2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC) | 978-1-6654-6880-0/22/$31.00 ©2022 IEEE | DOI: 10.1109/ITSC55140.2022.9921995

2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)

October 8-12, 2022, Macau, China

Learning Transformer-based Cooperation for
Networked Traffic Signal Control

Chen Zhao, Xingyuan Dai, Xiao Wang, Lingxi Li, Yisheng Lv', and Fei-Yue Wang

Abstract— Networked traffic signal control (NTSC) is es-
sential for intelligent transportation systems. How to control
multiple intersections in a cooperative way based on traffic
conditions is critical for the success of NTSC. This paper
proposes a Transformer-based cooperation mechanism (TCM)
with the consideration of dynamic modeling and scale require-
ments simultaneously for large-scale traffic network control.
Considering the physical constraints in traffic scenarios, a
relative position encoding is designed to embed into TCM
to characterize traffic conditions better. With the shared
TCM module, intersection controllers could adequately exploit
spatial-temporal correlations and adaptively capture global
traffic dynamics, guiding them to explore collaborative traffic
strategies more efficiently. Experimental results on two real-
world datasets demonstrate that the suggested strategy greatly
outperforms the state-of-the-art methods.

I. INTRODUCTION

As urban traffic issues become more and more serious,
traditional means are no longer adapted to the growing
demand. In this regard, smart cities are expected to be an
effective paradigm [1]. Researchers and engineers have made
great efforts on smart cities construction: traffic big data
mining [2], [3], automated driving [4], [5], [6], human-
machine hybrid augmented intelligence [7], [8], [9], net-
worked traffic signal control (NTSC) [10], [11], [12], and etc.
In this research, we concentrate on NTSC with the goal of
improving traffic conditions and shorting travel time. Indeed,
the traffic status among intersections are spatio-temporally
related. How to facilitate the cooperation of multiple signals
is the core issue of NTSC.

Since the introduction of AlphaGo [13], deep reinforce-
ment learning (DRL) has become a popular tool for decision
making in complex systems. In particular, DRL algorithms
have achieved remarkable results in traffic management for
their excellent characteristics of modeling and optimization
simultaneously [14]. One way to achieve cooperation is
building a centralized DRL model of multiple intersections
and optimizing their joint actions [15]. This type of method
could model traffic conditions from a global perspective,
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guiding intersection controllers to make collaborative deci-
sions. However, these centralized methods face the curse of
dimensionality with the increasing number of intersections,
leading to poor convergence in the large-scale traffic network.

To satisfy the scale requirement in NTSC, researchers
had proposed decentralized DRL methods for traffic signal
control, which treat each intersection as an isolated agent
and train it based on local observations. The cooperation of
agents is done by sharing information among neighboring
intersections, such as directly concatenating all neighboring
observations, adding downstream information into reward
[16], and using graph neural networks (GNNs) to aggregate
information recursively [17]. However, these methods usually
make short-sighted decisions since the localized horizon of
intersections, and are prone to “bottleneck phenomenon”
when adopting a larger receptive field .

It needs to balance traffic dynamics modeling and network
scale requirement to achieve effective cooperation in NTSC.
Recent advances of Transformer [18] shed new light on
realizing the above idea. Its excellent architecture, namely the
self-attention mechanism, has global receptive field and long-
term memory, which could free intersection controllers from
the locality restrictions like GNNs, and facilitate communi-
cation across the traffic system. Transformer can adaptively
capture each other’s dynamic influences represented by the
attention distribution, further making cooperative decisions.
In addition, benefiting from the tokenization and decentral-
ized processing, Transformer-based cooperation has an input
space linearly increasing with the number of intersections,
unlike the quadratic increasing in centralized approaches.
Hence, Transformer is applicable to large-scale traffic sce-
narios, and its learning process could be accelerated through
the abundant computational resources of cloud computing.

Although Transformer is desirable for sequence tasks, it
cannot be directly applied to handling the structured infor-
mation in NTSC. It is because there are several immutable
constraints in traffic scenarios, which have an impact on
the information interaction among intersection controllers.
For example, traffic flow is directional, along the lane lines,
and intersection connectivity is also a non-negligible factor.
These constraints make us face the directional information
propagation issues [19], which cannot be ignored in the
modeling process.

