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 Dear Editor,

This  letter  deals  with  a  new  second-level-discretization  method
with  higher  precision  than  the  traditional  first-level-discretization
method. Specifically, the traditional discretization method utilizes the
first-order  time  derivative  information,  and  it  is  termed  first-level-
discretization method. By contrast, the new discretization method not
only  utilizes  the  first-order  time  derivative  information,  but  also
makes use of the second-order derivative information. By combining
the new second-level-discretization method with zeroing neural  net-
work  (ZNN),  the  second-level-discrete  ZNN  (SLDZNN)  model  is
proposed to solve dynamic (i.e., time-variant or time-dependent) lin-
ear  system.  Numerical  experiments  and  application  to  angle-of-
arrival  (AoA) localization  show the  effectiveness  and  superiority  of
the SLDZNN model.

Because  of  the  real-time  requirement,  solving  dynamic  problems
becomes more and more important [1]–[3], which has been applied in
many fields  such as  robot  control [4]–[6] and AoA localization [7].
ZNN [8]–[10] is  a  special  type  of  recurrent  neural  network  (RNN)
[11]. In recent years, ZNN have shown its effectiveness for dynamic
problems solving, such as for dynamic nonlinear inequalities solving,
dynamic linear system solving, and dynamic quadratic minimization.
For  exmaple,  a  ZNN  (CZNN)  model  with  definable  convergence
time was developed for  solving time-variant  linear matrix equations
in [2].  By performing the following straightforward steps: 1) Defin-
ing the error function; 2) Applying the design formula;  and 3) Sim-
plifying  the  result,  one  could  eventually  develop  the  continuous
CZNN model for dynamic problems solving.

tk = kς

s(tk+1) s(tk) ṡ(tk)
tk+1

tk O(ς2)

Furthermore,  for  convenient  program  implementation,  the  tradi-
tional first-level-discretization method [10], [12] is usually applied to
CZNN  discretization,  and  the  first-level-discrete  ZNN  (FLDZNN)
model could be developed. For instance, in time point  with ς
being  the  sampling  period,  the  FLDZNN  model  computes  the
dynamic  solution  on  the  basis  of  and .  That  is,  the
solution in time point  is computed by utilizing the information in
time point , and the precision is .

Generally,  to  improve  the  precision,  the  traditional  way  is  to  uti-
lize  more  information  at  more  time  points.  In  recent  years,  many
high-precision discrete methods utilizing information at several time
points have been developed, and many high-precision discrete ZNN
(DZNN) models have been obtained. For instance, a four-points first-
level-discretization  method  is  designed  in [10].  A  six-points  first-
level-discretization method is developed in [3]. However, for rapidly
dynamic systems, the information before several time points may be
valueless. Therefore, utilizing more information at a few time points
to realize higher precision is meaningful. Note that the second-order
derivative containing the rapidly changing information, which is very
valuable.  Upon  careful  study,  we  find  there  is  another  way  to
improve  the  precision.  The  traditional  discrete  method  utilizes  the

tk
s(tk+1) s(tk)

ṡ(tk) s̈(tk) O(ς3)

first-order  time  derivative.  If  we  can  utilize  the  second-order  time
derivative, the model precision may be further improved. As a result,
this letter proposes a new second-level-discretization method and fur-
ther  develops  the  SLDZNN  model.  In  time  point ,  the  SLDZNN
model  computes  the  dynamic  solution  on  the  basis  of ,

, and . As a result, the precision is improved as .
The main contributions of this letter are presented as below.
1)  To  our  knowledge,  the  second-level-discretization  method  is

proposed  for  CZNN  discretization  for  the  first  time,  and  it  is  more
effective than the traditional first-level-discretization method.

2)  By utilizing  the  ZNN design formula  twice  and combining the
second-level-discretization method, the SLDZNN model is proposed
to solve dynamic linear system, and detailed theoretical analyses are
presented.

3)  Numerical  experiments  considering  a  specific  example  and
application  to  AoA  localization  are  displayed  to  illustrate  the  effi-
ciency and superiority of the second-level-discretization method and
SLDZNN model.

