
 

Letter

Recurrent Neural Network Inspired Finite-Time
Control Design

Jianan Liu , Shihua Li , Fellow, IEEE, and
Rongjie Liu , Senior Member, IEEE

 Dear Editor,

This letter is concerned with the role of recurrent neural networks
(RNNs)  on  the  controller  design  for  a  class  of  nonlinear  systems.
Inspired by the architectures of RNNs, the system states are stacked
according to the dynamic along with time while the controller is rep-
resented  as  the  neural  network  output.  To  build  the  bridge  between
RNNs  and  finite-time  controller,  a  novel  activation  function  is
imposed  on  RNNs  to  drive  the  convergence  of  states  at  finite-time
and  propel  the  overall  control  process  smoother.  Rigorous  stability
proof is briefly provided for the convergence of the proposed finite-
time controller. At last, a numerical simulation example is presented
to illustrate the efficiency of the proposed strategy.

Neural  networks  can  be  classified  as  static  (feedforward)  and
dynamic (recurrent) nets [1]. The former nets do not perform well in
dealing with training data and using any information of the local data
structure [2].  In  contrast  to  the  feedforward neural  networks,  RNNs
are  constituted  by  high  dimensional  hidden  states  with  dynamics.
More specifically, the hidden state serves as the memory of the neu-
ral  network  that  are  related  to  the  state  of  previous  instant  and  the
input of current instant [3]. RNNs demonstrate a workable behaviour
for sequences modelling due to their self feedback architectures [4].
The specific structures of RNNs enable them to store, acquire mem-
ory and process complicated information for long time sequences [5].
Therefore, RNNs are used extensively for tasks like natural language
processing,  language  modeling,  speech  recognition,  and  machine
translation [6].  In terms of RNNs architectures and their  application
development, several new advances about RNNs have been summa-
rized and research challenges have been presented [5]. The letter [7]
investigated the single-layer RNN with delay between input and out-
put, which can mimic bidirectional networks and solve some acausal
tasks.  A  stacked  recurrent  neural  network  (SRNN)  involving  the
dynamic states was proposed, which can be used in short-term wind
power forecasting [8].

For the control problem in nonlinear systems, the controller design
plays  an  essential  role  in  the  dynamic  stability.  Further,  the  finite-
time stability of system has a wide range of practical applications in
aerospace,  military  manufacturing  and  part  fabrication  due  to  its
good robustness, adaptability and anti interference [9]. However, it is
well known that the finite-time controller design is an intricate prob-
lem.  The  two  primary  obstacles  were  revealed  in [10].  One  is  con-
structing a desired Lyapunov function to satisfy finite-time stabiliza-
tion  performance  in  complicated  environment.  The  other  one  is  its
slower convergence than the exponential one when initial state is far
away from the origin, which directly leads to a poor robustness.

Fortunately,  an  elegant  framework  was  provided  by  neural  net-
works for system identification and control design [11]. Motivated by
the above finite-time control problems, it calls a design thinking and

.

practical  way  for  the  advisable  and  flexible  controller  design.
Inspired by specific architectures of RNNs, this letter aims to develop
a novel idea of controller design with network structure compared to
the  traditional  control.  The  main  contributions  of  this  letter  can  be
highlighted from three aspects: 1) A new activation function with the
nonlinear  saturation  term  is  proposed  to  guarantee  the  finite-time
convergence and propel the overall control process smoother. 2) Both
the states of closed-loop system and the training recurrent neural net-
works  converge  in  finite-time,  and  the  RNNs  can  achieve  conver-
gence  with  a  finite  number  of  iterations  on  the  transverse  time
sequences determined by the system convergence time. 3) This letter
provides a new thinking to the controller design from the structure of
neural  network.  Therefore,  the  controller  constructions  of  more
dynamic  systems  can  be  motivated  by  a  variety  of  neural  network
structures, which will help us to design controllers with better perfor-
mance

Problem  formulation: Considering  the  global  finite-time  stabi-
lization  problem,  we  focus  on  a  class  of  nonlinear  systems  in  the
form  of  upper-triangular  structure.  Here,  we  adopt  the  following
order example for better illustration:
 

