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Abstract: Fine-grained visual parsing, including fine-grained part segmentation and fine-grained object recognition, has attracted
considerable critical attention due to its importance in many real-world applications, e.g., agriculture, remote sensing, and space techno-
logies. Predominant research efforts tackle these fine-grained sub-tasks following different paradigms, while the inherent relations
between these tasks are neglected. Moreover, given most of the research remains fragmented, we conduct an in-depth study of the ad-
vanced work from a new perspective of learning the part relationship. In this perspective, we first consolidate recent research and bench-
mark syntheses with new taxonomies. Based on this consolidation, we revisit the universal challenges in fine-grained part segmentation
and recognition tasks and propose new solutions by part relationship learning for these important challenges. Furthermore, we conclude

several promising lines of research in fine-grained visual parsing for future research.
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1 Introduction

Fine-grained visual parsing of image objects is a basic
and crucial task in the computer vision community,
which is fundamentally difficult, owing that there are
usually subtle visual cues for distinguishing different ob-
jects or part regions. Recent advances in deep learning
have significantly boosted the image understanding abilit-
ies of machine systems, e.g., its performance on the large-
scale ImageNet dataset!! surpasses the human-level recog-
nition, but it is still a great challenge facing the fine-
grained visual tasks. In particular, we consider two rep-
resentative fine-grained visual parsing tasks in this paper,
i.e., semantic part segmentation and fine-grained object
recognition.

In contrast with coarse-grained object segmentation
and base-level classification, fine-grained parsing is meant
to segment or distinguish visually similar objects that be-
long to different fine-grained concepts, for example, de-
composing objects into parts and dividing the base cat-
egory into subcategories. A tremendous amount of re-
search efforts2-10 has been proposed to solve this import-
ant problem, which can also be applied for downstream
applications(!! 13, Conventional machine learning tech-
niques build explicit structures for parsing and under-
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standing these fine-grained objects, e.g., graph and tree
structures for part segmentation('4717l, and part learning
in fine-grained recognitionl!$: 191, In the era of deep learn-
ing, fine-grained segmentation and recognition ap-
proaches follow different paradigms, which achieve huge
success compared to conventional models. Although there
are more than 100 research papers each year to investig-
ate this important problem, these papers seem to be dis-
organized, owing to various sundry research focuses in-
cluding new task settings, benchmarking, and learning
strategies. In particular, there are few survey papers that
summarize the recent advances in fine-grained part seg-
mentation. Thus, the relationships among different fine-
grained sub-tasks are still under-explored, and these sub-
tasks are developed independently by regarding them as
less-relevant tasks.

In this paper, we make a comprehensive study of ad-
vances in fine-grained visual parsing tasks in the last dec-
ade. Besides analyzing recent deep learning works, we
seek to explain the differences between non-deep learning
and deep models, since these works often share similar in-
tuitions and observations, and some of the previous stud-
ies could inspire further research. For consolidating these
recent advances, we propose a new taxonomy for fine-
grained part segmentation and recognition tasks, and also
provide a collection of predominant benchmark datasets
following our taxonomy. Besides these improvements
compared to other survey papers(?% 21l in this paper, we
start from the novel view of part relationship learning
and regard it as the correspondences of different fine-
grained sub-tasks. In this view, we revisit both the indi-
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vidual and universal challenges of part segmentation and
fine-grained recognition and make an attempted solution
using the guidance of part relationship learning. In addi-
tion to these insights, we finish by discussing the future
directions of fine-grained visual parsing tasks.

To summarize, the main contributions of this survey
are as follows:

1) We present a comprehensive survey of fine-grained
visual parsing tasks by collecting recent advances of two
representative tasks, i.e., semantic part segmentation and
fine-grained recognition.

2) We revisit these fine-grained visual tasks from a
novel perspective of part relationship learning, by reveal-
ing the connections of these fine-grained tasks and
providing a promising solution to tackle challenges in
fine-grained tasks.

3) We consolidate recent fine-grained research by reor-
ganizing these works with new taxonomy, providing a col-
lection of prevailing benchmark datasets, and make com-
prehensive discussions to inspire future works.

4) We provide promising future directions of fine-
grained visual parsing tasks to inform further studies.

The remainder of this paper is organized as follows:
Section 2 provides new taxonomies, benchmark settings,
and recent research on the problem of fine-grained part
segmentation. Section 3 consolidates benchmarks, chal-
lenges, and advanced research on fine-grained object re-
cognition. In Section 4, we delve into the connections of
different fine-grained visual tasks from the perspective of
part relationship learning and provide new solutions to
improve existing challenges. We then highlight the fu-
ture directions in Section 5 and then conclude this paper
in Section 6.
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Handcrafted features

__ Strategy >
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2 Fine-grained object segmentation: A
part-level perspective

2.1 Taxonomy

In this section, we construct a new taxonomy for the
semantic part segmentation task and revisit the fine-
grained object segmentation from the part-level perspect-
ive. As in Fig.1, we conclude and re-organize the meth-
ods to solve semantic part segmentation tasks from two
different views, i.e., the problem setting and learning
strategies.

Problem setting. Considering target objects to seg-
ment, we categorize these methods into two lines, i.e.,
single-class and multi-class parsing. The single-class part
segmentation methods only tackle one specific category
while objects of other categories should be taken as back-
grounds. The multi-class setting aims to segment mul-
tiple classes that appear in the visual stream simultan-
eously. Regarding data collection in segmentation tasks,
we further divide them into strongly-supervised, weakly-
supervised and unsupervised learning. In similar ways, we
consider the instance-level semantic-level, and video-
based parsing problems. Given these terminologies
defined here, some sub-areas show linguistic crosses with
other ones, e.g., unsupervised learning with multi-class
part parsing. However, as these sub-areas have not yet
been explored, here we discuss the main branches that at-
tract major research attention in Section 2.2.

Strategy. Learning to segment object parts has at-
tracted a wide variety of research attention. In previous
decades, several successful hand-crafted models have
achieved success in segmenting objects with clear fore-

Object parsing

Instance-level

Human parsing Semantic-level

Unsupervised learning Video-based
Multi-class semantic
Panoptic part parsing
Root task
[] Taxonomy
flows
Pose-aided Mid-level tasks
Multi-scale ~ Leaf'tasks

Part relationship

Fig. 1 Landscape of semantic part segmentation tasks in our taxonomy. We summarize the recent advances from two different aspects:

problem setting and learning strategy.
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Table 1 Summarization and comparisons of 12 widely-used part segmentation benchmark datasets. Note that PPS[22]
re-organizes two new datasets based on existing data annotations.