[0,T ]
Problem statement: Consider dynamic linear system during time

duration 
 

Y(t)x(t) = z(t) (1)
Y(t) ∈ Rn×n

z(t) ∈ Rn x(t) ∈ Rn

Y(t)

in  which  coefficient  matrix  and  coefficient  vector
. The vector  is the dynamic solution to be attained.

Besides, the matrix  is always nonsingular to guarantee that (1) is
solvable.

CZNN  model: To  solve  dynamic  linear  system  (1),  the  CZNN
model [9] is developed in the following theorem.

γ > 0
A(t)

Theorem 1: Let  be a ZNN design parameter. For nonsingular
matrix , the CZNN model for solving dynamic linear system (1)
is developed as
 

ẋ(t) = Y−1(t)
(
ż(t)− Ẏ(t)x(t)−γ(Y(t)x(t)− z(t)

))
(2)

x(t)
x∗(t) t >> 0

and the synthesized  converges to the theoretical continuous solu-
tion  as .

e(t) = Y(t)x(t)− z(t) ė(t) = −γe(t)
Proof:  To  make  (1)  Hold  true,  perform  straightforward  steps:  1)

defining ; 2) Applying ; and 3) Sim-
plifying result. We get
 

Y(t)ẋ(t)+ Ẏ(t)x(t)− ż(t) = −γ(Y(t)x(t)− z(t)
)
. (3)

ė(t) = −γe(t)
L(t) = 1/2eT (t)e(t) L(t)

L̇(t) = eT (t)ė(t) = −γeT (t)e(t) L(t) ≥ 0 L̇(t) ≤
0 L̇(t) = 0 e(t) = 0 t >> 0 e(t)→ 0

x(t) x∗(t) t >> 0

By rearranging the above result and doing an inverse operation, (2)
is thus obtained. Evidently, CZNN model (2) is originated from ZNN
design formula . Choose Lyapunov functional candidate
as .  Computing  the  derivative  of  yields

. Evidently, we have  and 
.  If , .  Therefore,  when ,  we  have .

That is,  synthesized by (2) converges to  as . ■
Traditional  FLDZNN  model: To  generate  discrete  models,  the

traditional  first-level-discretization method [12] and the correspond-
ing FLDZNN model are developed.

ς > 0Lemma 1:  Let  be  the  sampling period.  The traditional  first-
level-discretization method [12] is presented as
 

s(tk+1) = s(tk)+ς ṡ(tk)+O(ς2). (4)
xk x(tk)

O(ς2)
O(ς2)

For simplicity,  we use  to denote ,  and other symbols have
similar meanings. In addition, we use  to denote the vector form
of .  By using (4)  for  model  discretization,  the  following theo-
rem develops the FLDZNN model.

ς > 0 �Theorem  2:  Let  be  the  sampling  period  and  denote  the
computational  assignment  operator.  The  FLDZNN  model  is  devel-
oped as
 

ẋk = Y−1
k
(
żk − Ẏkxk −γ(Ykxk − zk)

)
(5a)

 

xk+1 � xk +ςẋk (5b)
xk+1and  the  synthesized  converges  to  the  theoretical  discrete  solu-
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x∗k+1 O(ς2)tion  with  precision.
tk

xk+1
x∗k+1 O(ς2)

Proof: Evidently, (5a) is attained by sampling (2) in time point .
Meanwhile, (5b) is the vector form of (4). On the basis of Theorem 1
and Lemma 1,  synthesized by FLDZNN model (5) converges to

 with  precision. This completes the proof.

tk
New SLDZNN model: On the  basis  of  the  previous  analysis,  the

deeper-level  information  in  time  point  may  be  utilized  to  get  the
higher precision. The new second-level-discretization method is thus
proposed in the following theorem.

Taylor expansion [12] is presented as
 

s(tk+1) = s(tk)+ς ṡ(tk)+
1
2
ς2 s̈(tk)+

1
6
ς3...s (tk)+O(ς4).

O(ς3)With  absorbing  the  remainder  terms,  the  second-level-dis-
cretization method (6) is obtained as follows.

ς > 0Lemma 2: Let  be the sampling period. The new second-level-
discretization method is developed as
 

s(tk+1) = s(tk)+ς ṡ(tk)+
1
2
ς2 s̈(tk)+O(ς3). (6)

By utilizing ZNN method twice and applying the second-level-dis-
cretization  method  (6),  the  SLDZNN  model  is  proposed  in  the  fol-
lowing theorem.

