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Abstract— The high speed and low energy cost are two
conflicting objectives in the motion optimization of bio-inspired
underwater robots, but playing a very important role. To
this end, this paper proposes an optimization strategy for
swimming speed and power cost using an improved NSGA-
II for a flexible robotic fish. A dynamic model involving
flexible deformation is established for speed prediction with the
hydrodynamic parameters identified. A back propagation (BP)
neural network is applied to perform compensation of power
cost prediction with the dynamic model’s prediction as input. In
particular, an NSGA-II-AMS method is developed to improve
the efficiency of solving the two-objective optimization problem
based on NSGA-II. Finally, extensive simulations and exper-
imental results demonstrate the effectiveness of the proposed
optimization strategy, which offers promising prospects for the
flexible robotic fish performing aquatic tasks with different
performance constraints.

I. INTRODUCTION

Natural fishes are gifted with superb aquatic capabilities,
such as high swimming speed and low energy cost. To
mimic the fish mechanism, many studies focus on bionic
mechanisms [1], dynamic modeling [2], and motion control
[3]. However, there still remain many difficulties for robotic
fish to achieve both high swimming speed and low energy
cost, which the natural fishes are endowed with.

To imitate the physiological structure of fish, many re-
searchers have adopted rigid and discrete designs. Yan et
al. [4] developed a robotic carp driven by four servos, which
achieved a speed of 0.58 body lengths per second (BL/s). Liu
et al. [5] designed a robotic fish with three servos on the tail,
which could reach 1.02 BL/s. The multi-motor design can
intuitively simulate fish swimming, while it introduces lots
of friction, resulting in large energy loss. In nature, fish can
achieve high performance by using flexible muscles, which
has attracted many interests to construct flexible robotic
fish. Erturk et al. [6] developed a bimorph robotic fish,
which achieved 0.3 BL/s. Liu et al. [7] developed a robotic
fish with an undulating fin to control swimming motion,
which achieved 0.703 BL/s. Flexible materials are ideal
for continuous passive kinematics. More importantly, their
periodic energy storage characteristics during deformation
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are beneficial to high efficiency. Thus, the combination of
a single motor and flexible materials endowed the robotic
fish with both high swimming speed and low power cost
[8]. With these flexible robotic fish proposed, performance
optimization problems have attracted attention.

For the robotic fish, the morphology and control strategy
directly affect the thrust and efficiency, which ultimately de-
termine the speed and energy cost. Thus, it is worth studying
to improve swimming performance through optimizing the
mechanism and control method, which has been proved fea-
sible. Clapham et al. [9] developed a robotic fish of which the
speed was significantly optimized via full-body carangiform
kinematics compared with the traditional undulatory motion.
Yu et al. [10] adopted particle swarm optimization (PSO)
algorithm to seek the controller parameters, which optimized
speed for a multijoint robotic fish. Li et al. [11] analyzed the
relationship between energy cost and control parameters like
frequency and amplitude, then derived the control strategy
for the lowest energy cost at different speeds.

While both impact the performance during a task such as
execution time and cruise range, speed and power cost are
two contradictory goals. Particularly, nondominated sorting
genetic algorithm II (NSGA-II) [12] has been successfully
applied to solve optimization problems with conflicting ob-
jectives. When using NSGA-II for performance optimization,
many populations will be generated to solve the dynamic
model, which consumes lots of time. In fact, limited by the
manufacturing process and processor performance, the opti-
mized parameters are usually discrete with limited resolution,
which provides a basis for improving the execution efficiency
of the optimization algorithm.

In this paper, we propose an optimization strategy to solve
the two conflicting objectives of the speed and power cost
optimization problem of a designed flexible robotic fish from
the perspective of mechanism design and control strategy.
The main contributions of this paper are as follows:

• An identified dynamic model considering the flexible
deformation is established to conduct the speed predic-
tion. Furthermore, a back propagation (BP) neural net-
work for compensation in conjunction with the dynamic
model is particularly applied to predict the power cost.

