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Abstract. The collaboration between agents has gradually become an
important topic in multi-agent systems. The key is how to efficiently
solve the credit assignment problems. This paper introduces MGAN for
collaborative multi-agent reinforcement learning, a new algorithm that
combines graph convolutional networks and value-decomposition meth-
ods. MGAN learns the representation of agents from different perspec-
tives through multiple graph networks, and realizes the proper allocation
of attention between all agents. We show the amazing ability of the graph
network in representation learning by visualizing the output of the graph
network, and therefore improve interpretability for the actions of each
agent in the multi-agent system.
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1 Introduction

In the past decade, multi-agent systems (MAS) have received considerable atten-
tion from researchers due to their extensive application scenarios. The change of
the environment is no longer determined by a single agent but is the result of the
joint actions of all agents in MAS, which results in the traditional single-agent
reinforcement learning algorithm cannot be directly applied to the case of Multi-
Agent. In the field of cooperative multi-agent reinforcement learning, since the
dimensionality of the joint action space of multi-agents will increase exponen-
tially as the number of agents increases, the centralized method of combining
multiple agents as a single agent for training cannot achieve desired results.
In addition, there is a decentralized approach represented by Independent Q-
Learning (IQL) [20], in which each agent learns independently, using other agents
as part of the environment, but this method is unstable and easy to overfit. At
present, centralized training and distributed execution (CTDE) [9] are the most
popular learning paradigms, in which we can use and share some global infor-
mation during training to make the distributed execution more effective, so as
to improve learning efficiency.
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On the one hand, it’s better to learn a centralized action-value function to
capture the effects of all agents’ actions. On the other hand, such a function
is difficult to learn. Even if it can be learned, there is no obvious way for us
to extract decentralized policy. Facing this challenge, the COMA [4] algorithm
learns a fully centralized Q-value function and uses it to guide the training of
decentralized policies in an actor-critic framework. Different from this method,
researchers have proposed another value-based algorithm. The main idea is to
learn a centralized but decomposable value function. Both Value-Decomposition
Network (VDN) [18] and QMIX [14] adopt this idea. VDN approximates joint
action-value function as the linear summation of the individual value functions
obtained through local observations and actions, but in fact, the relationship
between joint action-value and individual action-value is much more complicated
than this, besides, VDN ignores any additional state information available during
learning. The QMIX algorithm relaxes the restriction on the relationship between
the whole and the individual. It approximates joint Q-value function through a
neural network and decomposes it into a monotonically increasing function of
all individual values. In addition, there are many excellent works in the field of
value function decomposition, such as QTRAN [16] that directly learn the joint
action value function and then fit residuals with another network.

The above-mentioned value-decomposition methods have achieved good
results in the SMAC [15] testbed. But it’s worth noting that the aforementioned
algorithms mainly focus on the value decomposition for credit assignment, but
the underlying topology between agents in the MAS is not paid attention to or
utilized. When we take this structure into account, a natural idea is to use graph
structure for modeling. For data in an irregular or non-Euclidean domain, graph
convolutional networks (GCNs) [3,6,13,21,23–25] can replace traditional convo-
lution operations and perform graph convolutions by taking the weighted average
of a node’s neighborhood information, so as to use the geometric structure of the
graph to learn the embedding feature of each node or the whole graph. Recently,
many graph convolutional networks based on different types of aggregators have
been proposed, and significant results have been obtained on many tasks such as
node classification or graph classification. Since the agents in the MAS can com-
municate and influence each other, similar to social networks, some works that
combines graph networks and multi-agent reinforcement learning have appeared.
Most of them can be seen as variants that increase the communication between
agents. For example, CommNet [17], BiCNet [12], and DGN [1] all use different
convolutional kernels to process the information transmitted by neighbor agents.

In this paper, we propose a multi-agent reinforcement learning algorithm
based on the CTDE structure that combines graph convolutional neural net-
works with value-decomposition method, namely Multi-Graph Attention Net-
work (MGAN). We establish an undirected graph, and each agent acts as a node
in the graph. Based on this graph, we build multiple graph convolutional neural
networks and the attention mechanism [22] is used in the aggregators. The input
of the network is the individual value function obtained by a single agent, and
the output of the network is the global value function. At the same time, in



54 Z. Xu et al.

order to ensure that the local optimal action is the same as the global optimal
action, the MGAN algorithm also satisfies the monotonicity assumption. Graph
convolutional network effectively learns the vector representation of the agents
in MAS, making the efficiency and accuracy of centralized training higher than
other algorithms. Our experiments also show that the MGAN algorithm is supe-
rior in performance to the baseline algorithms, especially in the scenarios of a
large number of agents.

