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Abstract: In this paper, the pursuit-evasion game with state and control constraints is solved to achieve the Nash equilibrium of both
the pursuer and the evader with an iterative self-play technique. Under the condition where the Hamiltonian formed by means of
Pontryagin’s maximum principle has the unique solution, it can be proven that the iterative control law converges to the Nash equilibri-
um solution. However, the strong nonlinearity of the ordinary differential equations formulated by Pontryagin’s maximum principle
makes the control policy difficult to figured out. Moreover the system dynamics employed in this manuscript contains a high dimension-
al state vector with constraints. In practical applications, such as the control of aircraft, the provided overload is limited. Therefore, in
this paper, we consider the optimal strategy of pursuit-evasion games with constant constraint on the control, while some state vectors
are restricted by the function of the input. To address the challenges, the optimal control problems are transformed into nonlinear pro-
gramming problems through the direct collocation method. Finally, two numerical cases of the aircraft pursuit-evasion scenario are giv-

en to demonstrate the effectiveness of the presented method to obtain the optimal control of both the pursuer and the evader.
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1 Introduction

Differential games are originally proposed by Issacs to
address the missile interception problemlll. Due to the
sophisticated theoretical problems and wide application in
various fields, differential games have drawn widespread
attention from researchers in the field of economics(2 3,
control® %, etc. In particular, the study of pursuit-eva-
sion (PE) games that include aircraft dogfight proble-
msl6 7, orbital PE problems® 9, and multi-pursuer multi-
evader problems!012l are extensively focused in recent
years.

PE games are normally formed as zero-sum differen-
tial games consisting of two-players, in which one player
is named the pursuer and the other is named the evader.
The two players in the game have opposite targets. Gen-
erally, in the finite-horizon case, where the terminal time
of the game is determinate, the objective of the pursuer is
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to minimize the distance between the pursuer and the
evader, while the evader aims at keeping away from the
pursuer as far as possiblel!3]. The desired optimal control
strategy in PE games for the pursuer and the evader cor-
responds to the Nash equilibrium solution of zero-sum dif-
ferential games. At the Nash equilibrium points, both
players achieve the extremum and no one can improve its
own expected performance by changing their strategy
while the other player remains unchanged. This solution
can be achieved by dynamic programming (DP)1416] or
Pontryagin's maximum principle (PMP)[I7 18, For two-
player zero-sum nonlinear differential games that consist
of nonlinear dynamics and nonlinear objective functions,
the dynamic programming method is simplified to a
Hamilton-Jacobi-Isaacs (HJI) partial differential equa-
tionl], while the PMP method is transformed into a two-
point boundary value problem (TPBVP). Generally, fig-
uring out the Nash equilibrium solution of such a game is
equivalent to addressing a bilateral optimization problem,
which is much more difficult than the well-studied unilat-
eral optimization problem[!%, since it usually requires the
solution of high-dimensional TPBVP. In particular, PE
games in three-dimensional space are more intricate to
deal with than those in one or two dimensions.

Optimal control problems of differential games are
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widely studied by many researchers?0-22. In [5], through
an iterative adaptive dynamic programming method, the
optimal control strategy for a class of nonlinear zero-sum
games is achieved. Kartal et al.[23l propose a closed-loop
optimal control law for PE games by on-policy reinforce-
ment learning. The continuous-time multiple-agent PE
games are solved in [24]. For the finite-horizon differen-
tial games problem, an approximate optimal strategy for
nonlinear zero-sum differential games is presented in [25].
The optimal control problems for nonlinear nonzero-sum
differential games in the environment of no initial admiss-
ible policies with control constraints are studied by Mu et
al.[26] for discrete-time systems. The constraints are incor-
porated into this optimization by introducing the non-
quadratic value function, while policy iterations are util-
ized to obtain the optimal control law. Cui et al.27l design
an online learning algorithm for finite-horizon non-zero-
sum games with constrained inputs. In [28], a compre-
hensive overview of the researches on PE differential
games is presented.