• An NSGA-II-AMS algorithm is designed to efficiently
offer an optimization scheme of structure design and
control strategy for the two conflicting objectives bal-
ancing. With the effectiveness validated by various
conducted simulations and experiments, the proposed
optimization strategy provides a valuable sight into the
practical application of the flexible robotic fish.
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Fig. 1. Illustration of the flexible robotic fish. Up: side view of the
mechanical structure. Down: side view of the developed prototype.

II. MECHATRONIC DESIGN

In nature, tuna are known as excellent aquatic creatures.
Their streamlined body can reduce fluid resistance, and the
stiff caudal fins help to generate large thrust [13]. To achieve
the above characteristics, we propose a flexible robotic fish.
In detail, a waterproof servo is used to drive the flexible
fishtail. According to the mechatronic design, the prototype
is implemented, with a length of 50.45 cm and a weight of
1.67 kg, as shown in Fig. 1.

As mentioned above, using flexible materials is critical for
high efficiency. In addition, the multi-joint design is proved
effective in reducing energy loss [14]. Thus, the “single-
motor multi-joint” configuration is employed, which involves
two spring steels installed behind a servo serving as the
compliant joints to transmit torque to the rear fishtail when
bent passively under hydrodynamic forces. 65MN is used
to construct the spring steels, making the stiffness easy to
modify by altering the thickness. With the compact and
lightweight design philosophies, the moment of inertia of
the fishtail is effectively reduced compared with the design
of multiple motors in series, laying the foundation for high
and efficient swimming performance.

III. PREDICTION OF SPEED AND POWER COST

A. Dynamic Modeling for Speed Prediction

To analyze the influence of flexible joints on swimming
performance, a Lagrangian dynamic approach is adopted to
model the underactuated flexible robotic fish [15].

Firstly, based on Pseudo-Rigid-Body Model (PRBM) the-
ory [16], the compliant joint is considered as a series system
where the resistance is modeled as a torsional spring at the
midpoint and connected to rigid links, as shown in the lower
right corner of Fig. 2. The total torque on the torsional spring
can be written as T=F (ls/2 + L), where ls and L are the
lengths of the spring steel and posterior body, respectively.
The spring constant K can be expressed as K = EI/ls,
where E and I are Young’s modulus and the area moment
of inertia of the spring steel, respectively.

Secondly, to analyze the kinematics, the coordinate frames
are illustrated in Fig. 2, all of which follow the right-hand

 

Fig. 2. Schematic illustration of coordinate frames and notations.

rule. The inertia frame and body-fixed frame are defined
as Ogxgygzg and Oixiyizi (i = 0, 1, 2, 3), respectively. li
is the length of ith link. ϕi (i = 1, 2, 3) and θi (i = 1, 2, 3)
represent the angles between the ith link and its prior link
and axis ogxg , respectively. The center of mass (COM) of the
ith link is denoted as Ci, and lc,i indicate its distance relating
to ith joint Ji. Consequently, the coordinate transformation
and translational velocity can be obtained as:(

ri
1

)
4×1

=

(
gRi

gPi

01×3 1

)(
ci
1

)
i−1Pi =

 li−1

0
0

 , gRi =

 cos θi − sin θi 0
sin θi cos θi 0
0 0 1


gPi =

gP0 +
i∑

j=1

gRj−1
j−1Pj , (i = 1, 2, 3)

gvi =
gṘici +

gṖi,
gṘi =

gRiω̂i
gωi =

gωi−1 +
gRiωi, ωi = (0, 0, ϕ̇i) (i = 1, 2, 3)

(1)
where the position vectors of Ci and Oi in Ogxgygzg are
denoted as ri and gPi, respectively. gωi and gvi represent
the angular and translational velocity of Ci in Ogxgygzg ,
respectively. ω̂i indicate the skew-symmetric matrix of ωi

which is the angular velocity of Ci with respect to Oixiyizi.
Moreover, the flexible robotic fish is perceived to swim

freely only in Ogxgyg , and all forces are regarded as acting
on the COM. Due to the different shapes of the anterior
body and tail, different methods are applied to analyze the
hydrodynamic forces. For the anterior body, the simplified
Morison equation including drag force Fd,i and added mass
force Fa,i [17] is employed, which can be obtained as Fd,i =
gRi

iFd,i and Fa,i = −ma,ir̈i, where:

iFd,i =

(
iFdx,i
iFdy,i

)
=

(
−0.5cf,iρSx,i

ivx,i
∣∣ivx,i∣∣

−0.5cd,iρSy,i
ivy,i

∣∣ivy,i∣∣
)