Dataset Pub. Year Task Image No.  Category Description
Fashionistal23] CVPR 2012 Human parsing 685 56 Human clothes parsing
PASCAL-Part[24 CVPR 2014  Detection & segmentation 10103 NA dF;rt?sﬁrge'scale part segmentation
Horse-Cow . . Quadruped animal parsing,
dataset(25) CVPR 2015 Single-class part segmentation 521 5 reorganized from [24]

ATRI26] 1ccv 2015 Human parsing 17 700 18 Human clothes parsing
PASCAL-Person- . Human body parsing, reorganized
Partl27] CVPR 2016 Human parsing 3533 7 from [24]
MHPI28] arXiv 2017 Human parsing 4 980 18 Multiple human clothes parsing
LIP[29] T-PAMI 2018 Human parsing 50 462 20 Clothes parsing with human poses
. ACM . . . . .
VIPBO MM 2018 Video-based human parsing 404 videos 19 Video-based human clothes parsing
CIHPBY ECCV 2018 Instance-level human parsing 38 280 20 Human clothes parsing
PASCAL-Part-58%2  CVPR 2019 Multi-class part scgmentation 10103 58 Dirst multi-class dataset,
reorganized from [24]
PPSi22) CVPR 2021 Part—awarf) panoptic 10103/3475  194/23 Derived from VOC-2010/Cityscape
segmentation dataset
. ised d in adaptati
UDA-Part[33l CVPR 2022 Single-class part segmentation 200 5 Unsupervise , doman adaptation
from synthetic vehicles
34 . . Large scale multi-class dataset,
ADE-20K-Part[34 1JCV 2022 Multi-class part segmentation 10 103 544

reorganized from [35]

ground representations, i.e., salient objects. We will
briefly introduce several pioneer works in the following
section. Besides these hand-crafted models, deep learning
techniques have substantially improved the accuracy of
segmentation models. We thus roughly group these tech-
niques into three lines, i.e., pose-aided, multi-scale tech-
niques, and using part relationships. Note that similar
ideas could also be proposed in the non-deep learning
methods. We will elaborate on their relations and differ-
ences in Section 2.3.

2.2 Task settings in part segmentation

Following the taxonomy in Section 2.1, we first sum-
marize these datasets according to the task settings and
annotation labels. We then elaborate on the detailed task
settings and popular methods to solve these problems.
According to the segmentation targets, here we summar-
ize the popular datasets for semantic part segmentation
tasks, which span the publications, image numbers, seg-
mentation categories, and detailed descriptions.

2.2.1 Single-class part segmentation

Human parsing. As in Table 1, earlier works first
tend to solve the specific categories of part segmentation,
i.e., human parsing!. Representative datasets including
Fashionistal?3l focus on the human clothes parsing, which
segments human objects into typical classes including
shorts, shoeS, boots and sweaters. However, this dataset
contains over 56 categories with a limited number of 685

1 Also noted as human part segmentation in some works.

images, which is not applicable to large machine-learning
systems. With the development of deep learning tech-
niques, large datasets are proposed to train and bench-
mark these deep models, e.g., ATR[26] and LIP>29, which
consist of over 50 000 images of 20 categories for training
and testing. These large benchmarks, as well as the ac-
companying baseline, have achieved great success in pars-
ing humans into dressing clothes. Nevertheless, decompos-
ing human objects with different clothing parts would
lead to semantic inconsistencies on certain occasions.
Hence, the other line of works proposes to segment hu-
man bodies into semantic parts following the morpholo-
gical rules, which share the same definitions with human
poses. For example, Chen et al.27] propose to organize the
PASCAL-Person-Part dataset to segment human bodies
into 7 semantic parts, including lower/upper-arms, torsos,
lower/upper-legs, heads, and backgrounds. Leading by
this trend, dozens of works(25: 29, 36-46] propose to address
this critical issue using deep learning techniques, which
build well-established parsing baselines for understanding
human structures.

The MHP dataset2® 47 is presented to address mul-
tiple human parsing challenges that involve multiple hu-
man identities in one image, in addition to the conven-
tional human parsing tasks. Beyond this challenging task,
CIHPBY is established to solve the instance-level human
parsing task, e.g., [3, 48—54] which not only requires the
semantic information of foreground objects, but also dis-
entangles these parts into different human identities.
Moreover, other works offer to investigate the part seg-
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mentation problem from a video-based perspective, i.e.,
video-based human parsing, with the proposal of VIPI30l
Video-based part segmentation requires a semantic con-
sistency of temporal sequences. In summary, the tasks of
these new trends continue to be founded on the segment-
ation of human clothing, while ignoring human body
structure exploration and leaving space for future re-
search.

Object part parsing. Except for human parsing
tasks, here we review the object part segmentation task
and divide the existing literature into two different lines:
1) Rigid object part segmentationl”- 33, 55: including cars,
aeroplanes, motorbikes, and other vehicles; 2) Non-rigid
object part segmentation[25 56 57): including birds, horses,
cows, and other living creatures. Although these two lines
of segmentation tasks can be uniformly solved by the
popular deep learning schemes, challenges remain due to
ambiguous semantic representations, blurriness around
part boundaries, and anti-topological predictions. How-
ever, as the rigid objects usually consist of stable struc-
tures, Song et al.l’5] and Liu et al.33 propose to embed
the canonical 3D models into learnable 2D part segmenta-
tion tasks, while in [17], the static geometric relation-
ships are calculated for deducting the related part re-
gions. However, when extending these strategies to non-
rigid objects, namely articulated objects, the connections
between object parts show a significant variance because
of the various part shapes. Hence, the dynamic part rela-
tionships(?® 56 or pose-aided strategiesl5” are proposed to
solve this problem, which will be elaborated on in the
next subsection.

Weakly-supervised part parsing. Several recent
works have proposed exploiting weak supervision to gen-
erate dense semantic part segmentation masks. Unlike
conventional weakly-supervised semantic segmentation
methods, part segmentation using conventional image-
level or box-level supervision would inevitably lead to
highly repetitive semantic meanings (e.g., every human
image contains the semantic label of torso and legs) and
ambiguous annotations (bounding box overlap) respect-
ively. Thus, several recent works propose to use human
pose information as a weak supervision, which also shows
high relationships with the part segmentation masks. We
would like to elaborate on this in Section 2.3.2. Wu
et al.P8 and Yang et al.’% propose to generate accurate
part segmentation masks using keypoint annotations.
Moreover, Zhao et al.f0 propose a pose-to-part frame-
work that gradually transfers weak pose annotations to
the accurate segmentation masks and then use the image-
level boundaries to correct the ambiguous regions.