Contribution

– We propose MGAN, a multi-agent reinforcement learning algorithm that com-
bines graph convolutional networks and value-decomposition methods. The
graph network is used to make full use of the topological structure between
agents, thereby increasing the speed of training.

– The graph networks can learn the vector representation of each agent in the
embedding space. By visualizing these vectors, we can intuitively understand
that all agents are divided into several groups at each step, thereby improving
interpretability for the agents’ behaviors.

– We demonstrate through experiments that the proposed algorithm is compa-
rable to the baseline algorithms in the SMAC environment. In some scenarios
with a large number of agents, MGAN significantly outperforms previous
state-of-the-art methods.

2 Background

2.1 Dec-POMDP

A fully cooperative multi-agent task can be modeled as a decentralized partially
observable Markov decision process (Dec-POMDP) [11] in which each agent
only takes a local observation of the environment. A typical Dec-POMDP can
be defined by a tuple G = 〈S,U ,P,Z, r,O, n, γ〉. s ∈ S is the global state of
the environment. At each timestep, every agent a ∈ A := {1, ..., n} will choose
an individual action ua ∈ U . The joint action takes the form of u ∈ U ≡
Un. P denotes the state transition function. All the agents in Dec-POMDP
share the same global reward function r(s, u) : S × U → R. According to the
observation function O(s, a) : S × A → Z, each agent a gets local individual
partial observation z ∈ Z. γ ∈ [0, 1) is the discount factor.

In Dec-POMDP, each agent a has its own action-observation history τa ∈ T ≡
(Z ×U). The policy of each agent a can be written as πa(ua|τa) : T ×U → [0, 1].
Our aim is to maximize the discounted return Rt =

∑∞
l=0 γlrt+l. The joint

action-value function can be computed by the following equation: Qπ (st,ut) =
Est+1:∞,ut+1:∞ [Rt|st,ut], where π is the joint policy of all agents.

2.2 Value-Decomposition Multi-agent RL

In the cooperative multi-agent reinforcement learning problem, one of the most
basic solutions is to learn action-value function of each agent independently. It’s
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more related to the individual agent’s observations. However, previous studies
indicate that this method is often very unstable and it is very difficult to design
an efficient reward function. By contrast, learning the overall joint reward func-
tion is the other extreme. A key limitation of this method is that the problem of
“lazy agents” often occurs, i.e., only one agent active and the other being “lazy”.

To solve this issue, many researchers have proposed various methods lying
between the extremes of independent Q-learning and centralized Q-learning, such
as VDN, QMIX and QTRAN, which try to achieve automated learning decompo-
sition of joint value function by the CTDE method. These value-decomposition
methods are based on the Individual-Global-Max (IGM) [16] assumption that
the optimality of each agent is consistent with the optimality of all agents. The
equation that describes IGM is as follows:

arg max
u

Qtot(τ ,u) =

⎛

⎜
⎝

arg maxu1 Q1 (τ1, u1)
...

arg maxun
Qn (τn, un)

⎞

⎟
⎠ ,

where Qtot is global action-value function and Qa is the individual ones.
VDN assumes that the joint value function is linearly decomposable. Each

agent learns the additive value function independently. VDN aims to learn the
optimal linear value decomposition from the joint action-value function to reflect
the value function of each agent. The sum Qtot of all individual value functions
is given by

Qtot(s, ua) =
n∑

a=1

Qa(s, ua).

By this method, spurious rewards can be avoided and training is easier for each
agent. However, because the additivity assumption used by VDN is too simple
and there are only few applicable scenarios, a nonlinear global value function
is proposed in QMIX. QMIX introduces a new type of value function module
named mixing network. In order to satisfy the IGM assumption, it is assumed
that the joint action-value function Qtot is monotonic to the individual action-
value function Qa:

∂Qtot(τ ,u)
∂Qa (τa, ua)

≥ 0, ∀a ∈ {1, . . . , n}.

