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Abstract: Federated learning (FL) is a promising decentralized machine learning approach that enables multiple distributed clients to
train a model jointly while keeping their data private. However, in real-world scenarios, the supervised training data stored in local cli-
ents inevitably suffer from imperfect annotations, resulting in subjective, inconsistent and biased labels. These noisy labels can harm the
collaborative aggregation process of FL by inducing inconsistent decision boundaries. Unfortunately, few attempts have been made to-
wards noise-tolerant federated learning, with most of them relying on the strategy of transmitting overhead messages to assist noisy la-
bels detection and correction, which increases the communication burden as well as privacy risks. In this paper, we propose a simple yet
effective method for noise-tolerant FL based on the well-established co-training framework. Our method leverages the inherent discrep-
ancy in the learning ability of the local and global models in FL, which can be regarded as two complementary views. By iteratively ex-
changing samples with their high confident predictions, the two models “teach each other” to suppress the influence of noisy labels. The
proposed scheme enjoys the benefit of overhead cost-free and can serve as a robust and efficient baseline for noise-tolerant federated
learning. Experimental results demonstrate that our method outperforms existing approaches, highlighting the superiority of our meth-

od.
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1 Introduction

With the success of data-driven deep neural networks
(DNNs) in various applications, there are growing con-
cerns for user privacy and data confidentiality. Feder-
ated learning (FL) offers a solution to this issue through
its decentralized machine learning paradigm, where many
distributed clients (e.g., mobile and edge devices, organiz-
ations, institutions) collaboratively train a model under
the coordination of a central serverll. In contrast to tra-
ditional centralized machine learning, FL shares a model
between clients and a server instead of sharing the data
itself, mitigating the systemic privacy risks and costs. FL
is a promising approach to analyze and learn from data
distributed among many owners without exposing that
data. Recently, it has received significant interest from
both research and applied perspectives(2: 3.
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Federated learning typically follows a hub-and-spoke
topology and involves two main stages that are iterated
until the learning objective is achieved[ll. The two stages
are: 1) Local training. Each client performs model train-
ing independently based on their own local data and the
global model weights downloaded from the central server.
The trained model weights are then uploaded back to the
central server. 2) Global aggregation. The central server
collects the aggregate of the local gradient updates and
generates a new global model.

In real-world scenarios, federated learning encom-
passes a wide range of constraints and challenges. In this
work, we specially consider the challenge of making feder-
ated learning more robust and efficient. Specifically, the
local training is conducted in a supervised learning man-
ner with large amounts of annotated training data stored
in local clients. However, it is well-known that the real-
word data usually suffers from imperfect annotations, res-
ulting in subjective, inconsistent and biased labels. The
so-called noisy labels would degrade the generalization
performance of deep learning model significantly, since
over-parameterized neural networks have enough capa-
city to memorize large-scale data with even completely
random labelsl4. This problem is more serious in the FL
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setting. The noisy labels would produce inconsistent de-
cision boundaries and further divergent model weights
among clients, which lead to individual models difficult to
reach consensus and harm the collaborative aggregation
process of the global model.

Learning with noisy labels (a.k.a., robust training) is a
hot topic in traditional centralized machine learning, for
which many strategies have been proposed>8l. Surpris-
ingly, in the field of federated learning, there are very few
attempts towards noise-tolerant federated learning(®-11l.
Compared with its centralized counterpart, it is more
challenging to detect and correct noisy labels in feder-
ated learning due to the data access mechanisms to pro-
tect privacy. The existing noise-tolerant FL methods
commonly exploit the strategy of transmitting overhead
information to assist noisy labels detection and correc-
tion. Yang et al.l0l propose to interchange class-wise
centroids of local data on each device, which are aligned
by the server every communication round, so as to help
to form consistent decision boundaries among local mod-
els. Tam et al.l'!l propose to send data quality and the
amount of training data in each client to the server in
each round, which are used to perform the weighted ag-
gregation of the local models to update the global model.
Chen et al.l¥@ propose to upload local models and the
cross-entropy losses of the global model on local data of
each client to the server where a benchmark set with con-
vincing labels are maintained; then compute mutual
cross-entropy between performance of the global model
on the local datasets and that of the local model on the
benchmark dataset, which is used for the subsequent re-
weighting procedure.