(2)
ma,i = cma,imi is the additional mass, and cma,i is the ad-
ditional mass constant. cd,i and cf,i denote the dimensionless
coefficients of drag and friction on the ith link, respectively.
Sx,i and Sy,i indicate the corresponding characteristic cross-
sectional areas of the ith link. ivx,i and ivy,i represent
the corresponding translational velocities of Ci in Oixiyi.
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It should be noted that the drag force along the x-axis
is only considered to act on the fish head, which means
cf,i = 0(i = 1, 2) in this paper. As for the lunate caudal
fin, the quasi-steady wing theory involving lift force Fl,i and
drag force FD,i [18] are considered, which can be calculated
as Fl,i = 0.5ρclSivi

2 and FD,i = 0.5ρcDSivi
2, where cl and

cD are the lift and drag coefficients relating to the attack
angle α, respectively. Si is the wetted area.

At last, using the Lagrange–Euler equation, the dynamic
model of the flexible robotic fish can be expressed as:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Qi (i = 1, ..., 5) (3)

where L is the Lagrange equation L (q, q̇) = Ek (q, q̇) −
Ep (q). Ek and Ep denote the kinetic and potential en-
ergies, respectively. q represents the generalized coordi-
nates vector, which is given as q = [x1, y1, θ1, ϕ2, ϕ3]

T .
In consideration of the flexible joints, it can be derived
as Ek =

∑3
i=0 0.5

gvTi Mi
gvi +

∑3
i=0 0.5

gωT
i Ii

gωi, Ep =

0.5
∑3

i=2Ki(ϕi)
2, where Mi and Ii denote the mass and

inertia matrix of the ith link, respectively. Qi is the general-
ized force produced by the surrounding fluid, which can be
derived as (Q1, Q2)

T
=
∑2

i=0 Fd,i+
∑2

i=0 Fa,i+Fl,3+FD,3

and (Q3, Q4, Q5)
T
=
∑2

i=0 τd,i +
∑2

i=0 τa,i + τl,3 + τD,3,
where τa,i, τd,i, τl,3, and τD,3 are the moments on joint Ji.
Finally, by numerically solving (3), the motion state like the
swimming speed of the robotic fish can be obtained.

B. Error Compensation for Power Cost Prediction
To fully analyze the power cost, the servo output torque

τ can be obtained by using (3) where qi = ϕ1 and Qi = τ .
Then the power cost can be estimated as pd = 1

T

∫ T

0
τϕ̇1dt,

where T denote the swing period during steady swimming.
However, due to the complex and highly nonlinear friction

properties [19] and inconsistent motor properties [20], it
is difficult to accurately model the power cost. With the
development of machine learning, the compensation method
using neural networks has shown applicability [19], [21].
In this paper, a BP neural network is adopted for power
compensation. Considering that power cost is mainly re-
lated to hydrodynamic forces and control parameters, the
thicknesses of the spring steels (i.e., thki, i = 1, 2) and the
swing frequency of the servo f are selected as the inputs.
In addition, to make full use of the prior knowledge, the
power prediction pd of the dynamic model is introduced into
the network. As a result, the input vector can be expressed
as: x = [thk1, thk2, pd, f ]

T , and the output is the final
power estimation y = pf . To choose the appropriate numbers
of hidden layers and neurons, the k-fold cross-validation is
used where k = 10 and the hidden layers are selected as 6
neurons for the first layer and 5 neurons for the second layer.
Tanh is adopted as the activation function and all inputs are
normalized.