To address the above problems, we propose a Transformer-
based cooperation mechanism by incorporating physical con-
straints. The main contributions of this paper are as follows.

e We propose a novel Transformer-based cooperation

mechanism (TCM) for NTSC. It could model traffic
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conditions globally while adapting the scalability of the
road network. With the shared TCM module, each in-
tersection controller could learn correlations with others
and adaptively capture traffic dynamics, further guiding
it to make a more cooperative decision.

o Considering the physical constraints in traffic scenarios,
we design a relative position encoding and embed
it into TCM to model the information propagation.
With such design, we are able to make the attention
distribution more explanatory and realistic, hence better
characterizing spatial relations among intersections.

e The proposed method is validated on two publicly
real-world datasets: Dyangzhou and Djinan. The ex-
perimental results demonstrate that TCM outperforms
the state-of-the-art approaches in terms of convergence,
generalization, and fairness.

The remainder of this paper is organized as follows. The
formulation of NTSC is described detailedly in Section II.
The implementation details are presented in Section III.
Several experiments are conducted in Section IV to verify
the performance of TCM in comparison to five baselines.
Finally, this paper is summarized in Section V.

II. PROBLEM FORMULATION

In this paper, the NTSC problem is formulated as a MDP
(S, A, P,R,v), which is constructed for multi-intersection
scenarios composed of multiple typical intersections like in
Fig. 1. The detailed description of corresponding terms are
given as follows.

Fig. 1: An example of multi-intersection scenario.

State space S. Suppose there are N intersections in a
traffic system, each intersection is controlled by an agent.
At time ¢, each agent treats its local observation, namely
part of the whole system state s' € S, as its state:

t__ t
Si* [Um

where v!, k! are the average speed of vehicles and the road
occupancy along each incoming lane; p! is the current signal
phase.

Action set A. Given the current state s, agent 1 takes a
phase p! from the candidate set A; as its action a! based on
the control policy 7;, forming a joint action a! € A. Each

kzt7p§] ,2:172,7]\[7 (H

action is executed during a time interval At. It should be
pointed out that there will be ¢, yellow light time between
phase switching for a safety guarantee.

Transition probability 7. Traffic system transits the
current state s’ to the next state s'*! based on the probability
P (s st al) : S x A x ... x Ay — Q(S).

Reward R. At time ¢, agent i takes an action a§ and
obtains an immediate feedback r! from environment by a
reward function S x A; X ... x Ay — R. In this paper, we
define the total queue length on all incoming lanes at time ¢
as the reward for agent 4, namely r! = li ut .

Discount factor . To obtain the long term optlmal traffic
policy, we set a discount factor v € (0,1] to balance
exploration and utilization in policy optimization.

NTSC problem: At time ¢, agent i observes status s!
and takes an action a! based on 7; to maximize cumulative
reward G! = ZtT:o ytrt. This paper aims to learn optimal
policies {m;}», to coordinate intersection controllers and
improve overall traffic conditions.

II1. METHODOLOGY

In this section, we present the overall architecture and
operation processes of the proposed TCM for NTSC. Then,
we detail its internal structure of different modules.

A. Overall Architecture

TCM is made up of three modules that run from the
bottom to the top layer, as shown in Fig. 2.The first is the
state embedding module which maps the sensor data (e.g.,
speed, density) to a high-dimensional latent space. The em-
bedding states h;...h contains traffic information that each
intersection controller obtains from its local observation.

The second is the Transformer-based communication mod-
ule which is shared among intersection controllers to pass
messages, further to fully exploit the correlations and capture
global traffic dynamics for each of them. This module com-
prises two parts: information exchange and relative position
encoding. The former is to exchange the locally obtained in-
formation h;...hy among intersection controllers to produce
a global view of the whole network traffic conditions. The
latter is to enforce physical constraints (e.g., distance, di-
rection and connectivity) to information propagation among
intersections. Combined with the above two parts, each
intersection controller learns the dynamic influence e;; from
the rest controllers on itself. Then, the i-th intersection
controller can distribute its attention based on the learned
importance and obtain the integrated information z;. It is
noted that Transformer could regard Ay, ..., Ay as different
tokens and execute decentralized processing of each token,
which frees us from the curse of dimensionality. Finally, we
adopt a Q-network Q(st,al) to perform value-based policy
updates.

