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Abstract— Networked Traffic Signal Control (NTSC) is a
fundamental component of Intelligent Transportation Systems
(ITS) and the broader vision of smart city development. While
a plethora of intelligent strategies have been developed, the
Sim2Real challenge often impedes their full realization. In
response, this paper introduces the Parallel Learning-based
Adaptive Network for Traffic Signal Control (PLANT) as a
foundation model for NTSC. We employ the Wasserstein GAN
with Gradient Penalty (WGAN-GP) to generate a wide range
of artificial scenarios for robust PLANT training. Further,
the Transformer-based Cooperation Mechanism (TCM) is in-
tegrated as the primary learner within PLANT, facilitating
effective capture of traffic dynamics and knowledge accumu-
lation. This knowledge is readily transferable to real-world
applications through meticulous fine-tuning, equipping PLANT
to adapt and evolve in alignment with shifting transportation
paradigms. Our empirical study on the Hangzhou road network
demonstrates PLANT’s superiority over both traditional and
emerging DRL-based approaches, emphasizing its viability as
a potential foundation model for NTSC.

I. INTRODUCTION

The continual increase in traffic congestion and the associ-
ated pollution has hampered urban development and posed a
challenge to urban transportation management. To address
this issue, researchers have been working on developing
Intelligent Transportation Systems (ITS) with the goal of
achieving the “6S” goals for smart cities: safety, security,
sustainability, sensitivity, service, and smartness [1]. ITS is a
broad research field that includes a variety of technologies,
such as Networked Traffic Signal Control (NTSC), which
aims to improve traffic conditions and reduce travel time by
facilitating the cooperation of multiple traffic signals.

There are currently numerous intelligent NTSC algorithms
available, with Deep Reinforcement Learning (DRL)-based
algorithms in particular outperforming traditional methods
[2], [3]. The DRL-based algorithms require virtual scenarios
created on traffic simulators such as SUMO [4], Paramics,
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VISSIM, and CityFlow for training. In the simulations, DRL-
based agents manage traffic signals by using trial and error
to determine the most effective strategy [5], [6]. Despite their
potential, the implementation of DRL-based methods has
been difficult, particularly in the transition from simulation
to reality (Sim2Real), in two major aspects.

The first challenge is adapting to the complexity and dy-
namic changes of actual transportation systems. Most DRL-
based methods are currently trained and evaluated for a single
scenario, as if playing the same game repeatedly. However,
traffic systems are complex Cyber-Physical-Social Systems
(CPSS) comprised of multiple factors including human and
social aspects [7], [8], and traffic flows will vary across
different times and locations. Consequently, these DRL-
based models tend to overfit to specific scenarios and exhibit
poor adaptability to new scenarios, negatively impacting the
effectiveness of actual implementations. One potential solu-
tion is increasing the amount of training data, but obtaining
sufficient real traffic flow data remains challenging due to
data privacy and monopoly concerns [9].

The second challenge is effectively implementing DRL al-
gorithms in the real world. To train effectively, the DRL algo-
rithms requires extensive interaction with the actual system,
as exploration and optimization are crucial for maximizing
their potential [10]. However, such interactions can cause
severe traffic congestion or even system crashes, while also
demanding significant computing time. The current training
process, which begins from scratch, limits the ability to meet
real-time strategy development requirements. One possible
solution to this problem is leveraging simulation and transfer
learning to reduce the need for direct interaction with the
actual system during the training phase. Unfortunately, this
solution is constrained by the first challenge since the two
problems are interconnected.

The parallel learning framework [11], derived from Ar-
tificial Systems, Computational Experiments and Parallel
Learning (ACP), is an effective approach to addressing the
Sim2Real challenge, bridging the modeling gap between
artificial and actual systems through description, prediction,
and prescription. This framework has been widely used in the
fields of ITS [12]–[14], self-driving vehicles [15]–[17], and
smart manufacturing [18]–[20]. This paper aims to develop
a parallel learning-based foundation model to address the
Sim2Real problem for NTSC [21], with the construction
process inspired by the “pre-training + fine-tuning” paradigm
used in Artificial Intelligence Generated Content (AIGC)
models such as Generative Pre-trained Transformer (GPT).
The main contributions of this paper are as follows.
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Fig. 1: The operational process of PLANT: Descriptive learning, predictive learning and prescriptive learning.