The main methods of solving open-loop optimal con-
trol problems include direct method, indirect method and
semi-direct method. In [18], a semi-direct collocation
method is designed to handle a differential game entail-
ing a missile evasion scenario. In [29], an indirect mul-
tiple shooting method is presented to solve the PE game
between a missile and an aircraft. While, direct method is
considered to be robuster compared to indirect
methods!9. The key factor for this view is that only an
initial state needs to be provided to the nonlinear pro-
gramming problem (NLP) solver. The difficulty of hav-
ing to guess the initial values of the nonintuitive Lag-
range multipliers are thus avoided when TPBVP solvers
is utilized. However, the direct method cannot be easily
utilized in a differential game or minmax problem since
the NLP solver on which the method relies must have
just one objective function to optimize.

Motivated by the references mentioned above, the aim
of our paper is to address the optimal control problem of
pursuit-evasion differential games with constraints. In
practical applications, such as the control of aircraft, the
overload that can be provided at the moment is limited
and some state vectors are restricted by the function of
it. To solve this kind of differential game problem, we di-
vide PE games into two optimal problems and design a
method called self-play iteration to achieve the optimal
control strategy for both the pursuer and the evader. By
regarding the control strategy of the rival as a parameter
and updating its own optimal control law, the iterative
control strategy is able to converge to the Nash equilibri-
um solution if the game has a unique Nash equilibrium
solution. Owing to the strong nonlinearity of the system
dynamics and state and control constraints, we trans-
form the optimal problem into nonlinear programming
problem through direct collocation. The simulation res-
ults indicate that the aircraft PE game investigated in
this manuscript can be solved by the designed method.
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The main contribution of this article is mainly reflec-
ted in the following aspects. Instead of using semi-direct
method in [18, 19], we propose a novel self-play iteration
method that can transform the two-sided optimization
problem into iteratively solving one of the two one-sided
optimal control problems for each updating process. After
that, direct method can be applied and the original prob-
lem is transformed into NLP with constraints, which can
be solved by various full-fledged optimization algorithms.
Under the condition that the differential game contains a
unique Nash equilibrium solution, it can be proven that
as the number of iterations increases, the iterative optim-
al control strategies obtained by the present method con-
verge to the equilibrium solution of the game.

The remaining sections of this paper are organized as
follows. Section 2 describes PE games and studies the
open-loop Nash equilibrium solution by PMP. In Section 3,
the self-play iteration algorithm is presented and its con-
vergence is proven under the condition that the PE game
contains a unique Nash equilibrium solution. Then, the
implementation is given by transforming the optimiza-
tion problem into nonlinear programming through the
direct collocation method. Section 4 constructs an air-
craft PE game by introducing the dynamics of three-de-
gree-of-freedom aircraft and demonstrates the simulation
results of the game to validate the effectiveness of the
proposed method. Finally, Section 5 draws conclusions.

2 Problem formulation

Throughout this paper, we assume that both the pur-
suer and the evader can not observe the state of each
other. Therefore, we employ the Pontryagin Maximum
Principle to solve the open-loop optimal control prob-
lems for this PE game. To obtain the optimal strategy,
we consider the zero-sum differential game as two optim-
ization problems.

2.1 Nash equilibrium

For generality and concision, in this manuscript, we
consider a normal continuous time (CT) nonlinear sys-
tem for PE game written as

@(t) = f(z, wi,uz,t), t€ [to,ts]

st.  x(to) = w0, z(t) € X (u1(t), uz(t))
X(ui(t), ua(t)) CR™
ui(t) e Uy, Uy CR™
uz(t) € Uz, Uy CR™ (1)

where z is the state vector of the system, wuq(¢) and u2(t)
are the control strategies implemented by the pursuer
and the evader, respectively. ni, mi and ms represent the
dimension of the corresponding space. Then, the cost
function of the game is given as
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T (unyua) = () + [ 10 w0, w00 dt (2)

to

where ®(-) is the terminal cost, while I(-) represents the
running cost. Note that system (1) and cost function (2)
form a standard differential game problem, therefore,
they can be applied to model and analyze the aircraft
dog-fight, economics competition and Hs control
problems.