Privacy and communication efficiency are always first-
order concerns in federated learning(l2. However, as out-
lined above, the current methods disclose the informa-

Central server

@H@

tion of local data more or less. For instance, in [10], the
server can easily infer which classes of data a local client
owns according to the uploaded class centroids; in [11],
the server can know the quality and size of data in a loc-
al client. Moreover, the uploaded overhead information in
each round reduces the communication efficiency of the
federated learning system. Considering the limitation of
existing strategies, it is necessary to define a robust and
efficient baseline for noise-tolerant federated learning, so
as to promote the further research on this important but
neglected topic in FL.

In this paper, we propose a simple yet effective meth-
od for noise-tolerant FL that integrates the disagreement-
based training with FL, inspired by the classical co-train-
ing in semi-supervised learning(!3l. As illustrated in Fig.1,
in each client, there are two diverse models available: the
local model trained on local data of each client, and the
downloaded global model trained by aggregating all local
models. Therefore, it naturally offers us two learners
trained from two different views, in contrast to its coun-
terpart co-teaching'¥ in centralized machine learning
where two neural networks are specially maintained for
this purpose.

The main contributions of this work are highlighted as
follows:

1) We propose a simple yet effective scheme that can
be easily integrated into the existing FL framework to
handle mislabeled local data. Our method does not need
to reveal any overhead information to the server, and
thus enjoy benefits from both privacy preservation and
communication efficiency.

2) Our proposed federated co-training scheme enjoys
performance guarantee. As theoretically proven in [15],
the sufficient and necessary condition for co-training to
succeed is as long as there is large diversity of two
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Fig. 1

Overview framework of our proposed noise-tolerant federated learning based on co-training
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learners. In FL, the local models and the global model are
inherently different, thus it can be easy to achieve this
condition.

3) Extensive experimental results on both synthetic
and real-world datasets demonstrate the superiority of
our method over FedAvglll, co-teachingl!4 and state-of-
the-art noise-tolerant FL schemell®.. Our method can
serve as a new baseline for noise-tolerant FL.

2 Related works

2.1 Federated learning

FedAvglll or local SGD[!0 is the benchmark of the cur-
rent federal learning framework. There are four steps in
each round of FedAvg. First, the central server sends the
global model to edge nodes. Second, the edge nodes up-
date the model by its own data. The updated model can
be used as a private model to serve the personal tasks of
the nodes. Third, the edge nodes will upload the local
model to the central server through encryption methods
such as homomorphic encryption (HE)!7 18] and differen-
tial privacy (DP)19-21, Last, the central server averages
the weights of models uploaded by edge nodes as the new
global model for the next round training.

Although federated learning effectively solves the data
privacy issues of edge nodes during training, it still faces
the following challenges: data, communications and secur-
ity[2225l. Our paper is mainly focuses on the offset of the
federated learning model caused by noisy labels. Interest-
ingly, the non-independent and identically distributed
(IID) and unbalanced data distribution of the edge node
has a similar impact on the global model as the label
noise. Therefore, a brief review of non-IID and imbalance
studies may help us to understand the federated noise
learning more deeply.

The studies to solve data-ill issues in federated learn-
ing can be divided into two categories: improvement on
local training or aggregation. Improvements in the ag-
gregation process generally sacrifice communication effi-
ciency or confidentiality, so we mainly focus on how to
solve the data-ill problem in local training. Smith et al.[20]
proposed federated multi-task learning, which can im-
prove the generalization performance of the original task
by sharing the representation of related tasks. FedProx[27]
directly limits the local updates by /¢2-norm distance,
while SCAFFOLD28 corrects the local updates via vari-
ance reduction. Moon[?9 utilizes the similarity between
model representations to correct the local updating of
edge nodes. Shen et al.;39 propose to use mutual learning
to build a private model locally. Zhao et al.3l propose a
novel aggregation scheme that defends against Byzantine
attacks by inverting local model updates.