Furthermore, QTRAN uses a new approach that can relax the assump-
tion. However, several studies have indicated that the actual performance of
the QTRAN is not very good because of its relaxation.

2.3 Graph Convolutional Networks

Convolutional graph neural network, as a kind of graph neural network, is often
used to process data of molecules, social, biological, and financial networks.
Convolutional graph neural networks fall into two categories, spectral-based
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Fig. 1. The overall architecture of MGAN.

and spatial-based. Spectral-based methods analyze data from the perspective
of graph signal processing. The spatial-based convolutional graph neural net-
work processes the data of graph by means of information propagation. The
emergence of graph convolutional network has well unified these two methods.

Let G = (V,E) be a graph. Each node v ∈ V in the graph has its own feature,
which is denoted as h

(0)
v . Assuming that a graph convolutional network has a

K-layers structure, then the hidden output of the k-th layer of the node v is
updated as follows:

a(k)
v = AGGREGATE(k)({h(k−1)

u |u ∈ N (v)}),

h(k)
v = COMBINE(k)(a(k)

v , h(k−1)
v ),

(1)

where COMBINE is often a 1-layer MLP, and N is the neighborhood function
to get immediate neighbor nodes. Each node v ∈ V aggregates the represen-
tations of the nodes in its immediate neighborhood to get a new vector repre-
sentation. With the introduction of different AGGREGATE functions, various
variants of the graph convolutional network have obtained desired results on
some datasets. For example, in addition to the most common mean aggregators,
Graph Attention Network (GAT) [23] uses attention aggregators and Graph Iso-
morphism Network (GIN) [24] uses sum aggregators, both of which have achieved
better results.

3 MGAN

In this section, we will propose a new method called MGAN. By constructing
multiple graph convolutional networks at the same time, each graph convolu-
tional network has its own unique insights into the graphs composed of agents.
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This algorithm can not only make full use of the information of each agent and
the connections between agents, but also improve the robustness of the perfor-
mance.

3.1 Embedding Generation via Graph Networks

First, we need to construct all agents as a graph G = (V,E), where each agent
a can be seen as a node in the graph v ∈ V , i.e., agent a and node v has a
one-to-one correspondence. We define the neighborhood function N to get the
immediate neighbor nodes of the specified node. The edge euv between any two
nodes in the graph is defined as:

euv =

{
1, if u ∈ N (v) or v ∈ N (u)
0, otherwise

(2)

and according to this definition, we get the adjacency matrix E ∈ R
n×n. In the

reinforcement learning tasks, the adjacency matrix often indicates whether the
agents are visible or whether they can communicate with each other. Each node
v has its own feature hv.

Then we build a two-layer graph convolutional network to learn the embed-
ding vector of each agent. To build a graph convolutional network, we need to
define the AGGREGATE and COMBINE functions mentioned by Eq. (1).
Considering the actual situation, agents often need to pay special attention to a
few of all other agents in the real tasks. So mean aggregators are often not qual-
ified for this task. We adopted a simplified dot-product attention mechanism to
solve this problem. The vector av obtained by the node v through the attention
aggregate function can be expressed as:

av = AGGREGATE({hu|u ∈ N (v)})

=
∑

u∈N (v)

exp((hv)T · (hu))
∑

u exp((hv)T · (hu))
· hu.

Then av needs to be entered into the COMBINE function. It can be clearly
seen that the embedding vectors obtained after the AGGREGATE function
processing loses the original characteristics of the node itself, i.e., the feature of
the node is over smooth, and the characteristic information of the node itself is
lacking. Therefore, we define the next layer’s representation h′

v of the node v i.e.
output by the COMBINE function as:

h′
v = COMBINE(av) = ReLU (MLP (CONCAT (av, hv)))

This step completes the nonlinear transformation of the features obtained after
the node v aggregates its neighbor nodes. Note that the MLP in the COMBINE
function of each layer is shared for each node. Similar to the simplified JK-
Net [25], the original feature hv is concatenated with the aggregate feature to
ensure that the original node information will not be lost. From another per-
spective, this is very similar to ResNet [8].
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3.2 MGAN Mixing Network

Each agent corresponds to a DRQN [7] network to learn individual action-value
Qa, where a ∈ {1, . . . , n}. We have defined the graph convolutional network
used to obtain the embedding vector of the agent, and then we will explain how
to construct the network fitting joint action value function Qtot. The embed-
ding vector obtained through graph convolutional network is input into a fully
connected layer neural network, which we call a transform layer, so that the
embedding vector of each node v is transformed into a scalar cv through affine
transformation. The joint action-value function obtained by this graph convolu-
tional network can be obtained by the following equation:

n∑

a=1

(

Qa · exp(ca)∑
v∈V exp(cv)

)

,

which connects the vectors output by the graph networks with the individual
action-values through dot multiplication.