Definition 1 (Open-loop Nash equilibrium).
Control functions uj(t) and wuj3(¢) form a open-loop Nash
equilibrium for the game (1) and (2) if the following
holds:

1) The control function ui(-) is the optimal control
strategy for the pursuer that

Minimize : J (u1,us) = ®(z(ty))+

ty
/ L(x(t),ui(t),us(t),t)dt (3)

to

for the system xz(to) =xo, @(t) = f (z,u1,us,t), z(t) €
X(ul(t)), te [t07tf], ul(t) e U;.

2) The control function u3(-) is the optimal control
strategy for the evader that

Maximize : J (ul,u2) = ®(z(ts))+

t
[ @i o.mo.0d @)
to

where z(to) = zo, ©(t) = f (z,ul,u2,t), z(t) € X(u2(t)),
t € [to,tf], uz(t) € Us.

Definition 2 (Admissible control). A control
policy [u1(t), u2(t)] is called an admissible control for sys-
tem (1) on [to,ty], if [ui(t), u2(t)] is continuous on [to, tf],
and [u1(t),u2(t)] stabilizes system (1), which simultan-
eously ensures J (u1,uz) to be finite under [u1 (¢), uz(t)].

Employing the definitions above, we can formulate the
aircraft PE game as follows:

V = minmax J (u1, u2) (5)
ur ug
where V (-) is the value of the game. The set of admissible
controls can be denoted as Q[to,tf] 2 Ui [tosts] X Us [to.t )
According to (5), the PE game problem is defined as
determining a strategy function [ul(t),u3(t)] € Q¢ ;)
that minimizes J(u1,u2) with respect to wui(t), mean-
while maximizes J(u1,uz) with respect to wuz(t). Then,
[ui (), u5(t)] can be called optimal control strategy for the
PE game. Through the analysis above, we have

J(ul,u2) < J(ul,us) < J(u,us). (6)

By definition, the strategy [u](¢),u5(t)] forms a Nash
equilibrium if the inequality (6) holds.

To achieve the solution of Nash equilibrium, these two
optimization problems need to be solved. It is notable
that the optimal control uj(-) of the first optimization
can be regarded as a parameter in the second one, and
vice versa.

Now we need to figure out a pair of open-loop control
schemes (uj, u3) that yield Nash equilibrium by the
PMP. For this purpose, we make Assumption 1.

Assumption 1. For every (z,t) € X (u1(t),u2(t))x
[to,ts] and Lagrange multiplier A € RY, there exists a
unique pair of control (4}, %3) € U1 x Us that satisfies[30]

a; = argmin{\" f(z, p, @5, ) + 1(z, p, @5, 1)}
nels

uy = argmax{\" f(x,ui, 1, t) + 1z, 03, 1, 1)}, (7)
neUsz

Form the Hamilton function as

H(z,u1,u2, A\, t) = l(z,u1,uz,t) + )\Tf(x,ul,uz,t). (8)

Suppose that Assumption 1 holds, let z*(-) denote the
trajectory of the open-loop optimal control, while (u7,u3)
is the Nash equilibrium solution. Then, apply the PMP to
obtain the appropriate Lagrange multipliers that make
the following equation hold:

& (t) = f(2", u1, uz,t)

_OH (" uf,ub, \ 1) )

M) = 92+ (1)

with boundary and extremum conditions

:Z?(t[)) =20

_ D(x"(ty), ty)
M) = = (e) (10)
aH(I*yuT7u§7A7t) _ (9H(x*,u]‘,u’2‘,)\,t) -0

Au (t) o Ous(t) e

By (9) and the corresponding boundary data, one can
compute the Nash equilibrium solution for the PE game.

3 Solution of optimal control for the PE
game

Note that (9) consists of two ordinary differential
equations (ODEs) together with the strong nonlinearity
of the maps uj and w5 in (7), which make problem (9)
and (10) difficult to figure out, in general.