ς > 0 �Theorem  3:  Let  be  the  sampling  period  and  denote  the
computational  assignment  operator.  The  SLDZNN  model  is  devel-
oped as
 

ẋk = Y−1
k
(
żk − Ẏkxk −γ(Ykxk − zk)

)
(7a)

 

ẍk = Y−1
k
(
z̈k −2Ẏkẋk − Ÿkxk +γ

2(Ykxk − zk)
)

(7b)
 

xk+1 � xk +ςẋk +
1
2
ς2ẍk (7c)

xk+1
x∗k+1 O(ς3)

and  the  synthesized  converges  to  the  theoretical  discrete  solu-
tion  with  precision.

tk

Proof: According to the previous analyse, (3) is obtained by utiliz-
ing ZNN method [9].  Then,  (7a)  can be directly developed by sam-
pling  (3)  in  time  point .  To  get  the  second-order  derivative,  the
another error function is defined according to (3)
 

ϵ(t) = Y(t)ẋ(t)+ Ẏ(t)x(t)− ż(t)+γ
(
Y(t)x(t)− z(t)

)
.

ϵ̇(t) = −γϵ(t)Utilizing ZNN design formula  yields
 

Y(t)ẍ(t)+ Ẏ(t)ẋ(t)+ Ẏ(t)ẋ(t)+ Ÿ(t)x(t)− z̈(t)
+γ
(
Ẏ(t)x(t)+Y(t)ẋ(t)− ż(t)

)
= −γ

(
Ẏ(t)x(t)+Y(t)ẋ(t)− ż(t)+γ

(
Y(t)x(t)− z(t)

))
.

tk

xk+1
x∗k+1 O(ς3)

Simplifying  the  above  result  in  time point  yields  (7b).  Further-
more, by applying new second-level-discretization method (6) to dis-
cretize  CZNN  model  (2),  (7c)  is  directly  obtained.  On  the  basis  of
ZNN  knowledge [9] and  Lemma  2,  synthesized  by  SLDZNN
model (7) converges to  with  precision. ■

Experiments verification: This section first provides a numerical
example  to  illustrate  the  effectiveness  of  the  proposed  SLDZNN
model  (7).  Then,  an  application  to  AoA  localization  is  also  con-
ducted for illustrating the practicability of SLDZNN model (7).

Example 1: Consider dynamic linear system (1) during time dura-

[0,20] Y(t) =tion  s with  
cos(0.4t)+4 sin(0.4t) sin(0.4t) sin(0.4t)

cos(0.2t) cos(0.2t)+4 sin(0.2t) sin(0.2t)
sin(0.4t) cos(0.4t) cos(0.4t)+4 sin(0.4t)
sin(0.2t) cos(0.2t) cos(0.2t) sin(0.2t)+4


z(t) =

[
sin(0.8t) cos(0.8t) sin(0.8t) cos(0.8t)

]T
and  .

h = γς
h = 0.5

ς = 0.1

10−3 10−4

10−2 ς =
0.01

ς = 0.01
10−6 10−7

103

O(ς3)
O(ς2)

On  the  basis  of  the  previous  experience [1], [3], [10],  is
usually set  as a constant,  e.g.,  in this letter.  For comparison,
FLDZNN model  (5)  and  SLDZNN model  (7)  are  both  applied,  and
the  corresponding  numerical  results  are  presented  in Fig.  1.  By set-
ting  the  sampling  period  s,  the  trajectories  of  the  dynamic
solution synthesized by SLDZNN model (7) are shown in Fig. 1(a).
Meanwhile, Fig. 1(b) illustrates that the residual error synthesized by
SLDZNN model (7) is between  and . By contrast, Fig. 1(b)
also shows that the residual error synthesized by FLDZNN model (5)
is  just  about .  Meanwhile,  when  setting  sampling  period 
0.05 s and  s, the residual errors attained from two DZNN mod-
els  are  displayed  in Figs.  1(c)  and 1(d),  respectively.  For  instance,
with  s, the residual error generated by SLDZNN model (7) is
between  and .  That  is,  the  precision  will  be  increased  by

 times if the sampling period decreases by 10 times. In summary,
the precision of SLDZNN model (7) is indeed  while the preci-
sion of FLDZNN model (5) is ,  which illustrates the superior-
ity of SLDZNN model (7).