IV. IMPROVED NSGA-II FOR PERFORMANCE
OPTIMIZATION

In this paper, an improved NSGA-II with an adaptive
memory space method, named NSGA-II-AMS, is proposed

 

Fig. 3. Framework of the optimization procedure.

to achieve practical structure and control strategy design
for performance optimization. The proposed optimization
framework is shown in Fig. 3, and the details are described
as follows, where o = [1/v, pf ] are the objectives, v denotes
the speed, and d = [thk1, thk2, f ] are the decision variables.
Thus, the optimization problem can be formulated as:{

min 1/v, pd
s.t. thk1, thk2, f with certain ranges (4)

where the certain ranges are described below.

A. Fixed-resolution Binary Encoding

In practical applications, limited by the manufacturing
process and processor performance, [thk1, thk2, f ] can only
be achieved within a certain range. In this paper, the binary
coding is used to represent thki and f , where the code length
l can be calculated as l ≥ log2 ((Umax − Umin)/δ + 1)
where [Umin, Umax] denote the actual value ranges, which
are [0.2 mm, 1.0 mm] for thki(i = 1, 2) and [1.0 Hz, 3.0 Hz]
for f , respectively, and δ represents the resolution, which are
0.1 mm for thki(i = 1, 2) and 0.01 Hz for f , respectively.
As a result, the code lengths of thki(i = 1, 2) and f are 4
and 8, respectively. Due to the binary-coded representation,
the single-point crossover with a probability of pc = 0.8 and
bitwise mutation with a probability of pm = 0.01 are used
in this paper.

B. Adaptive Memory Space Method

According to the general NSGA-II, the population mem-
bers need to be used for fitness calculation in each iteration.
Based on the above dynamic modeling, each swimming
speed and power cost calculation involves complex numerical
solving operations, making the time cost unignorable. Actu-
ally, due to the limited range and resolution of d, there may
be different members with the same d during each iteration,
although crossover and mutation operations are performed.
Thus, there will be some redundant computations in each
iteration, which can be reduced.

In this paper, an adaptive memory space method is
proposed to reduce the number of repeated calculations.
Specifically, a memory matrix Ma is created to record the
Pareto frontier (PF) from the last l iterations, which can be
expressed as Ma = [PFk, · · · , PFk−l+1], where k denotes
the k-th iteration. When updating o during each iteration,
it should be conditionally judged whether the member has
undergone crossover or mutation operation first, and those

1122

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 04,2024 at 06:11:12 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Algorithm of NSGA-II-AMS
1: Initialize mmax, mmin, p, l, k, kmax, pc, pm, Ma, o, d
2: Initialize the population and calculate the objectives
3: Perform non-dominated sorting (NDS) and calculate

crowding distance (CD)
4: repeat
5: Perform binary tournament to get parent population
6: repeat
7: Select two members randomly, and perform the

single-point crossover based on pc and bitwise mutation
based on pm

8: if The parent is crossed or mutated, then
9: if Offspring’s d exits in Ma, then

10: Update offspring’s o with the values in Ma

11: Accumulate the numbers of the update
12: else
13: Update o through calculation
14: else
15: No update for o
16: until Operation numbers reach p
17: Perform NDS, CD sorting, and elite-preservation
18: Update the size of the memory matrix by (5)
19: Update Ma: rows 1 to p · Int(m/p) with the PF from

k-th to (k − Int(m/p) + 1)-th iterations and the rest
rows with the Mod (m/p) members which are randomly
sampled from the PF of the (k − Int (m/p))-th iteration.

20: until k = kmax

which do not will skip the update. Then, query whether the
offspring’s d exists in Ma. If so, update offspring’s o directly
with the values in Ma, otherwise calculate o. Finally, con-
sidering that the optimization results will gradually converge
to the PF, the size of Ma can be adaptively modified to
reduce the waste of storage space. In detail, the size of Ma is
initialized to m×n, where m = p·l, p denotes the population
size, and n represents the total number of members in o and
d. Afterward, m will be updated using an adaptive clipping
method during each iteration as follows:

m = Int (mmax − (mmax −mmin)k/kmax) (5)

where mmax and mmin are the maximum and minimum
space capacity of m, respectively. kmax is the maximum
number of iterations, and Int (·) is the round down function.

Based on the above description, to illustrate the NSGA-
II-AMS more clearly, we present the algorithm flowchart
as Algorithm 1, where Mod (·) represents the remainder
function. Therefore, based on the dynamic model and the
BP neural network, the PF can be efficiently obtained via
the NSGA-II-AMS algorithm.