ẋ1 = x2 + f1(x2, x3)
ẋ2 = x3 + f2(x3)
ẋ3 = u

(1)

x = [x1, x2, x3]T ∈ R3 u ∈ R
x(0) = x0

f1(·), f2(·)
u(t)

x(0) ∈ R3

where  is the system state and  is the con-
trol  input,  respectively.  Initial  condition  is .  The  nonlinear
functions  are continuous and unknown. The objective is to
design a controller  such that the state of closed-loop system glob-
ally  converges  to  the  origin  in  finite-time  for  any  initial  condition

.
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Neural  network  representation: The  first  thing  is  to  merge
dynamics into the neural network. The system considered in this let-
ter is continuous while the RNN itself is a discrete system. When the
sampling  time  is  small  enough,  the  discrete  system can  be  approxi-
mated as a continuous system. An example with multiple hidden lay-
ers SRNN diagram is illustrated in Fig. 1.  is the layer number
in  SRNN  except  the  output  layer,  is  the  hidden  state  of  the l-th
layer  at  time step t.  For  the  better  understanding,  the  corresponding
relationships  between  system  dynamics  and  notions  in Fig.  1 are
given  as  follows.  corresponding  to  in Fig.  1 repre-
sents the input at time step t.  corresponding to  in Fig. 1 denotes
the output at time step t.
  

Output layer
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Fig. 1. The architecture of the stacked recurrent neural network.
 

Activation function design: Up to now, system states and control
input have been embedded into the RNNs. The control input u plays
a current time output role in RNNs and transfers to the next moment
as input. Therefore, it is of great importance to design the activation
function that produces the controller u. Next, we propose the follow-
ing activation function σ:
 

σ(x) =


ϵsgn(x), |x| > ϵ
sgn(x)|x|δ+1

ϵδ
, |x| ≤ ϵ

(2)

ϵ > 0 δ = δ1δ2 > −1
δ1 δ2

where  is a small constant to be determined later and 
with an even integer  and an odd integer .

δ = 0
Remark 1:  The novel  activation  function σ will  be  reduced to  the

conventional saturation function when , that is 
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σ̄(x) =
{
ϵsgn(x), |x| > ϵ
x, |x| ≤ ϵ.

What is noteworthy is that the controller with activation function σ
is more robust near the equilibrium point as well as stabilizes the sys-
tem in finite-time.

Xi = (x1, . . . , xi), i = 1,2,3

Finite-time  control  design: Based  on  the  proposed  activation
function σ, next we will design the controller. To simplify notations,
we define . The nonlinear nested saturation
controller is given as follows:
 

u = u3(X3(t)) (3)
 

ui(Xi(t)) = −βiσ
ri+1

a

(
x

a
ri
i −u

a
ri
i−1(Xi−1)

)
(4)

u0 = 0, a =max1≤i≤3{ri,ri+1} r1 = 1, r2 = r1 +τ, r3 = r2 +τ

τ > − 1
3 τ =

τ1
τ2

τ1 τ2
r2, r3 βi

β∗1 = 3, β∗i = ci +γi +4− i, β1 >max{β∗1,3 ·2
r2
a }, βi >max{β∗i ,

2
ri+1

a [4(1+βi−1)αi−1(β1, . . . ,βi−1) + 1]} α1(β1) = aβ
a
r2
1 (2+β1),

α2(β1,β2)=
aβ

a
r3
2

r2
(1+β1)

a
r2
−1(2+β2)+β

a
r3
2 α1(β1) ci,γi

where , ,
,  with  an  even  integer  and  an  odd  integer .  The

constants  are ratio of two odd numbers. The gains  are select
as  

,  with 

. Here,  are con-
stants will be shown in the proof later.

ϱi = −βiσ
ri+1

a

i = 1,2,3 zi = h̄(xi) = xi
a
ri , vi−1 =

ρ(ui−1) = ui−1
a
ri

In  order  to  describe  characteristics  of  neural  network  structure
more  intuitively,  we  introduce  the  transformation ,  and
for ,  the  functions  are  defined  as 

. Then, the controller can be re-expressed as below:
 

ui = ϱi(zi − vi−1) = ϱi(h̄(xi)−ρ(ui−1)), i = 1,2,3. (5)

[xt
1, x

t
2, x

t
3]T ut

3

ut
3 ut

l, l = 1,2
ϱ1, ϱ2, ϱ3

The Fig.  2 illustrates  an  example  of  the  neural  network  structure
after embedding dynamic system at two time points. , 
represent the input vector and output at time step t, respectively. And

 will transfer to the next time as the initial control input. 
are hidden states of the layer l at time step t.  are activation
functions that can be well-designed.
 
