig-
nal  dimensions  ( ).  To  address  this  challenge, [39]
demonstrates  that  faithful  recovery of z from the compressed
measurement c is possible when measurement matrix A satis-
fies certain stable embedding conditions. Mathematically,  the
sparse  signal  reconstruction  problem  can  be  formulated  as  a
basis pursuit (BP) problem.  

A.  Basis Pursuit
Basis pursuit (BP) problem as follows:

 

min
z∈Rn
∥z∥1 , s.t. Az = c. (40)

Fortunately,  the  BP  problem  (40)  can  be  written  equiva-
lently  as  a  linear  programming  problem  with  a  linear  con-
straint  and  positive-orthant  constrained  sets  by  a  splitting
method, i.e., dividing z into positive and negative parts as fol-

z = u− v u = [z]+ ≥ 0 v = [−z]+ ≥ 0 [z]+ =max {0,y}
∥z∥1 = 1T u+1T v

lows: , , { }, ,
thus,  we  have ,  corresponding  the  BP  prob-
lem (40) becomes
 

min
x∈R2n

g(x) = 1T x

s.t. Bx = c, x ≥ 0 (41)
x = [uT ,vT ]T ∈ R2n B = [A,−A]where , .

m = 100 n = 256 15
β (t) = θtη, θ = 0.1,η = 1

η = 2

η = 1 η = 2

|g (x (t))−g (x∗)| ∥Bx (t)− c∥
η = 1 η = 2

η = 2
η = 1

η = 1 η = 2

Let ,  and sparsity be . Apply APDPNA-
S (12) to deal with problem (41) with 
and  respectively.  From Fig.  3 (3(a)  and 3(b), 3(d)  and
3(e)),  we  can  obtain  that  the  trajectories  of  APDPNA-S  (12)
with  and  are  globally  asymptotically  stable  and
sparse  signals  can  be  recovered  by  using  the  stable  solutions
of APDPNA-S (12). In addition, Fig. 3 (3(c) and 3(f)) shows
the  convergence  rates  of  and  of
APDPNA-S  (12)  with  and  with  classical  sparse
neurodynamic approaches: PNNSR-dynamic [21] and LPNN-
LCA [23]. As can be seen from Fig. 3 (Figs. 3(c) and 3(f)), the
APDPNA-S (12) with  has a faster convergence rate than
that with , which is consistent with the concluding results
of Theorem 3 and Corollary 1. In addition, convergence rates
of  and  are  faster  than  PNNSR-dynamic [21] and
LPNN-LCA [23].

g (x) =
xT Mx x ∈ R50 M ∈ R50×50

B ∈ R10×50 c = 0 ∈ R10

α = 4
β (t) = θtη θ = 0.1 η = 1 η = 2

|g (x (t))−g (x∗) |
∥Bx (t)− c∥

To  better  demonstrate  the  superiority  of  APDPNA-S  (12),
we use the example without set constraints in [31] that 

,  with  being  a  positive  semifinite
matrix  that  is  generated  by  a  standard  Gaussian  distribution
and set  and . Under the same setting of

 and  the  same  initial  values,  we  compared  APDPNA-S
(12) equipped with , , ,  to PDGD
[47],  IPDDM [31],  PDNAM [30],  FPDA [34]. Fig.  4 shows
the convergence results. As can be seen from Fig. 4, our pro-
posed  APDPNA-S  (12)  outperforms  PDGD [47],  IPDDM
[31],  PDNAM [30],  FPDA [34] in  both  and

.  With  the  same  conditions,  our  proposed  APD-
PNA-S (12) has a slight advantage over FPDA [34] especially
in the speed of convergence of the equation constraints due to
the  augmented  Lagrangian  term  of  the  constraints  that  was
introduced  in  APDPNA-S  (12).  Moreover,  FPDA [34] has
performance  superior  than  PDGD [47],  IPDDM [31],
PDNAM [30] it introduces a time scaling term.  

B.  Distributed Basis Pursuit

G

The BP problem (40)  can be converted to  a  distributed BP
problem, as discussed in [25]. This conversion is based on the
consensus theorem for multi-agents on an undirected graph 
and  the  row  decomposition  properties  of  the  observation
matrix A.
 

min
x∈Rnp

g (x) =
p∑

i=1

∥xi∥1

s.t. Lx = 0 ∈ Rnp, x ∈Ω = {
x ∈ Rnp|Ax = c

}
(42)

A ∈ Rm×np L = Lp⊗ I ∈ Rnp×np Lp ∈
Rp×p G ⊗
where  (see Fig.  5),  with 

 is the Laplacian matrix of undirected graph  and  is
the Kronecker product.