There are a few studies for noise-tolerant FL[9-11, 32734,
Both FOCUS! and Yang et al.l}0] claim to be the first
study for noise-tolerant federated learning. FOCUSU! cal-
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culates the noise level of the edge node, thereby assign-
ing the weight of each edge node when the model is ag-
gregated. However, it requires a reliable and accurate
dataset in the central server, and requires each node to
upload cross-entropy information. Yang et al.l!0] propose
to interchange class-wise centroids of local data on each
node to prevent local model from being corrupted by rep-
resentations of noisy data. Tam et al.!ll mainly study the
situation when some edge nodes contain noisy data and
other nodes are completely trustworthy. Similar to FO-
CUS, it requires edge nodes to provide additional inform-
ation to help model aggregation, which destroys the
structure of federated learning so that it cannot be com-
bined with existing FL encryption methods. Tour et al.[32]
require a reliable and accurate dataset in the central serv-
er to refine the dataset of the edge node. Duan et al.l33]
transform private data into privacy-preserving data rep-
resentations on each client and identify clean data based
on centralized data representations on the server. Fang
and YeB4 propose a robust aggregation scheme that can
handle both noisy and heterogeneous clients.

2.2 Noise-tolerant learning

Classical deep learning implicitly assumes that the
training data are sampled from a clean distribution,
which is too restrictive for real-world scenarios. There-
fore, label-noise learning has become very popular for
both academia and industry® 14 35, 361, These studies can
be summarized in the following three perspectives, includ-
ing the data, the objective function and the optimization
policyldl.

For data, the key is to construct the noise transition
matrixB739 to link the noisy labels to clean labels. Sukh-
baatar et al.[9 propose to use a constrained linear layer
which is between the base network and cross-entropy loss
layer to simulate the noise transition matrix. Following
the linear case, Goldberger and Ben-Reuvenl4! propose to
use a non-linear network which can free of strong as-
sumptions. Patrini et al.[42 introduce forward correction
and backward correction to correct the outputs and loss.
Based on forward correction, Hendrycks et al.43 deal
with severe noise situations by assuming that there is a
small but trustworthy clean dataset.

For objective function, the key is to construct the
noise-tolerant loss function which will reduce the
network'’s ability to fit complex labels while ensuring that
the network will not underfitB®. Namely, robust loss
function make the network have the appropriate learning
ability, in the case of learning clean labels, can not learn
noisy labels due to its complexity. Zhang and Sabuncul44
propose the generalized cross-entropy (GCE) loss func-
tion which combines the cross-entropy (CE) loss with the
mean square error (MSE). Menon et al.l% leverage gradi-
ent clipping to prevent over-confident. Wang et al.[46] pro-
pose symmetric cross entropy (SCE) inspired by the sym-
metric KL-divergence.

For optimization policy, the key is the use of memor-
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ization effects for deep neural network. Arpit et al.[47 first
reveale the memorization effect in neural networks,
namely, the network always fits easy (clean) patterns
first, and then as the number of iterations increases, it
slowly fits complex (noisy) patterns. This phenomenon is
also called small-loss trick(48l. MentorNetl48! is the first
work to introduce the “small loss trick” into noise-toler-
ant learning. It utilizes a pre-trained network as a ment-
or to filter out noisy samples. However, the use of a fixed
mentor leads to the accumulation of errors, ultimately
hindering the identification of clean samples. Based on
MentorNet, Han et al.l'4 propose the co-teaching frame-
work inspired by co-training. It randomly initializes two
networks with the same structure but different paramet-
ers, and sends samples judged as clean sample by the cur-
rent network to each other for learning and updating.
Following co-teaching, Yu et al.49 propose co-teaching+
to use the disagreement(5% with peer network keep two
networks diverge.

3 Method

In this section, we introduce in detail the proposed
method on noise-tolerant federated learning. For clarity,
we only present the case where each edge node sends loc-
al model to the server in plaintext. Nevertheless, our
method does not change the communication process in
federated learning. Only the model updates are uploaded
for each communication. Therefore, it can be easily com-
bined with the existing federated learning encryption
technology, such as homomorphic encryption (HE)(7 18],
differential privacy (DP)192] and other technolo-
giesl 521, We first provide the problem formulation, then
elaborate the motivation and methodology of our pro-
posed scheme. Finally, we offer the convergence analysis
about the proposed federated Co-training.

3.1 Problem formulation

In this paper, we consider the k-class classification as
the target task. Assume that X C R? is the feature space
from which the examples are drawn, and Y = [k] =
{1,--- ,k} is the class label space. In the centralized clas-
sifier learning, we are given a training set S = {(x1,41), -,
(xn,yn)}, where (zi,y;) is drawn ii.d. from an underly-
ing distribution D over X x ). The classifier is defined as
a mapping function from feature space to label space
h(x) = argmax; f(x;©);, where f:X —C, CC[0,1]",
VeeC, 1Te=1. f(x) denotes an approximation of
p(-|x), which can be modeled by a neural network with
parameters © ending with a softmax layer. The loss func-
tion to derive the optimal network parameters is defined
as a mapping L:C x Y — R™.