It is noted that the proposed TCM conforms to the
“local simple, remote complex” design principle [20]. The
shared Transformer-based communication module could be
implemented in a remote traffic operation center (RTOC),
which makes guidance for intersection controllers while
accelerating its learning process through cloud computing.
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Fig. 2: (a) Architecture and operation processes of the proposed TCM. (b) Internal structure of the Transformer-based

communication module.

B. State Embedding

At time t, each intersection controller obtains the current
state s;? from the environment, and then map it to the latent
space using a multi-layer perceptron:

h; = o(stW, +b.), (2)
t

where st € R* is the state of agent i at time ¢ and k is
the feature dimension of s!. The generated hidden state h;
denotes current traffic information of the i-th intersection.

C. Information Exchange

Importance Calculation. In RTOC, each intersection
controller could exchange locally obtained information with
others and judge their influence on itself. The calculation
process can be given as:

T
(W) (h,WH )" + pi
€ij = ,
Vvd,

where e;; denotes the importance of intersection j (sender
intersection) on intersection i (receiver intersection). d, is a

scalar, and p;; is a relative position encoding.
Attention distribution. Then, each intersection controller

distributes its attention to capture traffic dynamics based on
the normalized importance scores e;;:

exp(ei;/B)
> jen exp(eij/B)’
where [ is a temperature factor.
Information Integration. Finally, each intersection con-
troller can model the global traffic dynamic change for
itself based on its attention distribution, and calculate its
representation as:

3)

“4)

Qi =

| BN
z = U(Wz(ﬁ ZZaij(thK +pij)+0b.)),

h=1j=1

where z; accumulates the key information from the senders
for the receiver to make an efficient signal policy. Followed

by the above self-attention mechanism, a fully connected
feedforward network and layer normalization are added.

D. Relative Position Encoding

Physical constraints need to be embedded into Transformer
to model proper information propagation in real-world sce-
narios. To do this, we index the relative relation between
two intersection controllers as an integer r, then look up an
learnable encoding table P by index to encode the relative
position weights p;;.

Distance-based index. Intuitively, closer senders are more
influential to the receiver intersections than further ones.
Given the coordinates of intersections, we can encode their
relative relation based on Euclidean distances. Meanwhile,
considering the directionality of traffic flow, we index the
relative position based on horizontal and vertical Euclidean
distances separately, and combine them into a 2D index. The
formulation is described as:

pfj ={Pr= rfj, rfj =7y + 28+ Dr},
i = g(wi — ;) + B,
i =9(yi —y;5) + 5,

(6)

where rfj is a horizontal index, r?j is a vertical index, and
d

ri; is a 2D index representing the direction of receiver i to
sender j. g(x) :R = {y € Z | —f <y < B} is a piecewise
index function used in [21]. It is noted that we scale the
dimension of distance from 100-meter level to meter level
when indexing.

Connectivity-based index. Connectivity is an important
factor in traffic stream because traffic flow can only travel
along the links. Thus, traffic information propagation need
to comply with this rule. Given the adjacency matrix of a
road network, we can index it as:

pfj ={Pr= ricj}7

c __ 17

)

if ¢ is adjacent to j

0, otherwise
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, where rfj is an index of the connectivity between receiver
1 and sender j.

Combined Index. The connectivity-based method can be
regarded as a particular case of the distance-based method:
there is no distance with the connected intersections and
there is an infinite distance with unconnected intersections.
The two methods can be combined to consider all factors
simultaneously.

pij = {Prlr = rij,mi; = (sign (rf;) — 267 — 2)

(824 8) x (1—r5) + o2y, ©

E. Q-network

In this module, we adopt a Q-network along with parame-
ters sharing to update the control policy of each intersection
controller. The Q-value of each state is calculated as:

Q(Sf) = z;Wp + by, )

where s! is the state of agent i at time ¢, 2; is the output

of Transformer-based communication module, and W, &
Rm*IAl by, € RIMI are learnable parameters. The action of
agent i can be selected by maximizing Q(s!) € RI4.