By utilizing the proposed APDPNA-NS (34), we can solve
the  distributed  BP  problem  (42)  with  specific  parameters:
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n = 50 m = 30 s = 5 p = 5

x(t)

x
α = 3 α = 4

, ,  sparsity ,  and .  The  problem  is
tackled within the context of a network consisting of 5 agents
connected in an undirected ring configuration (refer to Fig. 5).
The  trajectories  of  DPDPNA-NS  (34)  are  illustrated  in
Figs.  6(a) and 6(d).  These trajectories demonstrate the global
asymptotic  stability  of  in  two different  scenarios,  one with

 and  the  other  with .  Furthermore,  the  subplots  in
Figs. 6(b) and 6(e) demonstrate that the sparse signals can be
efficiently reconstructed in a distributed manner by the stabi-

α = 3 α = 4

α = 5
α = 3

lized  solutions  of  APDPNA-NS  with  and .  The
Figs.  6(c)  and 6(f)  show  that  the  APDPNA-NS  (34)  with

 has  an faster  convergence rate  than APDPNA-NS (34)
with , which is consistent with the concluding results of
Theorem 4.  

V.  Conclusions

We have proposed two novel accelerated primal-dual neuro-
dynamic  approaches  with  time  scaling  (APDPNA-S  and
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Fig. 3.     Convergence properties of APDPNA-S (12) with ,  for solving BP problem (41) ((a) Transient behaviors of  with ; (b) Tran-
sient behaviors of  with ; (c) Convergence rate of  with PNNSR-dynamic [21] and LPNN-LCA [23]; (d) Recovered signal with ;
(e) Recovered signal with ; (f) Convergence rate of  with PNNSR-dynamic [21] and LPNN-LCA [23]).
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APDPNA-NS)  to  deal  with  smooth  and  nonsmooth  convex
optimization  problem  subject  to  linear  and  set  constraints,
without  strongly  convex  assumption.  We  have  proven  the
existence, uniqueness, and viability of the strong global solu-
tion  for  APDPNA-S.  Additionally,  we  have  demonstrated  its
optimality  using  the  variational  analysis  method,  and  estab-
lished the fast convergence properties of APDPNA-S by con-
structing  a  novel  Lyapunov  function.  Furthermore,  we  have
extended the APDPNA-S into a differential inclusion dynami-
cal  approach,  i.e.,  APDPNA-NS  by  employing  directional

derivative, and have shown that APDPNA-NS have the same
results  as  APDPNA-S  by  computing  difference  quotient  of
Lyapunov  functions.  The  effectiveness  of  APDPNA-S  and
APDPNA-NS have  been  illustrated  by  two simulation  exam-
ples  on  sparse  signal  reconstruction.  In  our  future  work,  we
plan  to  investigate  inexact  accelerated  primal-dual  projection
neurodynamic approaches for addressing problem (9) in both
smooth  and  nonsmooth  scenarios.  This  involves  approximat-
ing the closed-form solution of the projection operator when it
is  not  readily  available.  Additionally,  we  aim  to  expand  the
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scope  of  the  proposed  APDPNA-S  (12)  and  APDPNA-NS
(32) methods by applying them to solve convex optimization
problems  with  inequality  constraints  and  set  constraints,
thereby increasing their applicability.

References 

 Y. E. Nesterov, “A method of solving a convex programming problem
with  convergence  rate  0(1/k2),” Sov.  Math.  Dokl.,  vol. 27,  no. 2,
pp. 372–376, 1983.

[1]

 W. Su,  S.  Boyd,  and E.  Candès, “A differential  equation for  modeling
Nesterov’s accelerated gradient method: Theory and insights,” in Proc.
27th  Int.  Conf.  Neural  Information  Processing  Systems,  Montreal,
Canada, 2014, pp. 2510–2518.

[2]

 H.  Attouch  and  Z.  Chbani. “Fast  inertial  dynamics  and  FISTA
algorithms in convex optimization. Perturbation aspects,” arXiv preprint
arXiv: 1507.01367, 2015.

[3]

 H.  Attouch,  J.  Peypouquet,  and  P.  Redont, “Fast  convex  optimization
via  inertial  dynamics  with  Hessian  driven  damping,” J.  Differ.
Equations, vol. 261, no. 10, pp. 5734–5783, Nov. 2016.