3.1 Self-play iteration
According to Definition 1, we divide the PE differen-
tial game (19) into two optimal control problems. As the

control strategy of the rival can be regarded as a para-
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meter in the process of computing its own optimal con-
trol law, we present a self-play iteration method to
achieve the two optimal control policies step by step.
Initially, we need to select an initial control strategy
for evader denoted as u% € UE[tO,tf]. Then, the iterative

control scheme for pursuer is obtained by

up = argmin J (uP,u%) . (11)
up€Up

We can write the process of updating the iterative
control strategy of the PE game as

uip = argmin J (uP,uZE>
up€Up
(12)
u?’l = argmax J (u’}),uE) , Vi=0,1,....
up€Ug

Algorithm 1. The self-paly iteration for aircraft PE
game with state and control constraints
Initialization:
1) Set an initial state so for the PE game that satisfies
the state constraints;
2) Select a calculation precision §;
3) Choose an initial control strategy u% for evader
s.t. ul € UE[tO,tf]§
4) Given the maximum number imax of the iteration;
5) Let iteration index ¢ = 0.
Iteration:
6) Compute the iterative control strategy by
ufp = argmin J (up,uiE) ;

up€eUp
7) Introduce the solution of Step 6, update the iteration
control scheme for evader by

ug'l = argmax J (uf}p,uE) ;

up€lp
8) If |J(ub ' ul) — J(ub,ul)| <6 and |J(ub,u")—
J(ub,u%)| < & hold simultaneously, goto Step 10. Else
goto Step 9;
9) Let i =i+ 1, if ¢ < imax, then goto step 6. Else goto
Step 11;
10) Return v’ and u?l. The Nash equilibrium solution is
obtained;
11) Return the Nash equilibrium solution is not obtained
within 4max iterations.

Theorem 1. Suppose Assumption 1 holds, choose an ar-
bitrary initial control strategy that satisfies u% € UElto,t]-
Update the control policy of pursuer and evader by (11)
and (12). Then, the pair of controls (ub,u’f") converges
to the Nash equilibrium solution as i — co.

Proof. According to the Assumption 1, there exists a
unique Nash equilibrium in the PE game. Meanwhile,
when the number of iterations is sufficient, (u%,u’ ")
converges to the optimal control for both the pursuer and
evader. That means they achieve the extremum and no
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player can improve its own expected performance by
changing their strategy while the other player keeps un-
changing. That is the definition of Nash equilibrium. O

As the number of iterations increases, the control
strategies of the pursuer and the evader asymptotically
approximate the Nash equilibrium solution, which means
the iterative control strategy yields (9) and condition
(10). The conditions that stop the update are given as
T (i ) — (b, uf)| < 6 and [J(ub,ul) — J(up,
uk)| < § satisfied simultaneously, otherwise execute the
updates to the maximum number of iterations. The de-
tailed implementation of the self-play iteration is dis-
played in Algorithm 1.

3.2 Implementation details

In this subsection, to solve the optimal problems in
Steps 6 and 7 of Algorithm 1, we employ direct colloca-
tion method that can transform the original problem into
a nonlinear programming problem.

Consider the optimal control problem of the general
CT nonlinear system with state and control constraints
as follows:

s.t.  minJ(u)

z = f(z,u,t)
h(u) <0, F(z,u) <0. (13)

For direct collection, the constraints are formed
through constructing the CT dynamics in integral and
approximating it using trapezoidal quadrature:

"i: = f(x7 u7 t)
tht1 tet1
/ zdt :/ fz,u,t)dt
th ty
1
Tht1 — T N §AT(f($k+1,Uk+hk + 1)+
flar,un, k), k=0,---, T} (14)

After that, the cost function is also approximated in-
to the same form:

@(w(tf))—l—/ofl(m(r),u(r))dT%

Ty—1
1
O(z7)+ Y G AT (U@, kg1, b+ 1) +l(an, ux, k).
k=0

(15)

Then, the nonlinear programming problems are given
as



X. Wang et al. / Optimal Strategy for Aircraft Pursuit-evasion Games via Self-play Iteration 589

T -1
. 1
min{®(z7;) + kE_O S AT(U(@kt1, wkrr, b+ 1)+

l(]:kaulwk))}
1
st. Tp41 —xK = iAT(f(karlv Uk+1, k+ 1)+

f(fl:k,’llk,k)), k:07 77}
h(uk) <0, F(ar,u) < 0. (16)
In this way, problem (16) can be solved by various
full-fledged optimization algorithms, such as the interior

point methodBl, the sequential quadratic programming
algorithm(32, the trust region reflective algorithml/33], etc.