Unsupervised learning. The aforementioned part
segmentation tasks require accurate pixel-level annota-
tions. It is an extremely labor-consuming work[6ll, espe-
cially performing annotations in the fine-grained part
levels. Hence another trend of worksl62-67 proposes to ex-
plore the semantic information through unsupervised
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manners. In [62], the automatic discovery of semantic
parts and the relationships between the linguistical defini-
tion and activations discovered by convolutional neural
networks (CNNs) are first explored. Leading by this
thought, several works(63: 64 are proposed to leverage the
advantages of deep representations. One specific feature is
that the part representation after geometric transforma-
tion should be invariant over all instances of a category.
Beyond this idea, Choudhury et al.[67] propose to discov-
er the object part by using the contrastive loss among
local regions. In addition, as all object instances from one
category share the same part compositions, Gao et al.[o]
propose to leverage the consistency of specific parts from
different object instances, for example, different wings of
birds share similar shapes and localization with respect to
holistic objects.

The above works undoubtedly demonstrate the strong
ability of automatic part discovery by adding constraints
to deep neural networks. Without any prior guidance,
these localized parts show a strong relation to the mor-
phological structures of object categories. Thus, a natur-
al concern arises: Can we use this object compositional
information to guide the learning of other tasks? Further-
more, with weak supervision (e.g., image-level class la-
bels), can we localize the accurate part regions that are
most helpful for the learning objective, and what are the
relations among these parts in recognition tasks? Keep-
ing these concerns in mind, we will explain and discuss
these details in Section 3.

2.2.2 Multi-class part segmentation

When revisiting the single-class part segmentation
task in Fig.2(b), there remain challenging problems for
understanding the image content. Focusing on a single
class, e.g., person class, and ignoring other meaningful
classes, e.g., cars, and horses, would lead to severe pars-
ing issues for understanding the context. In Fig.2, only
parsing human bodies into parts leads to a lack of object
interaction with the context, for example, what is the hu-
man doing and where is the human sitting?

Input image

Single-class parsing

Multi-class parsing

Task:  Person U-arms  Task: Horse =y
oo { :

Wheels

Fig.2 Task settings of single-class and multi-class part
segmentation. Single-class part segmentation only focuses on
segmenting the objects of one specific class, while multi-class
part segmentation aims to segment multiple objects that
occurred in one scenario.

Maulti-class semantic part segmentation. In re-
sponse to these above challenges, the multi-class part seg-
mentation tasksP? are naturally proposed, as in Fig.2(c).



Y. Zhao et al. / Parsing Objects at a Finer Granularity: A Survey

The multi-class part segmentation tasks aim to segment
objects of multiple classes into parts. In [32], a re-organ-
ized benchmark of the PASCAL-Part dataset is first pro-
posed to solve this task, resulting in 58 semantic part
classes. This new benchmark setting introduces addition-
al challenges compared to the conventional single-class
setting: 1) Semantic ambiguity: Parts of different object
categories could share similar appearances, e.g., horse and
cow legs; 2) Boundary ambiguity: Part boundaries of dif-
ferent objects are usually hard to disentangle. Toward
this end, pioneer workB2 proposes a joint boundary-se-
mantic awareness framework with auxiliary supervision.
In [68], a graph-based matching network is proposed to
construct the complex relationships between different
parts, handling the part-level ambiguity and localization
problems, which achieves success in handling part seg-
mentation tasks of large scales, i.e., 108 part classes,
while its journal version focuses on the improvements
of edge localization and extends the ADE-20K dataset!3]
with part parsing labels, namely ADE 20K-Part. Besides,
Tan et al.l[%% propose a semantic ranking loss to re-rank
these semantic parts by their predicted confidence. Singh
et al.[" develop a new learning framework that increases
scalability and reduces task complexity compared to the
monolithic label space counterpart. Additionally, this new
research(’ introduces more complex part challenges, i.e.,
distinguishing left and right part localizations with more
than 200 semantic classes.

Panoptic part segmentation. Motivated by the
panoptic segmentation proposed by [71], parsing objects
into disjoint parts along with the background regions
seems to construct a comprehensive interaction with the
environmental context. Geus et al.?2l establish the part-
aware panoptic segmentation (PPS) task to understand a
scene at multiple levels of abstraction. This PPS bench-
mark is founded on two representative datasets, PAS-
CAL-VOCI™ for daily images and Cityscapes(™ for
autonomous driving. In [22], a two-stage semantic pars-
ing framework is proposed and the evaluation criteria for
this new task are founded.

2.3 Strategies in part segmentation

Beyond the specific challenges of task setting in
Section 2.2, part segmentation methods are designed fol-
lowing certain basic principles. Even the deep learning
models and the non-deep ones share similar thoughts for
constraining the optimization process. In this subsection,
we will first introduce their commonalities and contrasts
and then discuss and explore the promising future direc-
tions.

2.3.1 Non-deep
priors

learning models: Hand-crafted

Object part parsing in the past decade does not
strictly follow the current definition of semantic segment-
ation, but decompose a holistic object into basic composi-
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tional units shares the same concerns. In [74], the deform-
able part models are proposed to localize and understand
the whole object, which constructs a feature pyramid
with respective deformative locations. Eslami and Willi-
amsl™! propose a generative model to jointly learn the ap-
pearances and part shapes and use block-Gibbs Markov
chain Monte Carlo (MCMC) for fast inference. Following
this trend, Liu et al.["l adopt the Markov random fields
to model the color and appearance similarities, deciding
the part belongings. Meng et al./7l propose to initialize
part seed proposals and then develop a seed propagation
strategy to combine other potential regions. Some other
researches[6: 78, 79 segment object parts as an intermedi-
ate result to help the downstream tasks, including object
detection, pose estimation, and action recognition.
Besides these works, the other line of works proposed
to build trees[!4716, 80, 81] or graph models[!”> 24 23] depict-
ing the relationships of different object parts. In [14], a
joint bottom-up and top-down procedure is proposed to
hierarchically decompose the holistic object into coarse
parts, fine-grained parts, and basic lines/keypoints. Wang
et al.l16] introduce hierarchical poselets, which decompose
the human bodies into poselets (e.g., torso + left arm).
Moreover, Several studies8®: 81 construct “And-Or” gra-
phs to assemble the outputs of parts. e.g., Dong et al.[8]
build a deformable mixture parsing model to simultan-
eously handle the deformation and multi-modalities of
Parselets. Other works resort to graph structures, which
are relatively flexible compared to hierarchical trees. For
example, Chen et al.2Yl construct a relational graph by
the part attributes itself and pair-wise relationships.
Wang and Yuillel?s] propose to learn the part composi-
tional model under multiple viewpoints and poses, con-
structing a robust transformation of different conditions.
Revisiting non-deep learning models. With the
development of deep learning techniques®2-84, there is no
doubt that the deep part segmentation models occupy the
predominant places, benefited from their significant lead-
ing performance. Following the end-to-end training
framework[®® in semantic segmentation, recent part seg-
mentation models achieve more success than the conven-
tional hand-crafted feature extractors, e.g., histogram of
oriented gradient (HOG) or scale-invariant feature trans-
form (SIFT) features. However, these deep learning mod-
els neglect the consideration of hierarchical body struc-
tures and would face great challenges in understanding
unseen data and generating unreasonable segmentation
masks. For example, in human parsing tasks, deep mod-
els always follow the statistical rules that deservedly take
the round-shaped objects as human heads, which leads to
incorrect parsing results for car wheels. In some error
parsing cases, the lower legs could be connected with the
upper bodies which breaks the basic topological rules. In-
terestingly, these phenomena are usually rare in conven-
tional non-deep learning models, which follow the strict
constraints of topological or morphological compositional
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principles, e.g., the human bodies are hierarchically de-
composed into basic structures thus adjacent body parts
show strong correlations. Moreover, the non-deep learn-
ing models require very little training data, showing great
application potential in handling extreme circumstances
in real-world applications.