A brief description of the training process is given as
follows. At time ¢, the state transitions of intersections are
stored into a replay buffer D. During the training process, ,
a mini-batch is sampled from D and the policy is optimized
by minimizing the loss defined in Eq.(10):

LO)=E[((rj +ymax Q(s; ", a';6") ~Q(s}, af; 0))?], (10)

where 6 denotes all the trainable parameters in TCM, and 6’
is a periodically updated copy of . Detailed training process
for TCM is listed in Algorithm 1.

IV. EXPERIMENTS
A. Datasets

In this section, two publicly available real-world datasets,
Dtangzhou and Djinan, are used to evaluate our model. Their
road networks are downloaded from OpenStreetMap, the
screenshots of which are shown in Fig. 3. Traffic flows are
captured from intersection surveillance cameras, the detailed
descriptions of which are listed in Table I. Each dataset
comprises three configurations, which are collected from
different times. They are different in the mean, maximum,
minimum, and variance of the arrival rate, which means that
there are different patterns of traffic dynamics in the given
area. In this paper, config #1 is for training, and the other
two are for testing. Experiment were performed on a well-
known traffic simulation platform CityFlow [22], which is
famous for its efficient computing performance and support
for thousands of intersections.

B. Compared Methods

In this section, we list several popular methods in traffic
engineering and existing literature as our compared baselines
to verify the effectiveness of TCM. They can be categorized

Algorithm 1 Pseudocode of TCM

Input: The network structure of traffic environment.
Output: The TCM model with parameters 6

1: Initialize all parameters 6 and a replay buffer D.

2: for each epoch do
Reset the traffic simulation environment.
4 fort=0to 7 do
5 Observe the state s* = {s!}2 | from environment.
6: for agent : =1 to N do
7.
8
9

w

Perform traffic state embedding using Eq.(2).

Encode the relative positions of using Eq.(8).

: Exchange information with ICs using Eq.(3).
10: Distribute attention among ICs using Eq.(4).

11: Integrate information and model traffic dynamics
using Eq.(4).

12: Compute Q-values using Eq.(9).

13: With probability e pick random action al, else
aj = max Q(s}).

14: end for ¢

15: Interact with environment by the joint action a! =

{at}N | and receive reward r* = {r!}¥ | and next
state s'T! = {sITIIN

16: Store the transition (st,a, 7t s*1) into D.

17 end for

18:  Sample a batch of transitions from D and minimize

the loss defined in Eq.(10)

19: end for

. ; — ° if
L ] o ' ) 2

. 3 et

2 ¢ 1 1 R - 1

1 i .0 a” S Y
¢ Vi ] P S

P Rk W S P R ol .

(a) Gudang district, Hangzhou (b) Dongfeng district, Jinan

Fig. 3: The field testing area in Hangzhou (a) and Jinan (b).

into two parts: traditional traffic control methods and RL-

based methods. It is noted that none of all RL models

including TCM have been pre-trained for a fair comparison.
Traditional traffic control methods:

o FixedTime [23]. This approach, which is commonly
used in practice, uses a pre-defined signal phase cycle
to govern intersections.

o MaxPressure [24]. This approach greedily selects the
phase with the maximum pressure, which is a cutting-
edge traditional method.

RL-based Methods:

o PressLight [16]. This method incorporates pressure
to coordinate traffic signals in corridors, which shows
a superior performance in multi-intersection control
problems.
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TABLE I: Data statistics of the real-world traffic dataset.

Arrival Rate(vehicles/min)

Datasets # intersections

config
min  mean  max std

#1 75 109 134 19.87
DHangzhou 16 #2 40 50 67 8.24

#3 39 116 230  63.72
#1 50 105 136 19.79
Djinan 12 #2 43 72 101 15.15

#3 69 92 111 9.51

o CoLight [17]. The most recent cutting-edge multi-
intersection control method that achieves network-level
cooperation via a graph attention network.

o FRAP [25]. A recently developed single-intersection
traffic control method that captures the phase compe-
tition relationship between different traffic movements
using a modified network. We apply the method in
multi-intersection scenarios via parameters sharing.