4 Simulations

In this section, we apply this scheme to an aircraft PE
game to demonstrate its effectiveness.

4.1 Dynamics of aircraft

In this subsection, we introduce a classic point-mass
model of aircraft system dynamics for the pursuer and
the evader, and present the objective of each other in the
game to formulate the optimal control problem.

The three-degree-of-freedom aircraft motion equation
is given as follows[34:

0 =g (Ng, —siny)

) = —gN., sin ¢/ (v cos )

4 = —g(cosy + N, cos ¢) /v
T = v COoS 7y Cos Y

Y = v cos "y sin ¢

z = —vsin~y

where g is the acceleration of gravity. z, y and z are
three-dimensional coordinates in the ground coordinate
system with the units of meters which refer to north, east
and ground, respectively. v is the velocity of aircraft with
the unit meter per second. 7 is the included angle
between the aircraft velocity direction and the horizontal
plane called the flight path bank angle (up is taken to be
the positive direction). 1 is the included angle between
the north and the plane velocity vector in the horizontal
projection named flight path azimuth angle (the right
side of the projection is positive and the left side is
negative). ¢ is the flight path bank angle (rolling right is
positive, rolling left is negative). N,, and N, are the
axial and normal overload factors. The coordinate system
and flight path angles are defined as shown in Fig. 1.

Let u = [N.,,N.,,¢]" and s = [v,7,7]T represent the
control vector and state vector respectively. Considering

X,

S ¥ Horizontal
™ plane

Y,

Z

Z

Fig.1 Diagram of the coordinate system and flight path
Angles. S — Oxyz is the earth-fixed coordinate reference systems
and S — Ok Yk 2k is the flight path axis system.

the limitation of the actual capacity of the normal air-
craft, the control variables are constrained with
N., € [-2,3], N, € [-9,9] and ¢ € [—45°,45°]. Mean-
while the state variables are also limited by «ais+
aou < 0, where aq = [0,0,0.8]T, s = [0,0,1]T.

In terms of PE games, both the pursuer and the
evader regard adjustment of the relative distance between
them as the control objective. The difference is that the
pursuer scheme reduces the distance to complete inter-
cept, while the evader plans to increase it. In this way,
we can construct a system that involves both the pur-
suer and the evader. The dynamics of aircraft PE games
can be written as follows:

vp =g (Nz, p — sinyp)

Yp = —gN,, psin¢p/(vp cosyp)

Ap = —g (cosyp + N, p cos¢p) /vp

Vg = g (N, g — sinye)

Yp = —gN., psin¢g/(vg cosvr) (18)
YE = —g(cosye + N, cos ¢r) /vr

A% = vp cosyp cOSYp — UE COSYE COSYE

Ay = vpcosypsinyp — vg cosyg sinyg

AZ = —vpsinyp + vg sinvyg

where subscript P and E represent the pursuer and the
evader, respectively. Az, Ay and Az represent the
relative distance in the corresponding direction. For
convenience and brevity, let §= [vp,¥p,vpP,vE,VE,VE,
Az, Ay, AZ]T denote the state vector.

In this manuscript, we define the optimal control
strategy of the aircraft PE game from the following as-
pects. Let the control objective of the pursuer is minimiz-
ing its distance from the evader, while reducing energy
consumption as much as possible. Conversely, the evader
aims at maximizing the distance with the least control
energy. The three-degree-of-freedom aircraft PE game in
three-dimensional space is demonstrated in Fig. 2.
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\ Evader
Ve

Ay

o === z

Fig.2 Diagram of the aircraft PE game in three-dimensional
space.