• We proposed PLANT (Parallel Learning-based Adap-
tive Network for Traffic Signal Control) as a foundation
model for NTSC, utilizing diverse artificial scenarios
to enhance control agents’ traffic knowledge. This ap-
proach facilitates efficient knowledge transfer to actual
systems, addressing the Sim2Real problem.

• We used the Wasserstein GAN with Gradient Penalty
(WGAN-GP) model [22] to supplement the limited
amount of real traffic flow data, resulting in an artificial
system with a broader range of traffic scenarios for
training PLANT.

• We employed the Transformer-based Cooperation
Mechanism (TCM) [23] as a single-scene learner and
integrated it with a multi-scene optimization mechanism
to effectively use the Transformer for capturing traffic
dynamics and acquiring more knowledge.

• A case study on the Hangzhou road network demon-
strates the generality and robustness of PLANT, out-
performing both traditional algorithms and cutting-edge
DRL-based techniques.

The remainder of this paper is organized as follows. The

formulation of multi-scenarios optimization for NTSC is
described detailedly in Section II. The construction details
of PLANT are presented in Section III. A case study of the
proposed model is conducted in Section IV to verify the
performance. Finally, this paper is summarized in Section V.

II. METHODOLOGY

A. Overall Architecture

As illustrated in Fig. 1, the framework synchronizes actual
transportation systems and their counterparts using the using
the pre-trained model, PLANT. The construction of PLANT
are conducted through three steps of parallel learning: de-
scription, prediction, and prescription. In the first step of
the process, we employ the WGAN-GP model to generate
artificial traffic flow datasets that reflect the task distribution
of real data, which are utilized in ATS to reproduce different
traffic conditions [24]. The second step involves utilizing
TCM across multiple scenarios, similar as multi-task learning
[25], to create a robust model for predicting actions. The pre-
trained model stores a wealth of traffic flow knowledge that
can be transferred to new traffic scenarios. Finally, the pre-
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trained model is fine-tuned using only a few samples from the
actual system to meet real-time traffic needs. This allows the
model to provide an optimal signal plan in a timely manner,
improving traffic efficiency and reducing congestion.

B. Descriptive Learning: WGAN-GP Based
Scenarios Engineering

Collecting enough data on actual transportation systems
can be difficult due to data monopolies and privacy issues,
so there are only a limited number of samples which may not
accurately reflect the complexity of traffic in the real world
[26]. We choose to use WGAN-GP to create artificial traffic
flow datasets and simulate different traffic conditions in ATS
in order to guarantee that our model is versatile enough
to address different traffic scenarios. We start by collecting
traffic flow data and counting the number of vehicles entering
the network during each time period. We then use WGAN-
GP to fit the task distribution of the collected traffic flows
and optimize the two loss functions.

Ld = Ex̃∼Pg
D(x̃)− Ex∼Pr

D(x)

+ λEx̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)

2
]

Lg = −Ex̃∼Pg
D(x̃),

(1)

where Ld and Lg denote the loss function of the of the
discriminator Dθd and the generator Gθg respectively. Pr
and Pg denote the distribution of real data and generated data
respectively. It is noted that, in Ld, the first half is same as
the WGAN model, and the second half is a gradient penalty
on discriminator Dθd , which is used to prevent the gradient
of Ld from vanishing.

Once the generative model has been trained, we can use it
to generate artificial traffic flow datasets that closely resemble
real traffic flow data. To replicate various vehicle routes,
we assemble a group of vehicle agents with varying driving
tendencies that exhibit distinct behavior as they approach
intersections [27]. We use various algorithms to build vehicle
travel trajectories with different traffic patterns, allowing us
to simulate a wide range of traffic scenarios in ATS.