[4]

 H. Attouch, Z. Chbani, and H. Riahi, “Combining fast inertial dynamics
for  convex optimization with  Tikhonov regularization,” J.  Math.  Anal.
Appl., vol. 457, no. 2, pp. 1065–1094, Jan. 2018.

[5]

 H. Attouch and A. Cabot, “Convergence of a relaxed inertial  proximal
algorithm  for  maximally  monotone  operators,” Math.  Program.,
vol. 184, no. 1–2, pp. 243–287, Nov. 2020.

[6]

 A. Wibisono, A. C. Wilson, and M. I. Jordan, “A variational perspective
on accelerated methods in optimization,” in Proc. Natl. Acad. Sci. USA,
vol. 113, no. 47, pp. E7351–E7358, Nov. 2016.

[7]

 A.  C.  Wilson,  B.  Recht,  and  M.  I.  Jordan, “A  Lyapunov  analysis  of
accelerated  methods  in  optimization,” J.  Mach.  Learn.  Res.,  vol. 22,
no. 1, p. 113, Jan. 2021.

[8]

 F.  Alimisis,  A.  Orvieto,  G.  Bécigneul,  and  A.  Lucchi, “A  continuous-
time  perspective  for  modeling  acceleration  in  Riemannian  optimiz-
ation,” in Proc.  23rd  Int.  Conf.  Artificial  Intelligence  and  Statistics,
Palermo, Italy, 2020, pp. 1297–1307.

[9]

 A.  Vassilis,  A.  Jean-François,  and  D.  Charles, “The  differential
inclusion modeling FISTA algorithm and optimality of convergence rate
in the case ≤ 3,” SIAM J. Optim., vol. 28, no. 1, pp. 551–574, Jan. 2018.

[10]

 H. Attouch, Z. Chbani, and H. Riahi, “Fast proximal methods via time
scaling  of  damped  inertial  dynamics,” SIAM  J.  Optim.,  vol. 29,  no. 3,
pp. 2227–2256, Jan. 2019.

[11]

 D.  Tank  and  J.  Hopfield, “Simple ‘neural’ optimization  networks:  An
A/D  converter,  signal  decision  circuit,  and  a  linear  programming
circuit,” IEEE  Trans.  Circuits  Syst.,  vol. 33,  no. 5,  pp. 533–541, May
1986.

[12]

 M.  P.  Kennedy  and  L.  O.  Chua, “Neural  networks  for  nonlinear
programming,” IEEE  Trans.  Circuits  Syst.,  vol. 35,  no. 5,  pp. 554–562,
May 1988.

[13]

 Y.  Xia  and  G.  Feng, “On  convergence  rate  of  projection  neural
networks,” IEEE Trans.  Autom.  Control,  vol. 49,  no. 1,  pp. 91–96, Jan.
2004.

[14]

 Y. Xia and J. Wang, “A recurrent neural network for solving nonlinear
convex  programs  subject  to  linear  constraints,” IEEE  Trans.  Neural
Netw., vol. 16, no. 2, pp. 379–386, Mar. 2005.

[15]

 X. Hu and J.  Wang, “Design of general projection neural networks for
solving monotone linear variational inequalities and linear and quadratic
optimization  problems,” IEEE  Trans.  Syst.,  Man,  Cybern.  Part  B
(Cybern.), vol. 37, no. 5, pp. 1414–1421, Oct. 2007.

[16]

 X. He, T. Huang, J. Yu, C. Li, and C. Li, “An inertial projection neural
network  for  solving  variational  inequalities,” IEEE  Trans.  Cybern.,
vol. 47, no. 3, pp. 809–814, Mar. 2017.

[17]

 S.  Zhang  and  A.  G.  Constantinides, “Lagrange  programming  neural
networks,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process.,
vol. 39, no. 7, pp. 441–452, Jul. 1992.

[18]

 W. Bian and X. Chen, “Smoothing neural network for constrained non-
Lipschitz  optimization  with  applications,” IEEE  Trans.  Neural  Netw.
Learn. Syst., vol. 23, no. 3, pp. 399–411, Mar. 2012.

[19]

 Q.  Liu  and  J.  Wang, “A  projection  neural  network  for  constrained
quadratic  minimax  optimization,” IEEE  Trans.  Neural  Netw.  Learn.
Syst., vol. 26, no. 11, pp. 2891–2900, Nov. 2015.