When there exits noisy labels in the training set, the
noise corruption process can be described as that a clean
label y is flipped into a noisy version § with probability
Nw,5 = p(Jly, ©)P3. The noisy L-risk is

RE(f) = Ep[(1 — ne) L(f(2;0),y)+
> e L(f(250), 5)] (1)
J#y
where 7z = >, 7e,; denotes the noise rate.

In the context of FL, the training set S is distributed
in M local clients, i.e., S = {S1,--- ,Sm}, and the corres-
ponding noisy version is S = {S1,---,Sx}. In different
clients, the sample numbers {N;}}, and noise rates
{m}ﬁ\il can be various, and the data distribution is usu-
ally non-i.i.d. Due to the privacy protection mechanism of
FL, each client can only get access to data Si=
{(x1,%1), -, (znN,,Un;)} stored locally. The correspond-
ing local noisy L-risk is defined as follows:

Ri(f) = Ep,[(1 = n2) L(f (25 ©4,), )+
an,jL(f(m§®i,l)7j)] (2)

J#y

where D; represents the data distribution of client 4, and
O;,, denotes the local model parameters of client i. By
minimizing R;(f), we can derive the specific local model
with parameters ©;; in the i-th client.

In the t-th training round of FL, all participating cli-
ents upload their model parameters {@l(.’tl)} to the central
server. The server then derives the parameters of the
global model by aggregates all local ones by federated av-
eraging:

ety _ i f: @(t) (3)
- M ,l

i=1

from which it can be found that the robustness of the
global model is directly affected by that of local models.

3.2 Noise-tolerant federated learning

The existing methods attempt to improve the noise
robustness of the global model from the central server
side by the aid of additional overhead information trans-
mitted from the clients. These approaches, however, in-
crease the communication burden as well as the risk of
privacy leak. Instead, we turn to remedy the issue of
noisy labels from the client side. Our scheme does not re-
quire any additional overhead information uploaded, and
thus enjoys free lunch in communication.

3.2.1 Motivation

In the architecture of FL, the local model f(©;;) is
obtained by learning from local data, while the global
model f(©) is obtained by aggregating from all local
models. The difference in generation mechanism guaran-
tees that there is inherent discrepancy of learning ability
of the local and global models. Accordingly, they can
serve as two very different classifiers. To integrate the
strengths of these two classifiers, we exploit the well es-
tablished co-training framework[!3 54, in which the two
classifiers iteratively “teach each other” by exchanging
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samples with their high confident predictions, so as to
suppress the influence of noisy labels in model training.
As theoretically proven in [15], the sufficient and neces-
sary condition for co-training to be successful is as long as
there is large diversity of two classifiers. The proposed
federated co-training thus is well founded on the theoret-
ical guarantee.

It is worth noting that, different from the counterpart
co-teaching in centralized robust training4l where two
different networks should be maintained, in FL, the two
classifiers are already there. We argue that co-training is
more suitable for noise-tolerant federated learning.

3.2.2 Methodology

In the following, we elaborate the procedures of the
proposed federated co-training. The framework is illus-
trated in Fig. 2.

In existing FL pipeline, for the t¢-th local training
round, the i-th client downloads the global model
F(©V) from the central server, which is used as the
start point to train the local model. The approach
however neglects the trained local model f (@Effl)) in the
last iteration. f ((9“71)) represents the knowledge coming
from other clients while f (91(.37“) denotes the past exper-
ience of the local client ¢, which can be regarded as two
complementary views. We propose to integrate them to-
gether through the following co-training paradigm:

Sample selection. As the two classifiers are with dis-
tinct network parameters, in each mini-batch, they will
NG }7
where Ni, denotes the number of samples in each mini-

yield different predictions for the inputs {zi1,---

batch. We select samples that each classifier is confident
about, i.e., more likely to be with correct labels, which
are denoted as S;, and S;; respectively. The number of
instances is controlled by R (¢), where ¢ denotes the num-
ber of current communication round. The selection met-
ric can be small loss as done in [14].