C. Predictive Learning: Pre-Training with Multi-Scenarios

1) Modeling: Given a large-scale traffic road network
G(I, E), there are a set of N intersections I = {I1, ..., IN}
and a set of road edges E ⊆ {(x, y)| x, y ∈ I and x 6= y}.
Each intersection Ii is controlled by one agent i and its
control process is formulated as a Markov decision process
(MDP) 〈Si,Ai,Ri, γi〉, which contains a finite set of states
Si, a finite set of actions Ai, a reward function Ri, and
a discounted factor γi. The specific definitions of relevant
terms are provided here.

At time t, the state of agent i is defined as a partial obser-
vation of the environment state: sti = [[vl]

ln
l=1, [rl]

ln
l=1, p] ∈

Si, i = 1, 2, ..., N , where ln is the number of incoming
lanes at intersection Ii, and the variables rl, kl represent the
average speed of vehicles and the road occupancy along each
incoming lane l. The variable p is a one-hot encoding for the

1 2 3 4

5 6 7 8

Fig. 2: Eight typical signal phases in NTSC problems.

current signal phase. Note that the speed v is normalized by
dividing it by the maximum speed limit for each lane.

Consistent with previous work [23], the action of each
agent is to choose from eight permissible phases shown in
Fig. 2 for the next time interval. Given the current state
sti, agent i selects a phase pti from the candidate set Ai as
its action ati based on the control policy πi. Each action is
executed for a time interval ∆t with a yellow light time ty
between phase switching to ensure safety.

At time t, agent i takes an action ati and receives immedi-
ate feedback rti ∈ Ri from the environment. This paper aims
to minimize the travel time for all vehicles in the system,
which is difficult to optimize directly. Therefore, the reward
for agent i is defined as rti =

∑ln
l=1 u

t
i,l, where uti,l represents

the queue length on incoming lane l at time t.
To achieve the long-term optimal traffic policy, a discount

factor γi ∈ (0, 1] is set to balance exploration and utilization
in policy optimization.

We consider a road network G(I, E) sampled from sce-
nario sets M = {M1, ...,MNs}, which have similar flow
distributions E . Each agent i is modeled as a MDP in each
scenario m. At time t, agent i observes state sti,m ∈ Si,m
from the scenario m, and takes an action ati,m ∈ Ai,m.
The reward Rti,m(s, a) in time t is defined as Rti,m(s, a) =
E [Rt+1 | Si,m(t) = s,Ai,m(t) = a]. The objective of all
agents is to learn the optimal policies {πi,m(a | s)}Ni=1

to optimize the traffic conditions across all scenarios. To
achieve this, we introduce a shared model and define the
learner f with learnable parameters θ to map the state space
Si,m to the action space Ai,m. The loss function Lm(fθ) is
used to measure the deviation between the predicted actions
and the actual actions taken. Our goal is to minimize L(fθ)
across all scenarios to find the optimal parameters θ, which
is defined as:

θ := min
θ

Nm∑
i=1

Lm (fθ) . (2)

2) Training Process: In the predictive learning process,
we use TCM as the base learner, training it in multiple
scenarios to obtain a more robust control agent. In each
episode, we sample a signal control task Mm from the set
of traffic scenarios [28]. At each step, each control agent
obtains states sti,m from the interactive scenario and embeds
them into the latent space using Eq. (3).

hmi = σ(sti,mWe + be). (3)
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The generated hidden state hmi denotes the current traf-
fic information of the i-th intersection. We then use a
Transformer [29] to facilitate the communication of status
information between multiple intersections, enabling us bet-
ter capture the global dynamic changes of traffic flows. It
consists of three main steps: obtaining the importance scores
emij between different intersections using Eq. (4), distributing
attention using Eq.(5), and integrating key information using
Eq. (6). Through these steps, we can obtain a dynamic
global perception of each intersection and achieve better
cooperation with other agents.

emij =
(hmi W

Q)(hmj W
K)

T
+ pij√

dz
. (4)

αmij =
exp(emij/β)∑
j∈N exp(emij/β)

. (5)

zmi = σ(Wz(
1

H

H∑
h=1

N∑
j=1

αmij (hmj W
K + pij) + bz)). (6)

Next, we adopt a Q-network to evaluate the Q value of
state-action pairs using Eq.(7) and the action of agent i
can be predicted by maximizing Q(sti,m) ∈ R|A|. The state
transitions 〈sti,m, ati,m, rti,m, s

t+1
i,m 〉 are stored in the replay

buffer Dm for the corresponding scenario.