 

u1
t

u2
t

u3
t

x1
t

z1
t

z2
t

z3
t

v2
t

v1
t v1

t+1

v2
t+1

u3
t+1

u2
t+1

u1
t+1

z1
t+1

z2
t+1

z3
t+1

x2
t+1

x1
t+1

u0
t+1

x2
t

x3
t

u0
t

x3
t+1

∂

3

∂

2

∂

2

∂

1

∂

1

∂

3

−
+

−+

−+−+

ρ

ρ

ρ

ρ

 
Fig. 2. Recurrent neural network architecture about proposed finite-time con-
troller with new activation function.
 

Stability analysis: At first, we introduce the following assumption
and important lemma used in control design and theoretical analysis.
After that, the main result in Theorem 1 can be formally stated.

| fi(·)| ≤ b(|xi+1|qi,i+1 + · · ·+ |x3|qi,3 ) qi, j
qi, j > (ri+1)/r j > 0 i = 1,2, j = 2,3

Assumption  1:  In  a  neighborhood  of  the  origin,  there  holds
 for positive constants b and  sat-

isfying , .

0 < ϵ1 < 1 α1(β1), α2(β1,β2)

| fi(xi+1, . . . , x3)| ≤ ϵ
ri+1

a , |u
a

ri+1
i (Xi(t̄))−u

a
ri+1
i (Xi(t))| ≤ αi(β1, . . . ,βi)ϵ

a+τ
a (t̄− t),

Lemma  1 [12]:  For  system (1),  under  control  law  (3),  there  exist
a  constant  and  functions  such  that

|x j| ≤ ϵ
r j
a (1+β j−1), j = 2,3, i = 1,2,3 0 <

ϵ ≤ ϵ1 −1 < δ ≤ 0 ∀t̄ ≥ t
provided  that ,  for  any 

,  and .
− 1

3 < τ < 0 −1 < δ ≤ 0
ϵ ∈ (0, ϵ1]

Theorem  1:  Under  Assumption  1,  for  and ,
there  exists  a  constant  such  that  the  control  law  (3)  will
globally stabilize the upper-triangular system (1).

Proof: The complete proof is divided into three steps.
t1Step 1: We prove that there exists a time instance  such that

 

X3(t) ∈ Q3 = {X3 : |x
a
r3
3 (t)−u

a
r3
2 (X2(t))| < ϵ}, t ≥ t1. (6)

t1 |x
a
r3
3 (t1)−

u
a
r3
2 (X2(t1))| ≤ ϵ2 t ≥ 0

|x
a
r3
3 (t)−u

a
r3
2 (X2(t))| > ϵ2

Before  demonstrate  that,  let  us  use  a  contradiction  argument  to
prove  that  there  exists  a  time  instance  such  that 

. Otherwise, it can be assumed that for all  such

that . The following case is taken in consider-
ation first:
 

x
a
r3
3 (t)−u

a
r3
2 (X2(t)) >

ϵ

2
. (7)

t ≥ 0According to (1) and (3), for , there holds
 

ẋ3(t)=−β3σ
r4
a

(
x

a
r3
3 (t)−u

a
r3
2 (X2(t))

)
< −µ3ϵ

r4
a

µ3 = β3( 1
2 )

r4
a > 0

t ≥ 0
x3(t) < x3(0)−µ3ϵ

r4
a t

|u
a
r3
2 (X2(t))| ≤ β

a
r3
2 ϵ x

a
r3
3 (t) − u

a
r3
2 (X2(t)) ≤ (x3(0)−

µ3ϵ
r4
a t)

a
r3 +β

a
r3
2 ϵ

t→∞ x
a
r3
3 (t)−u

a
r3
2 (X2(t)) <

− ϵ2 , t ≥ 0 |x
a
r3
3 (t1)−

u
a
r3
2 (X2(t1))| ≤ ϵ2 t1

|x
a
r3
3 (t)−u

a
r3
2 (X2(t))| <ϵ, t ≥ t1

t ≥ t1

with  determined  by  the  definition  of β.  By  inte-
grating both sides of  the above inequality  for ,  one can obtains
that .  This,  together  with  the  fact  that