V. SIMULATIONS AND EXPERIMENTS

In this section, extensive simulations and experiments were
conducted to demonstrate the effectiveness of the proposed
optimization strategy. Specifically, the aquatic experiments
were conducted in a water tank with a size of 5 m × 4
m × 1.2 m, with a global camera to record the trajectory

t = 0 s t = 4 s t = 8 s t = 12 s

Fig. 4. Snapshot sequence of straight forward swimming motion with the
configuration of [thk1 = 0.6 mm, thk2 = 0.4 mm, f = 1.0 Hz].
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Fig. 5. Comparison of simulation results with the experimental results.
Here, the configurations of [thk1, thk2, f ] are [0.4 mm, 0.2 mm, 1 Hz],
[0.8 mm, 0.6 mm, 1 Hz] and [0.3 mm, 0.2 mm, 2 Hz] for the top, middle
and bottom images, respectively.

and calculate the speed. Furthermore, a current and voltage
sensor was adopted to measure both signals with a sampling
rate of 100 Hz for more than 5 s. The current and voltage
data were processed to calculate the average power cost
of the servo. Limited by the manufacturing process and
the capability of the servo, thki(i = 1, 2) and f were
confined to [0.2 mm, 1.0 mm] with a step of 0.1 mm and
[1.0 Hz, 3.0 Hz] with a step of 0.5 Hz for all experiments,
respectively. Fig. 4 depicts the snapshot sequence of straight
forward swimming of the robotic fish during an experiment.
Due to the tortuous trajectory, the speed is calculated as
v = ssmo/ttotal, where ssmo is the smoothed trajectory
during time ttotal using the moving average method. The
servo control law adopted a general form, which could be
expressed as ϕ1 = Amp sin(ωt), where ϕ1 is the servo
output, Amp denotes the output amplitude, which is set
as 30° in this paper, and ω = 2πf represent the angular
frequency.

A. Speed and Power Prediction Results

To effectively implement velocity prediction, appro-
priate hydrodynamic parameters ch in the dynamic
model need to be selected, which can be expressed as
ch = [cma,0, cf,0, cd,0, cma,1, cd,1, cma,2, cd,2, cl, cD]. Since
the hydrodynamic parameters directly determine the speed
and are very difficult to measure due to the complex shape
of the robotic fish, the nonlinear gray-box identification
method [22] is utilized to identify the parameters. In this
paper, extensive experiments with different configurations
of thki(i = 1, 2) and f were conducted. Moreover, 80%
of the experimental data were selected as the training set,
and the rest were selected as the validation set. Finally,
with the acquired training set and the initial values based
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Fig. 6. Algorithm performance comparison between NSGA-II, NSGA-II-
AMS, NSGA-II-MXMS, and NSGA-II-MNMS.

on the empirical data [17], the hydrodynamic parameters
were identified as ch = [0.01, 1.46, 0.01, 0.34, 4, 0.74,
4, 0.56, 0.17]. The root-mean-square error (RMSE) between
the experimental and simulation results in the validation set
is calculated, yielding a value of 0.05 m/s. The comparison
between simulations and experiments is also made, as shown
in Fig. 5, which illustrates the identified dynamic model can
predict the swimming speed well.

As mentioned above, the power cost can be predicted by
adopting the compensation result from the BP network. In
this paper, the total number of samples was 386, of which
90% were used for training and 10% for validation. The
network was trained according to Levenberg-Marquardt op-
timization with maximum epochs of 10000, and the learning
function adopted gradient descent with momentum, where
the learning rate was 0.001, and the momentum constant
was 0.1. The mean squared error (MSE) was used as the loss
function. After training, the mean error on the validation set
was 10.8%, showing good performance in the prediction of
power cost.