Q(sti,m) = zmi Wp + bp. (7)

During the multi-scenario training process, the parameters
θ are updated at every episode by gradient descent on a
sampled scenario. One example of taking a gradient step
is as follows:

θ ← θ − α∇θLm (fθ;Dm) , (8)

where α is the step size, Lm is the loss function to optimize
θ on scenario Mm :

Lm (fθ;Dm) =

Es,a,r,s′∼Dm

[(
r + γmax

a′
Q (s′, a′; fθ−)−Q (s, a; fθ)

)2]
,

(9)
where γ is the discount factor for future reward, θ denotes all
the trainable parameters in PLANT, and θ′ is a periodically
updated copy of θ in target Q-network.

D. Prescriptive Learning: Fine-Tuning for Real-World

During the prescriptive learning phase, we use the pre-
trained PLANT model as the foundation module for NTSC
and fine-tune it to meet the actual demands in the real
world. In actual transportation systems, we can use cameras,
induction coils, and other sensing devices [30] to gather
the data we need to fine-tune our model. These data are
organized into transition pairs 〈s, a, r, s′〉 and stored in Dr.
We can then re-optimize the model using Eq.(10).

θ ← θ − α∇θLr (fθ;Dr) . (10)

The “local simple remote complex” design principle [31]
is used to build and deploy the PLANT model. This entails
using the massive computational capacity of cloud-based
servers to offline train the model with artificial scenario data
and fine-tune the parameters before deploying it to the actual
system. Once the models have been fine-tuned, we download
them to the actual transportation systems with fixed-weight
parameters to support real-time signal control. This cycle
can be repeated every hour or every day until the parameters
are fine-tuned. We can avoid instability and ensure the real-
time reliability and robustness of our application by using
this mechanism. It is evident that the proposed framework
in this paper can be seamlessly integrated with other DRL-
based algorithms.

III. CASE STUDY

A. Scenario

In this paper, we use a public real-world dataset 1 (Mr)
to evaluate our model, where the road network is shown
in Fig. 3 and traffic flows are captured from intersection
surveillance cameras. We have made statistical analysis of the
real-world traffic flow, and the findings are depicted in Table
I. Subsequently, we utilize WGAN-GP to fabricate artificial
datasetsMt

a andMe
a for training and validation, replicating

the actual traffic flow patterns. Two samples are exhibited in
Fig. 4. Lastly, these traffic flow datasets are fed into Cityflow
to construct diverse artificial traffic scenarios to support our
computational experiments.

TABLE I: Data statistics of the actual and artificial traffic
flow datasets.

Datasets Agents
Arrival Rate (Vehicles / Min)

Min Mean Max Std

Mr

16

75 109 134 19.87

Mt
a Mt

a = {M1, ...,M30} ∼ PMr

Me
a Mt

a = {M31, ...,M35} ∼ PMr

Fig. 3: The field testing area in Hangzhou.

1https://traffic-signal-control.github.io/#open-datasets
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(a) (b)

Fig. 4: Samples of artificial traffic flow distributions in Mt
a.

B. Experimental Settings

In our experiments, we compared two conventional algo-
rithms, Fixed-Time and MaxPressure, and three DRL-based
algorithms, Prsslight [32], Colight [33], and TCM [23], using
all parameters detailed in the original research and open
source code. The RL-based models were trained withMr in
one scenario, while the PLANT model was trained withMt

a

in a variety of scenarios, and their models were tested with
bothMr andMe

a. It is noted that the TCM can be regarded
as a single-scenario training version of PLANT.