,  one  can  get 
, which leads to a contradiction disavowing (7) when

.  Likewise,  note  that  in  the  occasion  that 
 is  also  impossible.  Therefore,  the  inequality 

 holds for a time instance . Next, using a contradic-
tion argument again to demonstrate that .
Hence, for , the proof of (6) is complete.

t ≥ t2 ≥ t1 ≥ 0 X2(t) ∈ Q2 =
{
X2 : |x

a
r2
2 (t)−

u
a
r2
1 (X1(t))| < ϵ

}
x1(t) ∈ Q1 = {x1 : |x

a
r1
1 (t)| < ϵ},

t ≥ t3 X3(t)

On  the  basis  of  the  above  discussion,  we  can  further  prove  that
there  exists  such  that 

.  Moreover,  one  has 
.  will enter and stay in the set

 

Q = {X3 : |x
a
r1
1 (t)| < ϵ, |x

a
r2
2 (t)−u

a
r2
1 (X1(t))| < ϵ,

|x
a
r3
3 (t)−u

a
r3
2 (X2(t))| < ϵ}, t ≥ t3. (8)

Q ⊂Ω
i = 1,2,3 x∗1 = 0 x∗i =

−βi−1(x
a

ri−1
i−1 − x

∗ a
ri−1

i−1 )
ri (1+δ)

a ϵ−
riδ
a ξi= x

a
ri
i − x

∗ a
ri

i Vi(Xi)=
∑i

k=1

r xk
x∗k

(
s

a
rk −

x∗k
a
rk

) 2a−rk+1
a ds Ω= {X3|V3(X3) ≤ λ0} λ0 > 0

Step  2:  In  this  step,  we  provide  the  proof  of  (Ω  is the
abstraction  domain).  For ,  let , 

, , 
, , . It can be followed from

Step 1 that:
 

ui = x∗i+1 = −βi
(
x

a
ri
i − x

∗ a
ri

i
) ri+1(1+δ)

a ϵ−
ri+1δ

a , t ≥ t3. (9)

Q = {X3 : |x
a
r1
1 (t)| < ϵ, |x

a
r2
2 (t)−

x
∗ a

r2
2 (t)| < ϵ, |x

a
r3
3 (t)− x

∗ a
r3

3 (t)| < ϵ} |xk − x∗k | ≤ 21− rk
a ϵ

rk
a

V3(X3) ≤∑3
k=1 21− rk

a ϵ2−
τ
a

ϵ
∑3

k=1 21− rk
a ϵ2−

τ
a ≤ λ0

− 1
3 < τ < 0

∑3
k=1 21− rk

a ϵ2−
τ
a ≤ 6ϵ2−τ ≤ 6ϵ2

ϵ = min
{
ϵ1,
( λ0

6
) 1

2
}

Q ⊂Ω

So,  (8)  can  be  reformulated  as 
.  By ,  one  get

.  Without  loss  of  generality,  an  appropriate
 can  be  selected  to  meet  the  inequality .  With

, we can obtain that .  Then,
we denote by . In conclusion, we essentially have

.
Step 3: In this step, we will prove that the system (1) is locally sta-

ble in the abstraction domain Ω. Consider the following system:
 

ẋ1 = x2, ẋ2 = x3, ẋ3 = u.

Vi V̇1(x1) = x
2a−r2

r1
1 x∗2+

x
2a−r2

r1
1 (x2 − x∗2) x∗2 = −β1ξ

r2(1+δ)
a

1 ϵ−
r2δ
a β1 > β

∗
1 = 3

|ξ1| = |x
a
r1
1 | < ϵ V̇1(x1) ≤ −3ξ21 + ξ

2a−r2
a

1 (x2 − x∗2)

By  the  definition  of ,  one  obtains  that 

,  where .  With  and

, we get .
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V2(X2) = V1(x1)+
r x2

x∗2
(s

a
r2 − x

∗ a
r2

2 )
2a−r3

a ds
β2 ≥ β∗2(β1) = [c2 +γ2(β1)+2]

V̇2(X2) ≤ −2(ξ21 + ξ
2
2)+ ξ

2a−r3
a

2 (x3 − x∗3)
V̇3(X3)≤−(ξ21 + ξ

2
2 + ξ

2
3).