Inspired by the multi-head attention mechanism, we propose to use multiple
graph convolutional networks to jointly learn the embedding representation of
nodes. Multiple graphs allow the model to jointly attend to information from
different embedding spaces. Multiple graph convolutional networks share a trans-
form layer. We set the number of graph convolutional networks to G. Thus, the
following equation of the value function corresponding to each graph convolu-
tional network is obtained:

Qg =
n∑

a=1

(

Qa · exp(cg,a)∑
v∈V exp(cg,v)

)

, ∀g ∈ {1, . . . , G}.

where cg,v is the scalar output by the v-th node in the g-th graph convolutional
network after the transform layer.

VDN obtains the global action-value by simply summing the individual
action-values of all agents. And QMIX uses multiple hypernetworks [5], inputs
state s, and outputs network weight parameters to construct a Mixing Network.
It should be noted that in order to satisfy the monotonicity assumption proposed
by QMIX, the network weight parameters output by hypernetworks are all pos-
itive. Our weighted linear factorization lies between the two and has a stronger
representational capability for the joint value function than VDN while keeping
a linear decomposition structure. This is because we only use hypernetworks to
generate a layer of mixing network to linearly combine multiple Qg. The entire
network framework of the MGAN algorithm is shown in the Fig. 1.

3.3 Loss Function

MGAN is the same as other recently proposed MARL algorithms in that they
are all trained end-to-end. The loss function is set to TD-error, which is the same
as the traditional value-based reinforcement learning algorithm [19]. We denote
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Fig. 2. Overall results in different scenarios.

the parameters of all neural networks as θ and MGAN is trained by minimizing
the following loss function:

L(θ) = (ytot − Qtot(τ ,u|θ))2 ,

where ytot is the target joint action-value function and ytot = r + γ maxu ′ Qtot

(τ ′,u′|θ−). θ− are the parameters of the target network.

4 Experiments

In this section we will evaluate MGAN and other baselines in the Starcraft II
decentralized micromanagement tasks. In addition, to illustrate the representa-
tion learning capacity of the graph networks, the visualization of the output of
the graph network was performed. We can intuitively understand the motivation
of the agents’ decision from the output of the graph neural network.

4.1 Settings

We use SMAC as the testbed because SMAC is a real-time simulation experi-
ment environment based on Starcraft II. It contains a wealth of micromanage-
ment tasks with varying levels of difficulty. Recently, it has gradually become an
important platform for evaluating the coordination capabilities of agents. The
scenarios in SMAC include challenges such as asymmetric, heterogeneous, and
a large number of agents. We selected more representative scenarios such as
1c3s5z, 3s5z, 2c vs 64zg, MMM2, bane vs bane and so on. Besides, in order to be
able to more conveniently show MGAN’s understanding of the agent in decision-
making, we have also introduced a new scenario 25m modified, which is modified
on the basis of the 25m scenario. The distribution of agents in the 25m modified
scenario is more dispersed, which makes collaboration more difficult than the
original 25m scenario.
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Our experiment is based on Pymarl [15]. We set the hyperparameters of
QMIX and VDN to the default in Pymarl. The version of the Starcraft II is
4.6.2(B69232) in our experiments. The feature of each node in the graph network
is initialized as its local observation in our proposed MGAN. And according to
Eq. (2), the adjacency matrix E is given by:

euv =

{
1, if u is alive and v is alive
0, otherwise

∀euv ∈ E .

The number of graph networks G is set to 4, and the other settings are the
same as those of other baselines. We run each experiment 5 times independently
to alleviate the effects of accidents and outliers. Depending on the complexity
of the experimental scenario, the duration of each experiment ranges from 5 to
14 h. Experiments are carried out on Nvidia GeForce RTX 3090 graphics cards
and Intel(R) Xeon(R) Platinum 8280 CPU. The model is evaluated every 10,000
steps in the experiment, i.e., 32 episodes are run and the win rate is recorded.
The agents follow a completely greedy strategy during evaluation.