In the experiments, we set the simulation time T = 3600s,
control period ∆t = 10s and yellow time ty = 3s. For
each epoch in the multi-scene training procedure of PLANT,
we randomly select a scenario from Mr to interact with
the control agent, perform 5 episodes, and store the state
transition pairs in the relevant replay buffer. The rest of
parameters in PLANT are in accordance with TCM.

C. Performance Comparison

We use two metrics, similar to those in existing work
[32], [33], to provide a comprehensive overview of the
spatio-temporal journey relationship of vehicles entering
the network. Table II displays the average travel time of
vehicles, which is a metric for assessing the duration of
vehicles in the network. Table III displays the throughput of
vehicles, providing an understanding of how many vehicles
successfully complete their journeys in the network.

It is shown that traditional algorithms are more reliable
and adaptable in multi-scenario testing than DRL-based
algorithms. The lack of transferability is caused by the high

TABLE II: Results onMe
a andMr w.r.t average travel time.

Algorithms
Me

a

Mr
Max Mean Median Min

Fixed-Time 611.92 599.48 598.34 583.27 627.40

MaxPressure 478.66 474.04 473.91 467.42 439.70

PressLight 1102.83 1050.62 1053.80 980.84 427.29

Colight 730.76 637.63 625.19 590.83 410.81

TCM 678.48 590.19 578.09 534.01 361.82

PLANT 374.91 370.56 370.28 367.52 378.78

TABLE III: Results on Me
a and Mr w.r.t throughput.

Algorithms
Me

a

Mr
Max Mean Median Min

Fixed-Time 27175 27021 27050 26811 26693

MaxPressure 29481 29222 29205 29056 28475

PressLight 17123 15918 15679 15077 28407

Colight 27491 26362 26788 23777 28116

TCM 28350 27576 27805 25655 28635

PLANT 30378 30148 30129 29969 28050

 Fixed-Time

 MaxPressure

 Presslight

 Colight

 TCM

 PLANT

Fig. 5: The average queue length of PLANT (red) and other
compared methods measured on Me

a.

probability of over-fitting when models are only trained on
one scenario. PressLight is more susceptible to overfitting
than Colight and TCM because it lacks the ability to dynam-
ically recognize traffic flow patterns, whereas the latter two
have GAT module and Transformer mechanism for global
information integration.

Comparing the TCM algorithm with PLANT can be
viewed as an ablation experiment of the multi-scene opti-
mization approach. Our findings indicate that training TCM
on a specific scenarioMr only resulted in the best evaluation
results on Mr, but performed poorly in the multi-scene
testing onMt

a, suggesting that the TCM model overfits data
from a single scene. In contrast, the PLANT model trained
on multiple scenarios performed more robustly, achieving
comparable effectiveness to TCM on a specific scenario
(Mr) and also performing well on the multi-scene testing
(Mt

a). These results demonstrate that PLANT can serve as
a robust and dependable foundation model for NTSC.

In a more intuitive way, Fig. 5 shows the average queue
length at all intersections during the evaluated episode.
The PLANT-controlled scenario exhibits fewer congested
intersections, resulting in reduced vehicle travel time and
improved operational efficiency.
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IV. CONCLUSIONS

This paper presents the Parallel Learning-based Adaptive
Network for Traffic Signal Control (PLANT) as a foundation
model to tackle the Sim2Real problem. PLANT employs a
three-stage learning process, including descriptive, predic-
tive, and prescriptive learning, to effectively generalize and
transfer transportation knowledge across different scenarios
and real-world applications. The integration of WGAN-GP in
the descriptive learning stage generates diverse artificial sce-
narios, enriching PLANT’s training data. The Transformer-
based Cooperation Mechanism (TCM) in the predictive
learning stage extracts valuable transportation knowledge
across varying conditions. Finally, the prescriptive learning
stage applies the acquired knowledge to actual transportation
systems, enabling PLANT to adapt and evolve in response
to ever-changing transportation requirements. A case study
on the Hangzhou road network highlights PLANT’s potential
as a reliable foundation model for networked traffic signal
control. Future research may focus on enhancing PLANT’s
adaptability and performance in more complex scenarios.
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