Then, we can construct the performance index of the
PE game as follows:

J(up,ug) = 5(t;) Hs(ty)+

tf
/ [gTQ§+ UERPUP - uEREuE] dt (19)

to

Osxc  O6x3 Osxc  O6x3
where H = < O3x6 Isxs )’ @= < Osx6 Qs ) Re,
Rr and subblock Qs in @ are positive semi-definite
symmetric matrices.

Corollary 1. The pursuit-evasion game described by
(18) and (19) in this paper satisfies the Assumption 1 un-
der the condition that a Nash equilibrium solution exists.
In other words, if a Nash equilibrium solution exists, it is
the unique one.

Proof. The detailed process of the relative proof is
given in Appendix. O

4.2 Simulation results

To perform the simulation, we set the time length to
one second and select the initial velocity, flight path bank
angle, flight path azimuth angle of the pursuer and
evader as [150,0,0]". The relative distance in the corres-
ponding direction between them is [200, 200, 200]T. Mean-
while, we assume the initial admissible control law of the
evader is u% = [3,5,0]T. Matrices Rp and Rg in (19) is
chosen as identity matrix.

First, we perform the simulation under symmetrical
experimental conditions, that is, the pursuer and the
evader have the same initial state except for the relative
distance. As shown in Figs.3 and 4, in the situation
where the pursuer and the evader have the same initial
velocity, bank angle and azimuth angle, their optimal
control strategy is also the same. Meanwhile, the changes
of their state variables display similar trends. Finally, by
executing their own optimal control scheme, the distance
between pursuer and evader keeps almost unchanged

@ Springer
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(a) Control scheme of the pursuer
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(b) Control scheme of the evader

Fig. 3 Control scheme of the pursuer and evader with the same
initial state.

which means that the two players reach the Nash equilib-
rium. The flight trajectories of the two aircrafts are dis-
played in Fig.5.

After the symmetric experiment, we conduct an asym-
metric experiment, in which two players possess different
initial states. For different initial velocities, the results
can be seen in Figs.6 and 7, the control laws of pursuer
and evade become dissimilar. The distance between them
increases at the beginning, then slows down and finally
stays constant.

To demonstrate the effectiveness of the presented
method, we introduce a model predictive control (MPC)
method as supplemental experiments. MPC is an online
optimization technique that allows the controller to up-
date the control strategy according to the current system
information at each decision time. MPC algorithm can
deal with nonlinear systems with multiple inputs mul-
tiple outputs (MIMO), and it is also suitable for solving
optimal control problems with state and control con-
straints. Selecting the same initial condition as the above
experiment, then we have the results displayed in Figs.8
and 9, which are similar to the experiment above. For the
symmetrical situation, the pursuer and the evader have
the same optimal control strategy. For asymmetrical situ-
ation, the control laws of pursuer and evade become dis-
similar from the beginning. Since the performance and
constraints on both sides are the same, after a series of
adjustments, the control law of the evader and pursuer
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Fig. 4 State trajectory of the pursuer and evader with the same velocity
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e}
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Fig. 5  Aircraft PE game in finite-horizon. The pursuer and
evader utilize Algorithm 1 to make strategy.

stays fixed.
5 Conclusions

In this note, a self-paly iteration algorithm is presen-

ted towards a class of PE games to obtain the Nash equi-
librium solution. To transform the two-sided optimiza-
tion problem into two one-sided ones so that the direct
collocation method can be applied, we regard the control
strategy of one player as a parameter and iteratively up-
date the optimal control law of the other one. Then, by
solving optimization problems (11) and (12), which are
approximated as nonlinear programming problems
through the direct collocation method, the optimal con-
trol strategy of both the pursuer and the evader is
achieved. Moreover, we prove the uniqueness of the Nash
equilibrium solution in this game through analyzing the
condition when Assumption 1 holds. The uniqueness of
the Nash equilibrium solution ensures that the optimal
control scheme solved by Algorithm 1 converges to the
Nash equilibrium point. Finally, simulation results of an
aircraft PE game are given to display effectiveness of the
presented method. The main limitation of the proposed