2.3.2 Deep learning strategies

In addition to these aforementioned differences, the
non-deep learning and deep learning models share similar
designs and basic foundations to solve the fine-grained
part parsing tasks. Whether hand-crafted feature extract-
ors or deep feature extractors are employed, the basic
challenges still remain for parsing reasonable and clear
segmentation results. Three important characteristics of
deep learning-based models are discussed in this subsec-
tion.

Pose-aided learning. The pose estimation and part
segmentation are dual problems. Compared to the dense
pixel prediction task of part segmentation, pose estima-
tion is a more lightweight estimation task with signific-
antly less annotation consumption. Conventional non-
deep learning methods[23 81, 86, 87] have proposed the im-
portance of joint learning of these two related tasks. In
the era of deep learning, major research effortsls 29, 36, 38]
focus on the joint optimization of human part parsing
and pose estimation with the proposals of large datasets.
In [38], a mutual learning framework is proposed by em-
bedding the dynamic kernel of pose estimation to part
segmentations. Fang et al.3% propose to transfer the hu-
man pose estimation knowledge as a coarse parsing prior
and then to refine these coarse masks in the subsequent
stages. Besides, other weakly-supervised methods[6% us-
ing keypoints information also achieves notable successes.
Methods of this category verify that the accurate localiza-
tions of pose key points, including animals and human
beings, show strong benefits to the tasks of part segment-
ations.

Multi-scale zooming. Different from the object seg-
mentation tasks, part segmentation demonstrates a great
demand in parsing detailed regions inside objects. Chen
et al.38 propose the atrous convolutional network to en-
hance the receptive field while [89] introduces an im-
proved structure of atrous spatial pyramid pooling
(ASPP), which incorporates multi-scale features in one
single layer. Besides these general improvements, in [27],
a two-stream CNN is proposed to fuse the global features
and local features. Xia et al.37l propose a stage-wise
framework to detect and segment object parts from im-
age-levels to object-levels and then part-levels.

Part relationship guidance. Several recent wor-
ksl4 4043, 50, 53, 56, 90] propose to embed the part-level rela-
tionship as learning priors to guide the segmentation pro-
cess. For example, Wang et al.l’fl propose a joint condi-
tional random field (CRF) to model the object-part and
part-level relationships after the encoding of image fea-
tures. Zhao et al.lYl decouple the part segmentation learn-
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ing as multiple independent tasks while using the part-
level learning order to constrain the recurrent learning
process. Gong et al.[Yll adopt a universal graph learning
strategy to model the part relationship across multiple
datasets. Wang et al.l43] propose a hierarchical part pars-
ing network to gradually decompose the object from the
coarse level to the finer level. In addition, in [40], a tree
structure is constructed based on the CNN architectures
and models the part-level relationship for understanding.
Methods of this category successfully incorporate relation-
ship learning to promote the segmentation process, while
also using the accurate feature extraction of CNNs. The
key challenge in fine-grained visual parsing is to under-
stand the compositional relationships. Here we summar-
ize these relationships as follows: 1) object-part relation-
ship; 2) part-level relationship within one object; and
3) part-level across different images/objects. By under-
standing these relationships, deep models can further pro-
mote the learning of action recognition, fine-grained ob-
ject recognition, and re-identification tasks.

3 Fine-grained object recognition: Un-
derstanding local structures

3.1 Definition and challenges

Definition. Image object classification has achieved
great success benefiting from the development of deep
learning systems and proposals of large datasets. Here we
conclude the tasks of image object classification as base-
level recognition, for example, classifying horses and aero-
planes, as in Fig. 3. Objects in base-level categories can be
easily distinguished by image-level global features and
usually has large margins in semantic definitions. For
fine-grained object recognition, deep learning systems are
required to distinguish the subtle differences among sub-
categories that have similar appearances and semantic
definitions. In this problem, methods developed for base-
level recognition usually face great challenges for classify-
ing fine-grained classes as in Fig. 3.

The formulation of fine-grained object recognition is
similar to the common base-level ones, by learning using
a much more “compact” semantic label space. Moreover,
the generalized definition of fine-grained object recogni-
tion problems consists of two different levels of recogni-
tion: 1) Subcategory-level: Recognizing different fine-
grained sub-categories that consist of multiple identities;
2) Instance-level: Distinguishing and identifying two dif-
ferent instances, e.g., person re-identification, vehicle re-
identification, and face recognition. In this survey, we
mainly focus on the first level of research but it should be
noted that these two sub-field share many common tech-
niques, which will be discussed in Sections 3.3 and 4.2.

Challenges. Here, we summarize three typical chal-
lenges of the fine-grained object recognition task in Fig.4:
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Fig. 3 Comparisons of coarse-grained learning and fine-grained learning. Representative fine-grained learning tasks, i.e., semantic part
segmentation and fine-grained recognition, rely on the part relationship learning to build robust local features, while the coarse-grained

tasks can be achieved by image-level global features.
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Fig. 4 Three typical challenges in fine-grained recognition
tasks (images from CUB dataset!]). 1) Heterogeneous semantic
spaces: The semantic definitions of fine-grained text labels are
usually cluster distributed. 2) Near-duplicated inter-class
appearances: Objects of different categories present visually
similar appearances. 3) Inter-class shape variances: The shape
structures of objects in the same category can be inconsistent.