Choose ,  by  addressing
indefinite  terms  and  choosing  gain ,
one  obtains .  Similarly,  we can
deduce that 

H1 H2 H1(X3) =
∑3

i=1 ξi
2, H2(X3) =

∑3
i=1
∂Wi
∂xi
×∑4

j=i+1 |x j|
ri+1
r j

H1 H2 V
2

2−τ
3

2 (r1,r2,r3)
d1 d2 H1 ≥ d1V

2
2−τ

3 H2 ≤ d2V
2

2−τ
3

Ω = {X3|V3(X3) ≤ λ0} λ0 > 0∑3
i=1
∑4

j=i+1 |x j|
qi, j−

ri+1
r j ≤ d1

2d2b ∀X3 ∈Ω
V̇3(X3) ≤ − 1

2 d1V
2

2−τ
3 (X3)

Define  and  as 
,  respectively.  According  to  homogeneous  theory,  it

is  not  hard  to  testify  that ,  and  are  homogeneous  of  de-
gree  with  respect  to  the  dilation .  And  there  exist  posi-
tive  constants  and  such  that , .  We
can  find  a  region  with  such  that

,  for .  It  is  clearly  to  see  that

, which implies that the system (1) is locally
finite-time stable. ■

Numerical example: Consider the following nonlinear system:
 

ẋ1 = x2 + x2
2 + x2

3, ẋ2 = x3, ẋ3 = u.

τ = − 2
15 r1 = 1, r2 =

13
15 , r3 =

11
15 , r4 =

3
5

For our proposed controller u with proposed activation function σ,
select ,  so .  According  to  the
Theorem 1, a global finite-time stabilizer can be designed as
 

u =−β3σ
3
5
{
x

15
11
3 −
{−β2σ

11
15 {x

15
13
2 −{−β1σ

13
15 (x1)} 15

13 }} 15
11
}

(10)

β1 = 1, β2 = 3, β3 = 100 ϵ = 0.5

x1(0) = 1, x2(0) = 2, x3(0) = 1
ū ũ σ̄

with appropriate gains  and  that also
apply  to  the  other  two  controllers.  In  simulation,  choose  initial  val-
ues as .  The alternative nonlinear con-
troller  and linear controller  with  are given as
 

ū=−β3σ̄
3
5
{
x

15
11
3 −
{−β2σ̄

11
15 {x

15
13
2 −{−β1σ̄

13
15 (x1)} 15

13 }} 15
11
}

(11)

and
 

ũ = −β3σ̄
{
x3 −
{−β2σ̄{x2 −{−β1σ̄(x1)}}}}. (12)

11.6 15.2 35.1
ū ũ

ū

It should be noticed that the state convergence speed under the pro-
posed controller (10) is fastest  compared to (11) and (12).  The con-
vergence time of x are  s,  s and  s for same initial val-
ues  under  three  different  controllers u, ,  and ,  which can be seen
from Figs. 3−5 in details. There are no dramatic changes for control
magnitudes  between u and ,  and  the  former  has  faster  convergent
speed, which can be seen from Fig. 6.
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Fig. 3. The trajectories of the state x under proposed controller u.
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ūFig. 4. The trajectories of the state x under nonlinear controller .

 

Conclusion: In  this  letter,  the  recurrent  neural  networks  effect  in
the controller  design has been investigated.  A neural  network struc-

ture has been presented for a specific nested saturation controller. We
genuinely hope to make it clear to readers that this work is more than
a simple finite-time control design. There are lots of open directions
following our work,  especially how we can get  a  completely differ-
ent  controller  by  changing  one  component  of  the  neural  network
architecture,  for  instance,  an  arrow  direction,  an  input  sequence  or
one  neuron.  This  idea  can  be  used  to  develop  the  effective  con-
trollers for more generalized control systems.
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ũFig. 5. The trajectories of the state x under linear controller .
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Fig. 6. The comparison of three different controllers.
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