Model co-training. We then co-train the two classi-
fiers by exchanging the selected samples, i.e., we update
the global model using S;; and update the local model
using S;,;. We learn both models by stochastic gradient
descent (SGD):

Gi,g — ez’,g - ’I7VL (3{71; G'L,g)
0,1+ 0, —nVL (gi,g; @i,l) (4)

Ty Ao XM, Select samples Ao XX,
]| S S ae >e-{7] ¥ S RSHK
Dataset \o/ \@/

. Global mode
Selecting

E}Noisy data

K/«) 3221012 e-m 220

Local model
Fig. 2
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where ©; 4, denotes the global model received by client i.
Note that the global model and the local model are
independently initialized at the beginning of each round,
which ensures their divergency.

The above procedures are iteratively performed in
each mini-batch to get the useful knowledge from each
other. In summary, the workflow is shown in Algorithm 1.
Algorithm 1. Overhead-free noise tolerant FL
Input: The number of communication rounds 7', the
number of edge nodes M, learning rate 1, the number of
local epoch E, fixed 7
Output: The final global model ©7, the private model
©7 in each edge node
Server executes:

Initialize ©° and ©Y independently
for each round ¢t =0,1,--- ,7T do
for i =1,2,--- ;M in parallel do
Send the global model ©7 to edge
Node ©} , + LocalUpdate(i, ©")
o) = &, )
Return ©7
LocalUpdate(i, ©°)
0, + O
for local epoch j =1,2,--- , E do
shuffle local training set S;
For each batch do
Fetch mini-batch S; from S;

S < arg Mg/, 571> R(1)S;] £(g,S8;)

Si ¢ argming, /> gy £ (1 S0
Oig < B9 —nVL (gi,l; 9i,g)
O, 0;; —nVL (gi,g; 61-,;)

R(t) =1 —min {%T,T}

return @ﬁy g
3.2.3 Discussion

One critical issue in our method is how to ensure the
divergency between the two models. The proposed meth-
od guarantees divergency from the following two aspects.
First, it is worth noting that, in the context of federated
learning, each client can only access its own local data
and cannot share or exchange data with other clients.
This means that each client learns a model based on its

Updating

O~7]

Next iteration

Framework of our proposed noise-tolerant federated learning performed in each client. It follows the co-training paradigm,

where the local model and the global model that own diverse learning ability serve as the two classifiers.

@ Springer



S. Lin et al. / Overhead-free Noise-tolerant Federated Learning: A New Baseline 531

unique data view, rather than a global data view. There-
fore, from this perspective, the global model and the loc-
al model can be considered as learned from two different
views. Second, in the initial stage, the global model and
the local model are independently initialized, so they have

different initial parameters.

3.3 Convergence analysis

One negative effect of the noisy labels to FL is that
they produce inconsistent decision boundaries among loc-
al clients, leading to individual local models difficult to
reach consensus in the aggregation process of the global
model. It would cost more communication rounds
between central server and local clients. In this subsec-
tion, we provide convergence analysis about the tradition-
al FL and the proposed noise-tolerant FL. As shown in
Fig.3, compared with the traditional FL, our proposed
noise-tolerant FL can not only improve the classification
accuracy, but also achieve faster convergence. It costs
much fewer iterations to arrive at the same accuracy. For
instance, when noise rate is 0.4, the traditional FedAvg
costs about 50 rounds to achieve test accuracy 60%, while
our method only costs about 10 rounds. This demon-
strates that our scheme serves as a communication-
friendly FL framework, which does not need to transmit
any overhead message to from local to central, mean-
while reduces the communication cost between local and
central.

1.0

0.8 1

0.6

04 r

Test accuracy

— Ours
0.2 FedAvg

20 40 60 80 100
Communication rounds
(a) Noise rate = 0.2

1.0

Test accuracy

20 40 60 80 100
Communication rounds
(b) Noise rate = 0.4

Fig. 3 Convergence comparison between traditional FL and
our noise-tolerant FL. We investigate two levels of symmetric
noise.

4 Experiments

In this section, extensive experimental results are
provided to verify the effectiveness of the proposed al-
gorithm.