[20]

 Q.  Liu  and  J.  Wang, “L1-minimization  algorithms  for  sparse  signal
reconstruction  based  on  a  projection  neural  network,” IEEE  Trans.
Neural Netw. Learn. Syst., vol. 27, no. 3, pp. 698–707, Mar. 2016.

[21]

 Z.  Guo,  S.  Yang,  and  J.  Wang, “Global  synchronization  of
stochastically  disturbed  memristive  neurodynamics  via  discontinuous
control  laws,” IEEE/CAA  J.  Autom.  Sinica,  vol. 3,  no. 2,  pp. 121–131,
Apr. 2016.

[22]

 R. Feng, C. S. Leung, A. G. Constantinides, and W. J. Zeng, “Lagrange
programming  neural  network  for  nondifferentiable  optimization
problems  in  sparse  approximation,” IEEE  Trans.  Neural  Netw.  Learn.
Syst., vol. 28, no. 10, pp. 2395–2407, Oct. 2017.

[23]

 C.  Xu  and  X.  He, “A  fully  distributed  approach  to  optimal  energy
scheduling  of  users  and  generators  considering  a  novel  combined
neurodynamic  algorithm  in  smart  grid,” IEEE/CAA  J.  Autom.  Sinica,
vol. 8, no. 7, pp. 1325–1335, Jul. 2021.

[24]

 Y.  Zhao,  X.  Liao,  X.  He,  and  R.  Tang, “Centralized  and  collective
neurodynamic optimization approaches for sparse signal reconstruction
via L1-minimization,” IEEE  Trans.  Neural  Netw.  Learn.  Syst.,  vol. 33,
no. 12, pp. 7488–7501, Dec. 2022.

[25]

 J.  Wang,  J.  Wang,  and  Q.-L.  Han, “Receding-horizon  trajectory
planning for under-actuated autonomous vehicles based on collaborative
neurodynamic optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11,
pp. 1909–1923, Nov. 2022.

[26]

 X.  Wen,  S.  Qin,  and  J.  Feng, “A  novel  projection  neural  network  for
solving a class of monotone variational inequalities,” IEEE Trans. Syst.,
Man, Cybern.: Syst., vol. 53, no. 9, pp. 5580–5590, Sept. 2023.

[27]

 W.  Krichene,  A.  M.  Bayen,  and  P.  L.  Bartlett, “Accelerated  mirror
descent in continuous and discrete time,” in Proc. 28th Int. Conf. Neural
Information  Processing  Systems,  Montreal,  Canada,  2015,  pp  2845–
2853.

[28]

 Y.  Zhao,  X.  Liao,  and  X.  He, “Novel  projection  neurodynamic
approaches  for  constrained  convex  optimization,” Neural  Netw.,
vol. 150, pp. 336–349, Jun. 2022.

[29]

 X.  Zeng,  J.  Lei,  and  J.  Chen, “Dynamical  primal-dual  nesterov
accelerated method and its  application to network optimization,” IEEE
Trans. Autom. Control, vol. 68, no. 3, pp. 1760–1767, Mar. 2023.

[30]

 X.  He,  R.  Hu,  and  Y.  P.  Fang, “Convergence  rates  of  inertial  primal-
dual  dynamical  methods  for  separable  convex  optimization  problems,”
SIAM J. Control Optim., vol. 59, no. 5, pp. 3278–3301, Jan. 2021.

[31]

 R. I. Boţ and D. K. Nguyen, “Improved convergence rates and trajectory
convergence  for  primal-dual  dynamical  systems  with  vanishing
damping,” J. Differ. Equations., vol. 303, pp. 369–406, Dec. 2021.

[32]

 H.  Attouch,  Z.  Chbani,  J.  Fadili,  and  H.  Riahi, “Fast  convergence  of
dynamical  ADMM  via  time  scaling  of  damped  inertial  dynamics,” J.
Optim. Theory Appl., vol. 193, no. 1–3, pp. 704–736, Jun. 2022.

[33]

 X.  He,  R.  Hu,  and  Y.  P.  Fang, “Fast  primal-dual  algorithm  via
dynamical  system  for  a  linearly  constrained  convex  optimization
problem,” Automatica, vol. 146, p. 110547, Dec. 2022.

[34]

 Y. Zhao, X. Liao, X. He, M. Zhou, and C. Li, “Accelerated primal-dual
mirror  dynamics  for  centralized  and  distributed  constrained  convex
optimization problems,” J. Mach. Learn. Res., vol. 24, no. 1, p. 343, Jan.
2023.