B. Algorithms Performance Comparison

To verify the effectiveness of the proposed NSGA-II-
AMS, four optimization algorithms were tested in this paper,
which were denoted as NSGA-II, NSGA-II-MXMS, NSGA-
II-MNMS, and NSGA-II-AMS, respectively. Specifically,
NSGA-II-MXMS and NSGA-II-MNMS refer to the im-
proved NSGA-II with the maximum and minimum memory
space, respectively. Therefore, these two algorithms can be
regarded as the basic versions of NSGA-II-AMS. All the four
algorithms adopt the fixed-resolution binary encoding, p =
100 and kmax = 500, and those which use memory space
utilize the same configurations:[mmax = 300, mmin = 100].

These four algorithms were used to solve the above
optimization problems, and the simulation results showed
that the optimization results of these four algorithms were
completely consistent, which could be understood that the
proposed algorithms did not interfere with the population
genetics, nor would they affect the final PF. To illustrate
the execution efficiency, two indicators are discussed: the
average time cost α and the average reduced computation
number β, where α is the ratio of the total time cost of
the algorithm to kmax, and β is the ratio of the total update
numbers mentioned in line 11 of Algorithm 1 to kmax. The
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Fig. 7. Simulations and experimental results. Here, the high swimming
speed (i.e., above 0.7 m/s) regions in the optimization results with a total
of 9 data are displayed.

performance comparisons of the four algorithms are shown
in Fig. 6. It can be seen that the three improved algorithms
can reduce α significantly. Specifically, compared with the
general NSGA-II, the execution efficiencies of NSGA-II-
AMS, NSGA-II-MXMS, and NSGA-II-MNMS are improved
by 22.7%, 23.8%, and 20.2%, respectively. Correspondingly,
the comparisons of β illustrate that the efficiency is improved
because many repetitive computations are avoided in each
iteration, and the more computations that are avoided, the
more efficient the algorithm will be. The performance of
NSGA-II-AMS is basically the same as that of NSGA-
II-MXMS, and it is better than that of NSGA-II-MNMS.
Moreover, the average memory storage space of NSGA-II-
AMS is about 200 with the configurations:[mmax = 300,
mmin = 100], which is reduced by 33.3% compared to
that of NSGA-II-MXMS, proving the effectiveness of the
proposed algorithm in this paper.

C. NSGA-II-AMS Optimization Results and Experiments

To verify the validity of the NSGA-II-AMS optimization
results (i.e., the PF), extensive experiments were carried out.
Considering that high performance is currently the main
concern of robotic fish, the high speed (i.e., above 0.7 m/s)
regions in the PF are mainly discussed first. The PF with a
total of 9 samples are shown in Fig. 7, which are represented
in red, and the optimized thki and f of each sample are
tabulated in Table I. It is observed that the speed and power
cost basically meet the linear trend, which is mainly caused
by the crowding distance sorting in NSGA-II-AMS. More
interestingly, the increase of speed mainly depends on the
increase of f , and the appropriate stiffness configuration can
heighten the ceiling of speed at the same f .

In addition, the experiments which employed the configu-
rations in Table I were conducted. The results are offered
in Fig. 7, and the relative errors are calculated as ϕ =
abs (gsim − gexp)/gexp where gsim, gexp, and abs (·) are
the simulation result, experimental result, and absolute value
function, respectively. The small ϕ validate that the identified
dynamic model and BP neural network perform well in
the prediction of speed and power cost, with the RMSE of
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TABLE I
STRUCTURAL PARAMETERS AND CONTROL FREQUENCIES

CORRESPONDING TO THE OPTIMIZATION RESULTS

Sap thk1/mm thk2/mm f/Hz Sap thk1/mm thk2/mm f/Hz

1 1.0 0.4 2.81 6 1.0 0.5 2.97
2 1.0 0.4 2.84 7 1.0 0.5 3.00
3 1.0 0.4 2.88 8 0.7 0.5 2.95
4 1.0 0.4 2.95 9 0.7 0.5 2.97
5 1.0 0.4 3.00

Note: “Sap” refers to the sample number for simulations and experi-
ments.
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Fig. 8. Experimental and optimized results. Here, the high swimming speed
(i.e., above 0.7 m/s) regions are displayed.

0.03 m/s and 0.43 W, respectively. Moreover, it should be
noted that although we mainly focused on the performance
at high speed, verification experiments were also conducted
at speeds under 0.7 m/s, with the RMSE of 0.04 m/s and
0.24 W, respectively.