1) Heterogeneous semantic space: Although fine-grained
labels are distributed in a compact space compared to the
base-level category labels, their semantic definitions are
still heterogeneous. For example, there are three types of
blackbirds but only one bobolink in the semantic space.
This phenomenon is still less-explored in the field of fine-
grained recognition which leaves challenges for learning
appropriate decision boundaries. 2) Near-duplicated inter-
class appearances: In the middle of Fig.4, we present
three images from different fine-grained categories while
sharing much common ground in visual appearances.
Thus, deep learning models need to clearly distinguish
their differences by observing local details. 3) Intra-class
shape variances: Image objects that belong to the same
categories can present in various shapes and structures.
As for the bird classification task, the flying attitude

shares less intuitive visual cues with that sitting one,
bringing challenges to deducting these images with vari-
ous shapes in the same categories. In most cases, these
three challenges show mutual effects on each other, and a
good learning model needs to have the ability to handle
semantic imbalance, inter-class similarities, and intra-
class diversities simultaneously.

3.2 Benchmark datasets

In this subsection, we summarize the prevailing bench-
mark datasets in the field of fine-grained recognition. In
Table 2, with the development of machine learning sys-
tems, earlier works have established benchmark datasets
with more than 100 categories for the classification of
common daily objects, including Oxford 102 flowers[?] for
plants, CUB-200-20111 for more than 200 bird categor-
ies, and Stanford-Dogs[%¥ for the classification of 120 dog
sub-categories.

Pioneer machine learning methods, including support
vector machine (SVM), and dictionary learning face great
challenges in tackling these problems with less than 30%
accuracies[!8, indicating that these works can not be dir-
ectly used in real-world industrial applications. Thus to
solve these problems, these datasets provide bounding
box information for localizing the main objects and
providing the box or segmentation masks for part learn-
ing, e.g., bird heads and torsos for the CUB dataset[93].
Integrating this fore-ground information or part localiza-
tion priors significantly helps the learning of fine-grained
objects, especially the subtle differences of near-duplic-
ated objects.

With the development of deep learning systems, espe-
cially CNNs, the representation ability for fine-grained
objects has been significantly improved, e.g., from 28% to
75% accuracy on the CUB-200-2011 benchmark in [6].
Despite their effectiveness, deep learning models usually
rely on the acquisition of a large number of training data
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Table 2 Summarization and comparisons of 13 widely-used part segmentation benchmark datasets. Bbox and Part in annotation items
indicate that the dataset provides object bounding box labels and part-level localization labels, respectively.

Dataset Pub. Year Image number Category Annotation Description
Oxford 102 flowersl®2  ICCVGIP 2008 8189 102 - Flower classification
CUB-200-2011091] - 2011 11788 200 Bbox & Part Birds, best-known fine-grained benchmark
Stanford dogsl?3] CVPRW 2011 20 580 120 Bbox Dog classification
Stanford cars[®4 ICCVW 2013 16 185 196 Bbox Car classification
FGVC aircraftl¥s] Arxiv 2013 10 000 100 Bbox Aircraft classification
Food 101099] ECCV 2014 101 000 101 - Food classification
BirdSnapl®7 CVPR 2014 49 829 500 Bbox & Part Large bird datasets
NAbirds98] CVPR 2015 48 562 555 Bbox & Part Large bird datasets
CompCars!%) ECCV 2018 136 727 431 Part images S;trjrfgom web-nature and surveillance-
DeepFashionl[100] CVPR 2016 800 000 1050 Bbox & Part Clothes classification
iNat20170101] CVPR 2018 857 877 5089 Bbox Large-scale species classification
Dogs-in-the-Wild[192l  ECCV 2018 299 458 362 - Large-scale dog classitication
iNat2021[103] CVPR 2021 3286 843 10 000 - Improved version of iNat2017[101]

with similar distributions. Thus many new datasets with
plentiful annotations are proposed, including Food 1019
than 101K NAbirds[%]
BirdSnapl®7 for nearly 50K images. These datasets not
only provide high-quality annotations but also introduce

with more images, and

new challenges for complicated semantic definitions, in-
tra-class diversities, and inter-class similarities.

Beyond these earlier deep learning benchmarks, re-
cent advanced research proposes large-scale annotations
with a huge number of fine-grained categories. For ex-
ample, iNat20171101 provides more than 0.85M images of
5K categories, while its improved version iNat2021[103]
provides more than 3M images of 10K categories. In ad-
dition, several other large-scale benchmarks[104 105 have
been proposed for fish recognition and landmark recogni-
tion. Beyond the aforementioned challenges, these data-
sets span the new dilemmas: 1) Imbalanced/Long-tailed
data distributions: Objects of some rare categories usu-
ally consist of few annotations, while other main classes
consist of thousands of images; 2) Noisy labels: Images of
large scale datasets are usually collected webly and would
introduce many noisy ambiguous labels. Thus, the classi-
fication model needs to further purify these noisy factors
by learning from predominant clean annotations.

3.3 Strategies in fine-grained recognition

Recognizing fine-grained objects has attracted much
research attention in the last two decades. In this subsec-
tion, we first conclude the non-deep learning techniques
including the hand-crafted features and human-in-loop
learning frameworks in Section 3.3.1. We then conclude
the recent advanced research using deep learning tech-
niques from two aspects, i.e., the part-guided learning in
Section 3.3.2 and learning with feature representation
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constraints in Section 3.3.3.
3.3.1 Non-deep learning models

Hand-crafted feature extraction. Pioneer fine-
grained works[!®: 106-108] propose to use hand-crafted fea-
tures to recognize objects. For example, Zhang et al.ll]
propose to incorporate the SVM into understanding pose
structures, learning with SIFT and bag of words (BoW)
features. Yao et al.l'06l propose dense sampling strategies
with random forests to extract local features. Other re-
searches including [107] adopt the codebook learning
strategy for encoded dictionaries. Methods of this cat-
egory can benefit from learning with local descriptors or
part features while still facing difficulties in understand-
ing fine-grained semantics.

Human in the loop. Conventional machine learn-
ing methods usually lead to relatively low performance,
e.g., 28% for CUB-200-2011 classification tasks, which
have difficulties for applying in realistic applications.
Hence earlier works propose to incorporate human expert
knowledge into the learning process. For example, Wah et
al.l% leverage computer vision techniques and analyze
the user responses to gradually enhance the final learning
accuracies. Branson et al.ll% propose an interactive
scheme with deformable part models to distinguish the
subtle differences between similar objects.