4.1 Experiments setup

Datasets and label noise model. We verify the ef-
fectiveness of our approach on three benchmark datasets,
MNIST, CIFAR10, CIFAR100, and one real-world data-
set, ClothinglM®5], which are widely used for the evalu-
ation of robustness to noisy labels and federated learning
in previous studies[l?: 35, The details of these datasets are
provided in Table 1. In our simulation, the training
samples are randomly distributed on each client, and the
central server only keep the test set to evaluate the final
performance.

Table1 Summary of data sets used in the experiments

# of training  # of testing # of class Image size

MNIST 60 000 10 000 10 28 x 28

CIFAR-10 50 000 10 000 10 32x32

CIFAR-100 50 000 10 000 100 32x32
ClothinglM 927 591 72 409 14 227 x 227

We consider two types of label noise in our experi-
ments: symmetric noise and asymmetric noise. The label
noise can be modeled as

Yn, with probability (1 — 7z,,)
(5)

Gn = { i, © € [k], © # yn, with probability 1, i

where ¢, denotes the noisy label of x,, y, denotes the
corresponding true label. The probability of a label to be
mislabeled is defined as 7,,.

4.2 Implementation details

We used the Pytorch framework to implement PyT-
orchl%l, and conduct all the experiments on a NVIDIA
3090TI GPU. In our federated setting, We train the net-
work with 100 global communication rounds and the
epoch is set to 5. In our experiments, we implement the
proposed method with three versions, which are conduc-
ted with different loss functions. Specifically, Ours-CE
refers to the one using the traditional cross-entropy loss,
which is known to be sensitive to label noise. Ours-GCE
refers to the one using robust loss function GCEM4, which
is used to demonstrate that our method can be easily
combined with the well-developed robust loss func-
tion(® 57, 58] to further improve the performance. The GCE
loss defined as
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Lace (f(x),e;) = % (6)

where ¢ € (0,1]. Ours-Sparse refers to the one using the
most advanced method using sparse regularization3%], in
which the loss function is defined as

Lsparse (f(x), &) = Lace (f(x), €;) + M| (@)l (7)

4.3 Comparison study

We compared our proposed method with the follow-
ing algorithms:

FedAvglll, which is the classical architecture of feder-
ated learning that does not consider the influence of noisy
labels to the learning processing. Since the code of this
work is not available officially, we reproduced the code
for comparison.

FedCol'4, which applies co-training directly to feder-
ated learning by using same initialized global and local
models to identify noisy labels. We include FedCo in our
comparison to demonstrate the superiority of using the
naturally existing global model as the “classmate” model.

FedDR[33l, which identifies clean data in federated
learning by leveraging the correlation of global data rep-
resentations. The approach involves transforming private
data into privacy-preserving data representations on each
client and then identifying clean data based on central-
ized data representations on the server. As the official
code for this work is not publicly available, we repro-
duced the code for comparison.

Yangl%l, which is a state-of-the art method that

Machine Intelligence Research 21(3), June 2024

jointly consider federated learning and robust-tolerant
learning. Since the code of this work is not available offi-
cially, we reproduced the code for comparison.

4.4 Evaluation on symmetric noise

Symmetric noise means that the mislabeling probabil-
ity of all categories is equal, i.e., Nz, i = P, YZn, i. In the
following, we provide the evaluation results on symmet-
ric label noise.

Results on MINIST. Table 2 presents the accuracy
on the MNIST testing set, which shows that all methods
perform well when the noise rate is at the easiest level of
€ =0.2. Even the standard federated learning method
achieves a test accuracy of 89.12%, indicating the effect-
iveness of federated learning in dealing with noise.
However, when the noise rate is increased to more chal-
lenging levels of ¢ = 0.4 and € = 0.6, our proposed meth-
od outperforms all the other compared methods. In com-
parison with FedAvg, our method significantly improves
accuracy and demonstrates its power in handling noisy la-
bels in federated learning. Even the simplest version of
our method, the Ours-CE, outperforms Yang's method,
which highlights the effectiveness of the co-training
paradigm in the federated learning setting. Notably, Fed-
DRB3l achieves an accuracy of 96.31%, which is higher
than the Ours-CE version of our method that uses the
CE loss, indicating the effectiveness of the FedDR ap-
proach in handling noisy labels. Overall, the experiment-
al results demonstrate the superior performance of our
proposed method in comparison to the state-of-the-art
approaches in handling label noise in federated learning.