Furthermore, the superiority of the optimization results
was also investigated, with the results shown in Fig. 8, where
the experimental results are obtained from the conducted
experiments with limited configurations as described above,
and the optimization results are selected from the experi-
mental results in Fig. 7 to form a PF. The original PF is
formed from the experimental results, and the optimized
PF is formed from both experimental and optimized results.
Careful inspection shows that the optimized results describe
the PF of the flexible robotic fish more accurately and
thoroughly, though one of them is dominated by others due to
the slight errors from the predictive model, and complement
many areas not covered in the original PF, which is very
important for the practical application. More importantly,
the optimized results achieve better performance compared
to the original ones, which are discussed with fixed speeds
in Table II. Conclusions can be drawn that the proposed
optimization strategy can help to explore configurations with
better performance, with the power cost reduced by 18.3%,
36.8%, and 1.4%, respectively, further demonstrating the
effectiveness of the proposed method in this paper.

D. Discussion

Due to the multiple degrees of freedom requirement and
the unavoidable friction loss of the actuators, it is hard to
achieve both high speed and low power cost for robotic
fish. A flexible robotic fish is proposed to pursue both via
adopting two spring steels as the flexible joints. Compared
with [4]–[7], the robotic fish shows good performance (more
than 1.6 BL/s) with low power cost. More importantly, a

TABLE II
PERFORMANCE COMPARISON OF ORIGINAL AND OPTIMIZED RESULTS

Item 1 2 3

Configurations
Original [0.9,0.4,3.0] [0.9,0.7,3.0] [0.6,0.6,3.0]

Optimized [1.0,0.4,2.81] [1.0,0.4,2.84] [0.7,0.5,2.95]

Performance
Original [0.74,9.91] [0.742,13.01] [0.807,11.39]

Optimized [0.74,8.1] [0.742,8.22] [0.807,11.23]

Note: “Configurations” refers to [thk1(mm),thk2(mm),f(Hz)], and
“Performance” refers to [Speed (m/s), Power Cost (W )].

speed and power cost prediction method is proposed and the
two-objective optimization problem is solved by adopting an
improved NSGA-II. Compared with [9]–[11], the proposed
strategy can not only obtain the modification strategy of
morphology and control method but balance the multiple
conflicting optimization objectives. That is to say, we can
simultaneously obtain the optimal design scheme for the min-
imum power cost and maximum swimming speed at a given
swimming speed and power cost, respectively. Furthermore,
with the proposed NSGA-II-AMS, the execution efficiency
is improved by 22.7% compared with the general NSGA-II
while considering saving memory space. With the obtained
results, it is considered convenient to implement tasks with
different performance constraints.

Nevertheless, there are some limitations. The flexible
joints cannot achieve the real-time stiffness adjustment, and
some discontinuities may appear in the obtained PF due to
the discrete values of thki and f . Therefore, the variable
stiffness design and resolution improvement of thki and f
deserve further investigation, which are ongoing endeavors.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have developed an optimization strategy
to solve the two conflicting objectives of speed and power
cost optimization problems for a flexible robotic fish. Consid-
ering the flexible structure and control frequency, an NSGA-
II-AMS algorithm is proposed to obtain the PF based on a
validated performance prediction model. First, an identified
dynamic model with full consideration of the flexible joints is
used to predict the swimming speed. For reliable power cost
prediction, a BP neural network is adopted to compensate
the prediction results of the dynamic model. Moreover, to
balance the conflicting objectives of speed and power cost,
an improved NSGA-II with an adaptive memory space is
offered to efficiently solve the optimization problem. Finally,
extensive simulations and experiments of a designed flexible
robotic fish have demonstrated the effectiveness of the op-
timization strategy, and the obtained results offer valuable
insight into complex ocean tasks using flexible robotic fish.

Our future work will concentrate on solving the optimiza-
tion problem with the consideration of more structural and
control parameters such as the length of the spring steel and
swing amplitude of the robotic fish. In addition, we will
aim to develop a robotic fish with a variable-stiffness tail
to achieve real-time swim speed and efficiency optimization.
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