3.3.2 Part-guided learning

Supervised part learning. With the development of
deep learning techniques, recognizing common base-level
objects has made significant progress. Although the per-
formance of fine-grained recognition has been improved in
many applicationsl®, considering the challenges men-
tioned above, distinguishing subtle differences among
near-duplicated objects usually faces serious dilemmas.
Thus dozens of works propose to employ the part-level
features(6-10, 110-112] to amplify these differences in a local
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perspective. Zhang et al.[fl propose a part-based R-CNN
to locate the part features and then build pose-normal-
ized features as the enhancement for global features.
Krause et al.['!3] propose to use keypoint annotations for
fine-grained recognition, which leverages the co-segmenta-
tion techniques to align different views of images. Huang
et all’l propose a dual-stream part-stacked CNN to
jointly learn discriminative features from high-resolution
part features and low-resolution global ones. In addition
to these techniques using part detection methods, Wei et
al.l% propose to use part segmentation masks to regular-
ize the local descriptor learning process. Although seg-
mentation masks provide more accurate learning guid-
ance, learning with all feasible part proposals would lead
to a globally homogeneous amplification of every pixel.
To summarize, supervised part-learning techniques adopt
the part detectors or segmentation masks as local feature
selection guidance, and then fuse these local features with
the image-level global ones. In this manner, not only the
global features but the local details are taken into ac-
count for final feature distance measurements. However,
these part excavation methods still rely on accurate part
segmentation or detection annotations, requiring enorm-
ous labor consumption. In addition, considering that the
accurate part annotations of test data are usually infeas-
ible, transferring this expert part knowledge into the test-
ing environment would also lead to an inductive bias,
which would further limit the effectiveness in real-world
applications.

Unsupervised part learning.? Considering the la-
bour-intensive computation and unstable generalization
ability in the inference stage, recent ideasl!14-123] propose
to use unsupervised part attention techniques. Gonzalez-
Garcia et al.[62l prove that during the back-propagation
process, neural networks have the potential to discover
semantic parts automatically. Leading by this trend, Si-
mon and Rodner''4 propose neural activation constella-
tions to localize semantic parts without any supervision.
Different from this work, Fu et al.[l’6] propose a multi-
stage zooming strategy to automatically locate and re-
scale the attention regions, by learning the confidence
scores of different zooming proposals. Similar to this
work, Recasens et al.l'l7l develop a saliency-based samp-
ling layer for neural networks after finding the activated
regions. Ge et al.ll!9 incorporate the weakly-supervised
detection and segmentation models for localizing the dis-
criminative features for fine-grained distinguishing. Be-
sides, Wang et al.l!8] propose a Gaussian mixture model
for investigating the object parts with an auxiliary bran-
ch for supervision. In [123], a graph-propagation correla-
tion learning method is proposed to model and propagate
the discriminative part features to other parts. Neverthe-
less, these methods have shortcomings in two aspects:
1) introducing auxiliary learning branches or stages for
optimization; and 2) the number of part proposals can
sometimes be large whereas only a few are useful for re-

2 Also noted as weakly-supervised fine-grained recognition.
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cognition.

To solve this issue as well as reduce computational
costs, Lam et al.[124 propose an HSNet searching architec-
ture to explore the most discriminative parts, while other
workl® builds a weakly-supervised part selection mechan-
ism based on their response scores. Zhao et al.['25] pro-
pose a Transformer architecture to build inter-part rela-
tionships and adopt multiple auxiliary branches for part-
awareness learning, while in the inference stage, these
auxiliary branches are not used for computational consid-
eration. Methods of unsupervised part learning[!25-128] Jead
the prevailing trend in fine-grained recognition, which be-
nefits from its strong ability in understanding local differ-
ences and discovering object parts. Furthermore, select-
ing and modeling the part relationships becomes an emer-
ging topic in fine-grained recognition.

Different from the unsupervised part learning in se-
mantic segmentation, part attention in fine-grained recog-
nition aims to discover the discriminative features and ex-
ploits these local features as an enhancement for distin-
guishing near-duplicated objects. Thus the semantic in-
formation of the unsupervised part in recognition is usu-
ally not strictly aligned with the natural common defini-
tions.

3.3.3 Feature representation learning

Besides the methods using part-level features for en-
hancing the local details, the other crucial problem in
fine-grained recognition is feature representation learning.
There is intuitive thinking that well-represented features
can provide a more robust and generalization ability for
downstream tasks, including segmentation, detection, and
also fine-grained recognition. Despite the experimental
evidence, enhancing the detailed representation ability
helps the measurement of local subtle differences hidden
among different features, which may be vital factors for
discrimination. When features of various images are dis-
tributed in one generalized and robust fine-grained fea-
ture space, these subtle differences would be easy to dis-
cover. Guided by the theory, this line of methods tends to
regularize the feature learning process[129-134 or generate
rich feature representations!!3°-144] without using addition-
al annotations.

High-order representations. As in Fig.5(a), given
an input image 7, the conventional classification model
can be represented as X = ®(Z). Thus, X € RW*#x¢
denotes the C-dimensional with H x W feature maps and
the final classification vector would be Pool(X) €
RY*'XY_ Considering the spatial feature relationship is
neglected during the pooling operations, high-order inter-
actions are proposed in advanced works. In Fig.5(b), as
the pioneer work using the second-order relationship, Lin
et al.136] propose a bilinear model to extract shape and
appearances by two different CNNs and then construct a
bilinear pooling operation to generate rich second-order
representations, ie., X = wiz >, Zjil vec(®1(Z)F,x

®3(Z);,;). Although this bilinear pooling operation en-
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(a) Vanilla classification
Fig. 5

(b) Second order relationship

(c) Trilinear attention/Third order

Three typical high-order relations as in [135]. Vanilla classification: Encoded features are pooled into vectors for classification,

used in most of the works. Second-order relationship[l35-139): Learning rich second-order features by keeping the spatial dimension.
Trilinear attention[140-145]; Preserving the same size as input features for learning spatial-wise or channel-wise attention matrix.

riches the fine-grained representation and amplifies the
differences of similar embedding, it also introduces high
computational costs, i.e., C' X C X N for optimization,
and N.s denotes the category numbers. To solve this,
Gao et al.l'37] propose a compact bilinear pooling model
that uses the network itself to build second-order rela-
tionships, i.e., X =Y. Other works propose to use mat-
rix factorization!38], Grassmann constraints!!39, and low-
rank learningl!46l to reduce computation costs. Besides
these works, Yu et al.[143] propose a hierarchical feature
interaction operation to build heterogeneous second-or-
der relationships. Zhao et al.[!33] propose a graph-based
high-order relationship learning to reduce the high-dimen-
sion space into discriminative low dimensions.

However, the second-order feature learning still intro-
duces the curse of dimensionality for optimization, thus
the other line of works proposes to use the third-order re-
lationship in Fig.5(c), namely trilinear attention[!40 141] or
non-local mechanisms!4’l. For example, Zheng et al.[l40]
propose the trilinear attention in the channel-dimension
with a distillation mechanism, which can be formulated
as softmax(X T X)XT € RV#*C While Gao et al.ll4]
propose a contrastive loss to learn the channel-wise rela-
tionship of inter-images and intra-images. Methods using
the third-order relationship maintain the output size and
can be embedded into different network stages to en-
hance the representations.