Results on CIFAR10/100. Table 3 presents the
experimental results on the CIFAR10/100 testing sets,

Table 2 Test accuracy on the MNIST dataset with symmetric noise. We report the average
accuracy over the last 5 rounds and the top 3 best results are boldfaced.

Noise ratio e FedAvgll FedColl4] FedDRI33] Yang][10] Ours-CE Ours-GCE Ours-sparse
0.2 89.12 94.33 96.31 95.76 96.12 96.56 97.21
0.4 74.53 72.94 77.93 75.67 79.89 81.21 83.87
0.6 57.34 71.08 73.89 73.49 75.23 77.86 78.27

Table 3 Test accuracies (%) on the CIFAR10/100 dataset with symmetric noise. We report the
average accuracy over the last 5 rounds and the top 3 best results are boldfaced.

Methods Test accuracy (%)
Datasets € FedAvgll] FedCol!4] FedDRI33I Yangl[10] Ours-CE Ours-GCE Ours-sparse
0.2 70.49 76.14 80.33 80.62 83.40 84.68 85.21
CIFAR-10 0.4 66.54 74.26 76.36 77.82 79.43 81.65 82.47
0.6 49.23 71.37 73.21 72.68 73.59 74.16 74.89
0.2 46.64 51.44 54.26 55.23 56.82 58.91 60.14
CIFAR-100 0.4 36.17 40.71 41.33 41.94 44.73 47.97 50.59
0.6 23.72 33.49 35.17 35.79 37.28 39.16 40.72
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which are more challenging than MNIST. For CIFAR100,
our proposed method consistently outperforms all the
other compared methods for different noise rates. Our
method significantly improves accuracy compared to the
baseline method, FedAvg. Notably, when the noise rate is
0.6, the simplest version of our method, Ours-CE,
achieves a remarkable improvement of 13.46% in accur-
acy compared to FedAvg. Moreover, in comparison to
FedDRB3l, our Ours-CE version can improve the accur-
acy by 2.11%. These results demonstrate the superiority
of our proposed method in handling label noise in feder-
ated learning, especially in challenging scenarios such as
those present in CIFAR100. The findings underscore the
potential of our approach in real-world applications,
where label noise is a common issue.

As the experimental results in Tables 2 and 3 demon-
strate, our proposed method takes advantage of the nat-
urally different global and local networks in federated
learning to perform co-training. By utilizing these two
classifiers to select clean samples, our approach signific-
antly outperforms FedDR[B3 and Yang's method[10l. The
comparison among our method with CE, GCE, and
sparse loss clearly demonstrates that more powerful losses
lead to even better performance. These findings under-
score the effectiveness and versatility of our proposed ap-
proach in addressing label noise in federated learning. In
real-world scenarios, where label noise is common, our
method can serve as a promising solution for achieving
high-performance federated learning.

4.5 Evaluation on asymmetric noise

Asymmetric noise means that the probabilities of mis-
labeling of all categories are not equal, i.e., Ji,j € K,
1 # J, Nwn, i 7 Non,j- Lhe addition of asymmetric noise
makes training a deep neural network more difficult. As
shown in Table 4, the performance of standard federated
learning is severely degraded in such scenarios. For in-
stance, when the asymmetric noise rate increases to 0.4,
the accuracy on CIFAR drops to below 40%. Although
FedDR[3 and Yang's method can both improve perform-
ance compared to FedAvg, our method achieves the best

performance among all compared methods. This can be
attributed to the natural inconsistency between the glob-
al model and the local model in federated learning, which
our method exploits to achieve better performance than
the FedDRI33l. By leveraging the different characteristics
of the global and local models, our method can better
handle the challenge of asymmetric noise in federated
learning.

4.6 Evaluation on non-IID distribution

In federated learning, non-IID distribution is also a
common challenge, so we conduct experiments with noisy
labels under non-IID scenarios. We use the Dirichlet dis-
tribution to create a non-IID data partition among cli-
ents. In particular, we sample py ~ Diry(8) and assign a
fraction pg,; of the samples of class k& to party j, where
Dir(3) is the Dirichlet distribution with a concentration
parameter S (0.5 by default). This partitioning strategy
allows each client to have different (even zero) data
samples in some classes. The experimental results are
shown in Table 5. From the table, we can see that our
method achieves the highest accuracy. When 8 = 0.1, our
method'’s accuracy is 61.92%, which surpasses the best
method by 2.35%. When 3 = 5, our method’s accuracy is
64.26%, which surpasses the best method by 1.14%. The
experimental results demonstrate that our method can
handle both noisy labels and non-IID distribution simul-
taneously.