C. Evaluation Metric

Following the existing work [16], [17], we compare the
performance of various approaches using a regularly used
metric in practice, namely average travel time of all vehicles.
The travel time (in seconds) of one vehicle is defined as its
spent time between origin to destination when completing
the trip in a given district. Therefore, the comparative metric
in this paper is calculated as:

|

1 &
:a;(tf—tf),ogtfgtfgﬂ (11)
where n. is the number of vehicles that complete trips during
the time interval [0, T'], T' is the simulation time, ¢2, tf are the
departure and arrival time for the i-th vehicle, respectively.
A shorter travel time ¢ means vehicles complete their trip in
less time on average, indicating better traffic conditions and
model performance.

D. Simulation Settings

In the experiments, we set the simulation time 7' = 3600s,
control period At = 10s and yellow time ¢, = 3s. All
RL-based method are trained from scratch to compare their
performance. The detailed training settings of TCM are
shown in Table II.

TABLE II: Parameter settings

Parameters Values
Learning rate le-3
Batch size 32

Number of units in hidden layer (m) 128

Optimization algorithm Adam

Discount factor () 0.95

e for exploration 1—0.01 (decay: 0.995)

Replay buffer (D) size 5000
Learning start 1000
Target model update interval 200
B in index functions 2

E. Performance Comparison

Convergence. For each dataset, we firstly train all RL-
based methods on config #1 to compare their convergence.
As described in Fig. 4, TCM outperforms the other three
approaches with a faster convergence rate and a smaller
convergence value. In particular, the TCM has a much
better convergence stability compared to the SOTA algorithm
Coligt. It is shown that TCM could coordinate intersections
in an efficient way and stabilize their training process.

%1000*\,,
RN
£ =1 VA M~ W

0 50 100 150 200 0 50 100 150 200
Episode Episode

(@) DHangzhou config #1 (0) Djinan config #1

Fig. 4: Training curves of TCM (light blue continue curve)
and other three RL-based method on Dijangzhou (a) and

DJinan (b)

Generalization. For each dataset, we have learned the
RL-based control model on config #1. Then, we apply the
trained model to govern the traffic environments with two
other configurations and compare their performance with
traditional traffic control methods. The average travel time of
all methods is reported in Table III. It is observed that TCM
surpasses all other methods in four different traffic scenarios,
delivering the shortest travel time. This means that the traffic
conditions are significantly better under the control of the
TCM model.

TABLE III: Evaluation results on Dyangshou and Djipan W.ILE
average travel time.

. DHangzhou DJinan
Algorithms
config #2  config #3  config #2  config #3

FixedTime 547.88 549.92 401.49 425.74

MaxPressure 365.47 412.07 327.34 315.69

FRAP 956.77 735.40 837.92 717.80

PressLight 509.52 483.32 372.97 360.51

Colight 363.70 404.96 299.25 290.65

TCM 339.69 390.08 270.21 263.43

Fairness. In order to visualize the driving experience
of drivers under different control strategies, we statistically
analyze the average speed of road vehicles during time
interval [0, T'] and describe its distribution as a boxplot. The
greater the average speed, the fewer stops drivers have to
make during driving, and the better the driving experience.
As illustrated in Fig. 5, we can find that TCM’s median and
mean are better than other methods and its variance is smaller
than others. It means that drivers can have a smooth and fast
driving experience under the TCM control strategy.
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Fig. 5: Boxplots of vehicles’ average speed evaluated on two
configurations of Dangzhou and Dginan.

V. CONCLUSIONS

This paper proposes a Transformer-based cooperation
mechanism (TCM) for networked traffic signal control. The
proposed method could model traffic global dynamics for all
intersections without numerical restrictions. To better charac-
terize traffic information propagation in real-world scenarios,
we design a relative position encoding considering physical
constraints in TCM. Combining the above dynamic informa-
tion modeling and static information restriction, TCM could
learn the inter-agent relations among intersections and guide
them to make a more cooperative decision. Comparative
studies on two real-world datasets reveal that the suggested
strategy outperforms state-of-the-art methods significantly.
In future, we would perform sim2real and sim2sim traffic
control for parallel intelligent transportation systems in a
virtual-real interactive way.
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