[35]

 R.  T.  Rockafellar, Convex  Analysis.  Princeton,  USA:  Princeton
University Press, 1970.

[36]

 N. Parikh and S.  Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 127–239, Jan. 2014.

[37]

 A. Chambolle and T. Pock, “An introduction to continuous optimization
for imaging,” Acta Numer., vol. 25, pp. 161–319, May 2016.

[38]

 D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory., vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[39]

 C.  Li,  X.  Yu,  W.  Yu,  T.  Huang,  and  Z.  W.  Liu, “Distributed  event-
triggered  scheme  for  economic  dispatch  in  smart  grids,” IEEE  Trans.
Ind. Inf., vol. 12, no. 5, pp. 1775–1785, Oct. 2016.

[40]

 W.  T.  Lin,  Y.  W.  Wang,  C.  Li,  and  X.  Yu, “Distributed  resource
allocation  via  accelerated  saddle  point  dynamics,” IEEE/CAA  J.
Automa. Sinica, vol. 8, no. 9, pp. 1588–1599, Sept. 2021.

[41]

 C. Li, X. Yu, T. Huang, and X. He, “Distributed optimal consensus over
resource allocation network and its Application to dynamical economic
dispatch,” IEEE  Trans.  Neural  Netw.  Learn.  Syst.,  vol. 29,  no. 6,
pp. 2407–2418, Jun. 2018.

[42]

 Z.  Lin,  H.  Li,  and  C.  Fang, Accelerated  Optimization  for  Machine
Learning: First-Order Algorithms. Singapore: Springer, 2020.

[43]

 S.  Boyd,  N.  Parikh,  E.  Chu,  B.  Peleato,  and  J.  Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of  multipliers,” Found.  Trends  Mach.  Learn.,  vol. 3,  no. 1,  pp. 1–122,
Jul. 2011.

[44]

 R. I. Boţ and E. R. Csetnek, “A forward-backward dynamical approach
to the  minimization of  the  sum of  a  nonsmooth convex with  a  smooth

[45]

ZHAO et al.: ACCELERATED PRIMAL-DUAL PROJECTION NEURODYNAMIC APPROACH WITH TIME SCALING 1497 

https://doi.org/10.1016/j.jde.2016.08.020
https://doi.org/10.1016/j.jde.2016.08.020
https://doi.org/10.1016/j.jmaa.2016.12.017
https://doi.org/10.1016/j.jmaa.2016.12.017
https://doi.org/10.1007/s10107-019-01412-0
https://doi.org/10.1137/17M1128642
https://doi.org/10.1137/18M1230207
https://doi.org/10.1109/TCS.1986.1085953
https://doi.org/10.1109/31.1783
https://doi.org/10.1109/TAC.2003.821413
https://doi.org/10.1109/TNN.2004.841779
https://doi.org/10.1109/TNN.2004.841779
https://doi.org/10.1109/TSMCB.2007.903706
https://doi.org/10.1109/TSMCB.2007.903706
https://doi.org/10.1109/TCYB.2016.2523541
https://doi.org/10.1109/82.160169
https://doi.org/10.1109/TNNLS.2011.2181867
https://doi.org/10.1109/TNNLS.2011.2181867
https://doi.org/10.1109/TNNLS.2015.2425301
https://doi.org/10.1109/TNNLS.2015.2425301
https://doi.org/10.1109/TNNLS.2015.2481006
https://doi.org/10.1109/TNNLS.2015.2481006
https://doi.org/10.1109/JAS.2016.7451099
https://doi.org/10.1109/TNNLS.2016.2575860
https://doi.org/10.1109/TNNLS.2016.2575860
https://doi.org/10.1109/JAS.2021.1004048
https://doi.org/10.1109/TNNLS.2021.3085314
https://doi.org/10.1109/JAS.2022.105524
https://doi.org/10.1109/TSMC.2023.3274222
https://doi.org/10.1109/TSMC.2023.3274222
https://doi.org/10.1016/j.neunet.2022.03.011
https://doi.org/10.1109/TAC.2022.3152720
https://doi.org/10.1109/TAC.2022.3152720
https://doi.org/10.1137/20M1355379
https://doi.org/10.1016/j.jde.2021.09.021
https://doi.org/10.1007/s10957-021-01859-2
https://doi.org/10.1007/s10957-021-01859-2
https://doi.org/10.1016/j.automatica.2022.110547
https://doi.org/10.1561/2400000003
https://doi.org/10.1017/S096249291600009X
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/TII.2015.2479558
https://doi.org/10.1109/TII.2015.2479558
https://doi.org/10.1109/JAS.2021.1004114
https://doi.org/10.1109/JAS.2021.1004114
https://doi.org/10.1109/TNNLS.2017.2691760