method is that there should be a unique Nash equilibri-
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Fig. 7 State trajectory of the pursuer and evader with different velocity

um point in the PE game to guarantee the convergence of
the iterative control policy, which renders the applica-
tion of this method limited. The implication for practice
is highlighted in the way that the proposed method can
apply to PE games with the state and control constraints,

which are unavoidable in practical applications. In the fu-

@ Springer

ture, we will intensively study the multi-agent PE games
with nonlinear dynamics and constraints.
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. H* = minmax H = maxmin H. (A2)
Appendix up up up up

Proof of Corollary 1.

Calculate the partial derivative of the Hamiltonian

function with respect to Nz,p, N.,p, Nz, and N, g at

Introduce the Lagrange multipliers Ay, Ayps Appy Avgs the Nash equilibrium point:

Avgr Aops AAz, Aay and Aa.. For convenience and con-
oOH

cision, we regard matrices Rp and Rp as identity oN 5 = 2Ner Avpg =0 (A3)
xq P
matrices.
According to the system dynamics (18), the Hamilto-
. . . oH
nian function can be written as follows: m =2Nyoe +Aopg=0 (A4)
Ta
H=1I(s,up,ug,t) + \opg [Na,p — sinyp| +
OH gcosop gsingp
———— =2N. ApT—T—F App——— =
3 g[N.,p COS¢P—COS’7P]+ ON.,p zaP +Avp vp tAer vp COSYp
P vp (A5)
N. psin .
Aep gNeopsinde Mopg [Negr — sinys] + .
vp COSYP oH g cos o gsingp
N & —QNZQEJr)\«,EiUE +A¢E7vEcos'yE =
g[N.,Ecospr — cosyr] gN., g sin g ‘ (A6)
VE VE COSYE
Then, we have
Aaz (Up COS7YP COS p — VE COSYE COS YE) +
" 1
Aay (vp cosyp sinpp — vE cosYE sinpg) + N.,p(t) = _QAUP(t)g (A7)
Aaz (—vpsinyp + vgsinyg) . (A1)
1
N; g(t) = ==X (t A8
Based on PMP, the Nash equilibrium solution satisfies «2(®) 2 op ()9 (A8)
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X 1 gcosop gsin¢p
N, p(t)= ~3 ()\A,Pi FApp ————

vp vUp COSYP
(A9)
. _ 1 g Ccos pp gsin g
NzaE(t) - 2 <>‘7E vE + /\WE VE COS 'VE) .
(A10)

Calculate the partial derivative of the Hamiltonian
function with respect to ¢p and ¢ at the Nash equilibri-

um point:
OH gN.,psin¢gp gN.,pcosop
—— =2¢p — A @ A L =
Opp op P vp P wpcosvyp
(Al1)
OH gN., e sin¢gg gN. Ecosdg
— =9 -\ a A a = 0.
8¢E ¢E e VE + B VE COSYE 0
(A12)
Let

B _ gN., psin¢p gN.,pcospp
Gp =20p—Ayp o e cosp (A13)

and calculate the partial derivative with respect to ¢p

again
IGp gN., pcosop gN., psingp
— =2-) a - = . (Al14
Opp w vp P ypcosyp ( )

For \,, in (A14), according to (9),

_0H _>\'YP sinyp

YP — E)'TP vp
Ayp = et (A15)
and for A\, .
. O0H
P a(pP -
OP(x*(ty),tr
Ao (ty) = PR g
Aop = 0. (A16)
P

Based on (A15), (A16) and the constraints of the dy-
namics, we get

gNzap sin ¢p

0Gp gNzaPCOS(ﬁp
=2- >\'YP
Vp COSYP

- >0
O¢p vp

(A17)

- >‘<PP

for any condition.
From the analysis above, the Nash equilibrium point

@ Springer
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is uniquely obtained at the boundary of the constrains or
the point where the derivative is zero. o
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