4.7 Evaluation on real-world noisy dataset

Furthermore, we evaluated our method on the widely
used large-scale dataset Clothingl M5, which consists of
14 clothing categories and contains 1 million images with
noisy labels collected from several online shopping web-
sites. In contrast to the artificially generated noise in CI-
FAR10/100, ClothinglM is a real-world dataset with a
high degree of unknown structural noise, where the noise
labels are dependent on both data features and class la-
bels. Conducting experiments on real-world noisy data-
sets enables us to more objectively evaluate the perform-

Table 4 Test accuracies (%) of different methods on the CIFAR10/100 dataset with Asymmetric noise (e € {0.2,0.3,0.4}).
We report the average accuracy over the last 5 rounds and the top 3 best results are boldfaced.

Methods Test accuracy (%)
Datasets € FedAvgll] FedColl4l FedDRI33] Yang][10] Ours-CE Ours-GCE Ours-sparse
0.2 73.67 74.53 78.22 78.26 81.11 83.27 85.13
CIFAR-10 0.3 66.18 69.71 71.39 73.94 75.09 78.23 80.12
0.4 56.26 57.32 59.22 60.14 64.2 67.38 69.25
0.2 56.83 57.27 57.94 58.73 59.76 61.25 62.36
CIFAR-100 0.3 47.29 48.92 50.41 50.14 52.36 54.84 56.93
0.4 38.36 39.47 39.79 41.29 44.05 45.93 47.28
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Table 5 Test accuracies (%) of different methods on the
CIFARI10 dataset under non-I1ID data distribution,
and the noise rate is set to 0.3

Test accuracy (%)

Methods
B=0.1 B=0.5 B=5
FedAvg 56.74 58.93 60.07
FedCo 57.68 60.17 61.44
FedDR 59.12 61.94 62.79
Yang 59.57 62.21 63.12
Ours-CE 61.92 63.37 64.26

Table 6 Test accuracies (%) of different methods on
the Clothing1M dataset

Datasets Method Test accuracy (%)
FedAvgl!] 71.63
FedColl4 72.24
FedDRI33I 72.33
ClothinglM Yangl10] 74.64
Ours-CE 76.13
Ours-GCE 77.25
Ours-Sparse 77.94

ance of the proposed algorithm. The results in Table 6
demonstrate that FedDRP3 slightly outperforms FedAvg
on this challenging dataset. Nevertheless, our method still
outperforms the state-of-the-art methods. Compared with
FedDR[B3 and Yang's method[!%, our method achieves up
to 5.61% and 3.3% gains, respectively. This indicates the
superiority of our method in handling real-world noisy
datasets.

4.8 Limitations

Our proposed method has the advantage of being
communication-efficient. It is able to perform noise-toler-
ant federated learning without sending any additional in-
formation to the central server, unlike some existing ap-
proaches that require extra overhead information.
However, this overhead-free property comes at a cost of
increased computational burden on the local clients. This
is because our method requires additional co-training to
be performed on the local clients. Therefore, our scheme
is more appropriate for cross-silo federated learning where
the computation burden of local clients is not a bottle-
neck. However, it may not be as suitable for cross-device
federated learning where the computational limitations of
the individual devices need to be taken into account.

5 Conclusions

In this paper, we proposed an overhead-free noise-tol-
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erant federated learning framework, which employs inher-
ent discrepancy of learning ability of the local and global
models in FL. Different from the previous research, our
method can protect the data privacy of edge nodes while
handling noisy data. Experiments have shown that the ef-
fect of using the global model and local model that natur-
ally exist in federated learning as “classmates” is much
better than randomly initializing two networks with dif-
ferent parameters. And we also show the inclusiveness of
the proposed algorithm, that is, it can be easily com-
bined with the most advanced robust loss function in the
field of label-noise learning to achieve better performance.
Additionally, our proposed method will provide a private
local model for each edge node after the training is com-
pleted, which may help the non-IID issue. We will jointly
consider the label-noise learning and non-IID in future re-
search.
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