Feature interactions and regularization. Besides
building high-order rich features, the other line of works
proposes to use feature interactionsl102 129, 147-152] or ysing
additional constraints[130-132, 153-155] Wang et al.[!29 con-
struct a discriminative feature bank of convolutional fil-
ters that captures class-specific discriminative patches.
Sun et al.ll92] propose a multi-attention multi-constraint
network to regularize the feature distributions based on
the selected anchors. Luo et al.l'48] propose to learn cross-
level and cross-images relationships for building interact-
ive feature representations. For robust feature learning,
Chen et al.[147 incorporate an additional destruction and
construction branch as an additional learning task. These
works rely on additional blocks or feature interaction net-
works, which may introduce additional computation
costs.

Besides works using additional parameters to feature
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enhancement, several works propose to use auxiliary con-
straints in addition to the basic cross-entropy constraints.
In [130], pair-wise confusion is proposed among Siamese
networks to alleviate the overfitting issues. While Dubey
et al.132] propose an entropy maximizing approach to reg-
ularize the final classification confidence. Aodha et al.[131]
propose geographically guided loss functions that deduct
the fine-grained features using temporal and geographical
spatial priors. Besides, other works[l3 154 156] follow a
self-supervised learning trend for fine-grained recognition.
Wu et al.['53] propose to solve the dilemma between self-
supervised learning and fine-grained recognition by en-
hancing the salient foreground regions.

To summarize, 1) methods using high-order relations
modules mainly focus on rich representations at the fea-
ture-level, and enhancing these representations would
amplify the subtle differences among different object fea-
tures, and 2) methods using additional constraints make
fine-grained features to be distributed in compact and
precise spaces, while alleviating the overfitting issue and
concentrating more on object regions. This overfitting is-
sue is further studied in existing works by generating ac-
curate class activation maps while preventing only focus-
ing on the local part regions. In the next section, we will
discuss why we need local details and why only local de-
tails cannot perform accurate fine-grained recognition.

4 Part relationship in segmentation and
recognition

Fine-grained visual parsing, including recognition, seg-
mentation, detection and other high-level image under-
standing tasks, leaves us with challenges in its detailed
and complex “fine-grained” parsing requirements. Under-
standing images with fine-grained objects can be substan-
tially different from common “coarse-grained” ones. In
this section, we investigate two representative fine-
grained visual tasks, i.e., segmentation and recognition
with the following natural concerns:

1) What are the key challenges in fine-grained recogni-
tion, or what are the unique problems in this subfield?

2) Why does part relationship learning help the under-
standing of these fine-grained tasks? What are the rela-

tions among them?
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4.1 Problems in fine-grained parsing

Fine-grained visual parsing is a relatively-defined
concept compared to the common daily categories. Con-
sidering the specific tasks of fine-grained recognition and
semantic part segmentation, understanding image ob-
jects would face the following challenges.

Non-salient /Less-prominent in image-level. The
fine-grained visual features are imperceptible using exist-
ing learning systems or not easily understood by human
visual systems. In fine-grained recognition, objects of dif-
ferent semantic classes usually share visually similar ap-
pearances but still show imperceptible discrepancies. This
means that objects of these categories are recognizable by
detailed local differences while understanding them using
coarse global features is impracticable. In the task of fine-
grained part segmentation, distinguishing different parts
relies on subtle visual cues, including imperceptible part
boundaries and near-duplicated local visual patterns. The
term imperceptible here means that these part boundar-
ies can be relatively non-significant compared to object
silhouettes and even contextual noisy information. In ad-
dition, in some extreme cases, due to the small scale of
object parts (in Fig.6(a)), it is difficult to recognize them
by only observing small objects themselves. And in some
cases, these discriminative cues in both parsing tasks are
relatively non-significant, and are suppressed in the im-
age-level feature representations.

Locally distinguishable and indistinguishable.
As mentioned in the first challenge, the fine-grained ob-
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jects are only recognizable in local details, e.g., Fig.4 in
Section 3. Thus, enhancing the representation of these
local parts is beneficial to learn discriminative embedding.
However, these local part regions are not always distin-
guishable, for example, birds of two different categories
may exhibit similar appearances in torso, tail, and wings
while only differing in their heads. Analogous to the fine-
grained recognition task, we present a similar segmenta-
tion problem in Fig.6(b). The legs of the horse and cow
are locally indistinguishable whereas the holistic object
categories are easy to recognize and segment, since their
head regions are salient for distinguishing. To sum up,
the local regions of an image may be distinguishable or
indistinguishable when compared with different images.
Ambiguous semantic definition. The last chal-
lenge in fine-grained parsing is the ambiguous semantic
definition, which is less explored in recent works. Conven-
tional part parsing works[!4 15 propose to build hierarch-
ical structures, e.g., from the holistic body to object
parts, and then to line segments. However, considering
the goal of segmentation and recognition, the semantic
definitions of “fine-grained” tasks become an increasingly
critical problem. For segmentation tasks, LIP dataset29]
defines the human bodies with different fashion clothes,
e.g., skirts and coats, while other datasets?4 tend to seg-
ment bodies with the morphological rules, i.e., upper and
lower bodies. Similarly, if we define two different categor-
ies of objects, e.g., bulldogs and poodles, the bulldogs can
be subdivided into English bulldogs and American bull-
dogs with fewer differences. Thus the definitions of fine-

Fine-grained recognition |

Attention/

Input image

Parsing

! Activated semantic parts
guidance

Activation maps

Part relationship learning

\

Local structure understanding

_‘_-;I-!’- L= =

(a) Cross object relationship

(b) Object internal relationship
Fine-grained part segmentation |

Fig. 6 Part relationship learning in two representative fine-grained visual tasks, fine-grained part segmentation(3? and fine-grained
recognition[133], First row: Understanding complex fine-grained images requires the accurate parsing of local part relationships. Second
row: The cross-object relationship uses contextual information to help the understanding of small parts, while the object internal
relationship with other parts helps the distinguishing of locally similar regions. Besides, the segmentation results can serve as parsing
guidance and relationship learning in both tasks constructing the robust local structure understanding.

@ Springer



442

grained semantics leave us with severe challenges, or in
other words, “how fine is fine-grained parsing”?