4.2 Validation

Figure 2 shows the performance results of MGAN and other baselines in differ-
ent scenarios. The solid line represents the median win ratio of the five experi-
ments. The 25–75% percentiles of the win ratios are shaded. It can be observed
that in some scenarios with a large number of agents, MGAN far exceeds other
algorithms in performance. Especially in bane vs bane, MGAN quickly reached
convergence. In other scenarios, MGAN is still comparable to other popular
algorithms.

As follows from Fig. 2 shown above, it can be seen intuitively that MGAN
performs well in hard and super hard scenarios such as MMM2, bane vs bane
and 27m vs 30m.

4.3 Graph Embedding and Weight Analysis

In order to understand the working principle of MGAN and explore the reasons
for its effect improvement, we visualized the embedding vectors output by the
graph network and the scalar weights output by the transform layer. We think
these two provide an explanatory basis for the agents’ actions.

We choose the 25m and its variant 25m modified scenario with a large number
of agents, and show the positions of the agents at each step in the task as a
scatter diagram. Meanwhile, t-SNE [10] and MeanShift [2] clustering methods
are performed on the graph embedding vector corresponding to each agent in
each step, and the corresponding relationship between the position of the agent
and the clustering result can be clearly found. This is illustrated in Fig. 3.
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(a) 2nd step on 25m scenario (b) 6th step on 25m scenario

(c) 1st step on 25m modified scenario (d) 8th step on 25m modified scenario

Fig. 3. The agents location map at specific step (left) and the corresponding 2D t-SNE
embedding of agents’ internal states output by one of graph convolutional networks
(right). Gray dots in location map represent the enemy agents and color dots denote
the agents controlled by MGAN. Each number in 2D t-SNE embedding corresponds to
each color dot in the location map one by one. (Color figure online)

In the 25m scenario, the key to victory is that our agents can form an arc
that surrounds the enemy agents. At the beginning of the episode, all agents
gathered together. From the results of dimensionality reduction and clustering
of embedding vectors, it can be found that the agents are divided into two
groups, one group moves upward and the other moves downward. In the middle
of the episode, in order to form a relatively concentrated line of fire, the agents
was divided into three parts and moved in three directions respectively. In the
25m modified scenario, the agents also need to form the same arc, so the leftmost
group of agents needs to move to the right, and the rightmost group of agents
needs to move to the left to rendezvous with other agents. And in the middle of
the episode, it will still be divided into three parts similar to the 25m scenario.
The finding was quite surprising and suggests that agents in the same subgroup
can act together.

For the visualization of the weights, we still use the 25m scenario for veri-
fication. The figure shows the change in the health values of the agents in an
episode and the change in the weights of each agent corresponding to the four
graph networks. As can be seen from Fig. 4, although the values of the weights
given by each graph network is not the same, they all have a relationship with the
health values of the agents. For example, Graph network 1 believes that agents
with drastic changes in health values are the most important ones, while Graph
network 2 believes that agents with more health values are the most important.
On the contrary, Graph network 3 and Graph network 4 pay more attention to
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(a) The health values in one episode (b) The weight values in one episode

Fig. 4. The health values and the weight values on 25m scenario.

agents whose health values are zero. We guess that this is because these agents
cause harm to the enemy and therefore pay more attention.

Through the analysis, we have concluded that the graph network can learn
the characteristics of each agent well, and this provides basis for our under-
standing of the actions of the agents, which improves the interpretability of the
motivation of the agents.

5 Conclusion

In this paper, we propose a MARL algorithm called MGAN that combines graph
network and value-decomposition. From the outcome of our experiments it is pos-
sible to conclude that MGAN is comparable to the common baseline, especially
in scenarios with a large number of agents. The figures obtained by visualization
indicate that the performance improvement is brought about by the graph net-
works. The findings suggest that this method could also be useful for the works
to understand how agents make decisions and what roles they play.

Since MGAN still needs to satisfy the IGM assumption, in our future research
we intend to concentrate on how to relax the restrictions of the mixing networks.
On the basis of the promising findings presented in this paper, work on the
remaining issues is continuing and will be presented in future papers.
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