nonconvex function,” ESAIM: COCV, vol. 24, no. 2, pp. 463–477, 2018.
 B.  Abbas,  H.  Attouch,  and  B.  F.  Svaiter, “Newton-like  dynamics  and
forward-backward  methods  for  structured  monotone  inclusions  in
Hilbert  spaces,” J.  Optim.  Theory  Appl.,  vol. 161,  no. 2,  pp. 331–360,
May 2014.

[46]

 X.  Chen  and  N.  Li, “Exponential  stability  of  primal-dual  gradient
dynamics with non-strong convexity,” in Proc. American Control Conf.,
Denver, USA, 2020, pp. 1612–1618.

[47]

You  Zhao received  the  M.S.  degree  in  signal  and
information processing from the College of Electron-
ics and Information Engineering,  Southwest  Univer-
sity  in  2018.  and  the  Ph.D.  degree  in  computer  sci-
ence  and  technology  from  Chongqing  University  in
2023. He is currently a Postdoctoral Researcher with
the College of Electronic and Information Engineer-
ing,  Southwest  University.  His  research  interests
include neurodynamic optimization, distributed opti-
mization,  compressed  sensing,  minimax  optimiza-

tion, and smart grid.

Xing  He received  the  B.S.  degree  in  mathematics
and  applied  mathematics  from  the  Department  of
Mathematics,  Guizhou  University  in  2009,  and  the
Ph.D.  degree  in  computer  science  and  technology
from  Chongqing  University  in  2013.  From  Novem-
ber 2012 to October 2013, he was a Research Assis-
tant with the Texas A&M University at Qatar, Qatar.
From  December  2015  to  February  2016,  he  was  a
Senior  Research  Associate  with  the  City  University
of  Hong  Kong,  China.  Currently,  he  is  a  Professor

with the College of Electronic and Information Engineering, Southwest Uni-
versity.  His  research  interests  include  neural  networks,  bifurcation  theory,

optimization method, smart grid, and nonlinear dynamical system.

Mingliang Zhou received the Ph.D. degree in com-
puter  science  from  Beihang  University  in  2017.  He
was  a  Postdoctoral  Fellow  with  the  Department  of
Computer  Science,  City  University  of  Hong  Kong,
China, from September 2017 to September 2019. He
was a Postdoctoral Fellow with the State Key Labo-
ratory  of  Internet  of  Things  for  Smart  City,  Univer-
sity of Macau, Macau, China, from October 2019 to
October  2021.  He  is  currently  an  Associate  Profes-
sor with the School of Computer Science, Chongqing

University. His research interests include image and video coding, perceptual
image  processing,  multimedia  signal  processing,  rate  control,  multimedia
communication, machine learning, and optimization.

Tingwen  Huang (Fellow,  IEEE)  received  the  B.S.
degree in mathematics from Southwest Normal Uni-
versity  in  1990,  the  M.S.  degree  in  applied  mathe-
matics  from  Sichuan  University  in  1993,  and  the
Ph.D. degree in mathematics from Texas A&M Uni-
versity,  College  Station,  USA,  in  2002.  He  was  a
Lecturer with Jiangsu University from 1994 to 1998,
and a Visiting Assistant Professor with Texas A&M
University, USA, in 2003. He was an Assistant Pro-
fessor from 2003 to 2009 and an Associate Professor

from 2009 to 2013 with Texas A&M University at Qatar, Qatar, where he has
been a  Professor  since  2013.  His  research  interests  include  neural  networks,
complex networks, chaos and dynamics of systems, and operator semi-groups
and their applications.

 1498 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 6, JUNE 2024

https://doi.org/10.1051/cocv/2017020
https://doi.org/10.1007/s10957-013-0414-5

	I Introduction
	II Preliminaries
	A Subdifferential
	B Projection Operators

	III Accelerated Primal-Dual Projection Neurodynamic Approaches With Time Scaling
	A The Problem (9) With Smooth Convex Objective Function g
	B The Problem (9) With Nonsmooth Convex Objective Function g

	IV Numerical Simulations
	A Basis Pursuit
	B Distributed Basis Pursuit

	V Conclusions
	References