(u1(t),v1(t)) (u2(t),v2(t))

θ1(t)
θ2(t)

Example  2:  The  AoA  localization  system  consists  of  a  moving
object and two moving stations (simply termed MS1 and MS2). Note
that  and  represent the positions of MS1 and
MS2,  respectively,  which  are  both  known.  AoA  system  uses  array
antenna to detect  direction of arrival  in real  time.  Specifically, 
and  mean the arrival angles of the object to two stations, respec-
tively.  The  target  of  AoA  localization  is  to  compute  (estimate)  the
real-time position on the basis of two arrival angles. According to the
previous  work [7],  the  problem  of  AoA  localization  system  can  be
formulated as dynamic linear system (1) with
 

Y(t) =
[
tan(θ1(t)) −1
tan(θ2(t)) −1

]
, x(t) =

[
u3(t)
v3(t)

]
 

z(t) =
[
u1(t) tan(θ1(t))− v1(t)
u2(t) tan(θ2(t))− v2(t)

]
(u3(t),v3(t))

[0,30]
where  represents the position of the moving object. Con-
sider the AoA localization during time duration  s.

h = 0.5 ς = 0.1By setting  and  s, Fig. 2(a) through Fig. 2(d) display
some important results generated by SLDZNN model (7).  The AoA
localization is successfully completed. Specifically, Fig. 2(a) presents
the  profiles  of  two  arrival  angles. Fig.  2(b)  illustrates  the  real-time
positions of two moving stations and the predicted localization of the
moving object.  We can conclude that  the predicted trajectory of  the
moving  object  basically  coincides  with  the  actual  trajectory.  For
details, Fig.  2(c) shows the predicted position of the moving object,
which  converges  to  the  actual  position  quickly.  To  further  analyze
the localization precision, the residual error
 

er =
∥∥∥∥∥[tan(θ1(t)) −1

tan(θ2(t)) −1

] [
u3(t)
v3(t)

]
−
[
u1(t) tan(θ1(t))− v1(t)
u2(t) tan(θ2(t))− v2(t)

]∥∥∥∥∥
2

ς = 0.1is used as the index. With  s, 0.05 s, and 0.01 s, Figs. 2(d)−2(f)
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Fig. 1. Synthesized numerical results from FLDZNN model (5) and SLDZNN model (7) for dynamic linear system solving in Example 1. (a) Solution trajecto-
ries generated by SLDZNN model (7) with  s; (b) Residual errors with  s; (c) Residual errors with  s; (d) Residual errors with  s.
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O(ς3)
respectively  display  the  corresponding  residual  errors  generated  by
two discrete models. SLDZNN model (7) indeed has  precision
for  dynamic  linear  system  solving,  which  is  one-order  higher  than
FLDZNN model (5).

Conclusion: This  letter  has  investigated  the  problem  of  dynamic
linear system (1). Considering that the traditional discretization meth-
ods only utilize the first-order time derivative, new second-level-dis-
cretization method (6)  with  higher  precision has  been developed by
utilizing  the  second-order  derivative.  Aided  with  second-level-dis-
cretization  method  (6),  SLDZNN  model  (7)  has  been  further  pro-
posed. Theoretical analyses and simulations have been conducted to
validate  the  efficacy  and  superiority  of  second-level-discretization
method (6) and SLDZNN model (7). Developing more second-level-
discretization  methods  with  higher  precision  is  a  future  research
direction. Moreover, Combining second-level-discretization methods
with zeroing neural network for solving more kinds of dynamic prob-
lems is also a significant future research direction.
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Fig. 2. Synthesized numerical results from FLDZNN model (5) and SLDZNN model (7) for AoA localization in Example 2. (a) Two arrival angles; (b) Pre-
dicted localization of moving object generated by SLDZNN model (7) with  s; (c) Predicted trajectory of moving object computed by SLDZNN model
(7) when  s; (d) Residual errors when  s; (e) Residual errors when  s; (f) Residual errors when  s.
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