4.2 Part relationship learning: A solution

Towards the aforementioned challenges, in this sur-
vey, we argue that building part relationships in fine-
grained visual parsing would be one reliable and prom-
ising solution. Here we elaborate on its effectiveness in
solving these challenges: 1) Considering that the fine-
grained cues are usually hidden in local details and can-
not be distinguished using the image-level features. Hence
enhancing the learning process with part relations helps a
dynamic understanding, as illustrated in the first line of
Fig.6 by [135]. It should be mentioned that most of the
prevailing works in fine-grained parsing and even re-iden-
tification tend to amplify fixed part regions of the same
image, which could be solved by introducing part rela-
tionships. 2) Given one image, we usually do not under-
stand which part should network focus on and what are
discriminative features for recognition and segmentation.
Thus, understanding part relationships helps this prob-
lem in many ways, e.g., cross-part relationships within
each object helps the understanding of geometric struc-
tures, object-part relationship helps the distinguishing of
locally similar visual patterns, and part relationships
across different images and objects help to learn the se-
mantic consensus. Besides, considering the comparison of
visually similar images, these different part-level relation-
ships help the dynamic enhancement of feature extrac-
tions. 3) For the semantic ambiguities of fine-grained
definition, here we advocate the learning with hierarchic-
al structures, which are still less explored in deep learn-
ing works. For example, the human body can be decom-
posed into heads and bodies, while the head regions can
be further subdivided into faces, eyes, and other organs.
Building hierarchical trees or graphs helps the holistic
geometric structures be more reasonable and is also bene-
ficial for handling the heterogeneous semantic definitions
as mentioned in Fig. 4.

Relations to fine-grained tasks. What roles does
the part relationship learning play in different fine-
grained understanding tasks? Here, we present a schemat-
ic in Fig.7 with fine-grained part segmentation, fine-
grained recognition and part relationship representations.
Part segmentation is the subset of the part relationship
representations, while the latter consists of other struc-
tural parsing and detection sub-tasks. The intersections of
part segmentation and fine-grained recognition are also il-
lustrated in Section 3.3.2. Methods of this category tend
to utilize the part priors to guide the feature extraction,
including the fine-grained classification(6-10: 112] and re-
identifications/!10; 157-160]  Understanding part relation-
ships without segmenting them as explicit masks or boxes
also considerably facilitates the distinguishing of subtle
differences, considering the joint region of part relation-
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Fig. 7 Correlations schematic of three relevant tasks, i.e., part
relationship representation, part segmentation and fine-grained
recognition.

ship representations and fine-grained recognition. Meth-
ods using this idea usually adopt the attention mechan-
ismsl®: 62, 114, 116-119, 124, 125] o1 graph-based structures!!26: 127]
to guide the learning process. Besides, the other line of
works[129-132, 1357141, 143] does not rely on part relationships
and focuses on the feature representation learning pro-
cess as mentioned above. It should be noted here we ex-
tend the concept of part relationship learning, by incor-
porating learning with implicit and explicit part localiza-
tions, and those methods build explicit part-level relation-
ships. Moreover, fine-grained part segmentation is one of
the explicit ways to understand the part relationship pro-
cedure, and learning in hierarchical manners or tree/
graph structures also leads in promising directions.

5 Future directions

Despite the significant progress made by existing
works, there are still many unsolved problems in fine-
grained recognition. Here we propose several promising
future directions for discussion.

Dynamic part relationship learning. As dis-
cussed in Section 4.2, prevailing part relationship learn-
ing works focus on building static connections and re-
sponses. For example, in fine-grained recognition tasks,
networks tend to amplify fixed regions of the same image.
Although this helps the discriminative embedding in
training data distributions, it faces great challenges when
compared to unknown novel testing examples. Besides,
the dynamic relationships help the understanding of se-
mantic parsing when objects face occlusions or abnormal
gestures.

Few-shot fine-grained learning. The learning of
fine-grained classification is based on sufficient training
data, while few-shot learningll61-163] is nowadays an at-
tractive trend for understanding novel concepts with only
a few annotated images. As for the few-shot fine-grained
classification, there are several advances[1647168] in this
field. However, these works usually follow the N-way K-
shot trend, and N is usually set as 5 for the number of
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categories, indicating the huge gap compared to popular
datasets with 500 to 5000 categories. Besides, few-shot
learning also can be regarded as a long-tailed setting
where several categories are labeled with sufficient im-
ages but a few categories with limited annotations. This
few-shot/long-tailed setting is a more realistic challenge
that can be taken as a promising direction.

Hierarchical structures of fine-grained learning.
In Fig.4 and Section 4.1, it is noted that the definition of
fine-grained settings still exists ambiguous and some sub-
categories can be further divided into finer levels. Thus to
solve this imbalance in semantic space and visual space,
we argue for developing hierarchical structures to gradu-
ally subdivide these components into meaningful leaf
nodes. These leaf nodes can be presented using basic
units including pixels and line segments but also basic
structures, i.e., organs of human beings. In other words,
the hierarchical structures help to maintain similar con-
cepts in semantic space aligned with that of visual spaces.
Several pioneer works[l%5: 169, 170] have explored the tree
structures or hyper classes for fine-grained semantic
structures. However, how to unify the semantic language
embedding with the image-level visual features is still an
under-explored problem. One promising direction is to
unify the language and visual spaces using contrastive
learning and mask modeling, including contrastive lan-
guage-image pretraining (CLIP)!7 grounded language-
image pre-training (GLIP)!72 and other multi-modality
learning methods.

3D-aware fine-grained learning. In addition to the
aforementioned 2D-based learning mechanisms, the other
promising direction is 3D-aware fine-grained learning. In
the semantic parsing of 3D models, many research
efforts/l73-176] have been proposed to parse 3D objects
with point cloud, mesh and voxel representations. Thus
an interesting question arises here: what is the relation-
ship between 3D parsing models and the real-world 2D
images? Earlier works collected in [177] propose to use 3D
models to aid the recognition of human faces by hand-
crafted filters or template learning techniques. In the era
of deep learning, several works(!"8l propose to embed the
3D canonical model with learnable warping parameters to
represent diverse 2D images. The emerging field can be
further boosted with learnable mechanisms including the
neural rendering field(179].

6 Conclusions

In this paper, we present a comprehensive survey of
fine-grained visual parsing tasks from the novel perspect-
ive of part relationship learning. In this view, we delve in-
to the connections of two representative fine-grained
tasks, i.e., fine-grained recognition and part segmentation,
and propose a new taxonomy to reorganize recent re-
search advances including the conventional methods and
deep learning methods. By consolidating these works and
popular benchmarks, we propose the universal challenges
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left in fine-grained visual parsing and make an attemp-
ted solution from the view of part relationship learning.
Besides, we also point out several promising research dir-
ections that can be further explored. We hope these con-
tributions will provide new inspiration to inform future
research in the field of fine-grained visual parsing.
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