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Interaction-Aware Trajectory Prediction with Point Transformer

Yahui Liu, Xingyuan Dai, Jianwu Fang, Bin Tian, and Yisheng Lv†

Abstract— To ensure safe and efficient autonomous driving,
trajectory prediction system must account for social interactions
among road participants. Graph-based models are leading
approaches in modeling social interactions for trajectory pre-
diction, but they face the challenges of designing an appropriate
graph structure and processing complex interactions. We con-
sider that the participants in a scene are a set of unstructured
points, which are similar to point cloud data. Inspired by
point cloud learning networks, we view the road participants
in a scene as point cloud in a two-dimensional coordinate
system, and utilize Point Transformer aggregator to process
the interactions on both local and global level. Besides, we
present a multiplex fusion of social and temporal information
for trajectory prediction. We perform extensive experiments
on the Argoverse motion forecasting dataset, and the results
demonstrate the superior performance of our model for multi-
agent trajectory prediction.

I. INTRODUCTION

Trajectory Prediction is critical for safe and efficient au-
tonomous driving systems. To predict the future trajectories
based on historical observations, the systems require taking
into account the social interactions among various agents
[1]–[4]. But it faces significant challenges due to the varying
number of agents, permutation invariant, and complicated
social interactions.

Leading approaches in modeling social interactions for
trajectory prediction are graph-based models [5]–[15]. The
graph representation constructs a graph where each road
participant in a scene is a node, and the edges represent
the relationships between the nodes. The graph can be
constructed based on various criteria, such as Euclidean
distance, group connectivity, or semantic similarity. There
are several approaches to designing a graph structure for
modeling social interactions among road participants:

• Range-based graph: This approach constructs a graph
between road participants that are within a certain range
of each other.

• Interaction-based graph: This approach constructs a
graph between road participants that have a direct
influence on each other’s behavior.
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• Attention-based graph: This approach uses an attention
mechanism to weight the importance of various road
participants and construct a graph that captures the most
relevant interactions.

• Heterogeneous graph: This approach combines multiple
graph structures to capture different types of interactions
and create a more comprehensive representation of the
environment.

While graph-based models have shown promise in social
interactions among road participants for trajectory prediction
in autonomous driving, however, there are still some chal-
lenges and limitations to graph-based models in trajectory
prediction. One of the main challenges is the difficulty in
designing an appropriate graph structure that captures the so-
cial interactions among road participants. Another challenge
is the scalability of the models, particularly in large-scale
traffic environments. Further research is needed to address
these challenges and to explore the full potential of social
interactions.

We consider that the participants in a scene are a set
of unstructured points, which are similar to point cloud
data. Point clouds are a set of data points in a three-
dimensional coordinate system, and each point represents a
specific position in space. Point cloud learning networks use
these points as input to extract meaningful features. Starting
from the perspective of node/point interaction relationships,
we explore how to use the aggregators in point cloud
learning networks to model the social interactions among
road participants. We view the road participants in a scene
as point cloud data in a two-dimensional coordinate system,
and use the aggregator in point cloud learning network to
model the social interactions among road participants. The
prominent advantage is that there is no need to manually
specify the interaction structure and avoid the complex
process of learning correlations.

Two prior approaches TPCN [16] and UST [17] have ex-
plored the use of point cloud learning networks for trajectory
prediction. Both models have demonstrated promising results
in accurately predicting future trajectories and outperformed
traditional methods. The above two methods only use the
classic point cloud analysis network PointNet [18] to model
the spatial interactions. However, the semantic relations
between points are not considered. Recent researchers have
proposed several advanced approaches to improve the per-
formance of point cloud relation learning. Therefore, we use
the Point Transformer aggregator [19] to model the social
interactions. In addition, two standard Transformer encoders
[20], [21] are used to capture the temporal correlations of the
local interactions and global motion pattern. By aggregating
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all the social and temporal correlations among local and
global road participants, the future trajectories are predicted
in a single forward pass by MLPs decoder. To model the
multi-modal motion, we produce multiple socially plausible
trajectories.

Our contributions are summarized as follows:
• We present a novel framework to model the social

interaction for trajectory prediction. We use the Point
Transformer to model the social interactions. To the best
of our knowledge, this paper is the first attempt to adopt
the Point Transformer in the context of modeling social
interactions for trajectory prediction.

• In order to better integrate social and temporal informa-
tion, we prioritize capturing social interactions before
learning temporal correlations in the local interaction
module. The global interaction module is exactly the
opposite, which starts with learning motion pattern,
followed by modeling global interactions.

• Extensive experiments are conducted on the Argoverse
motion forecasting benchmark [22] to show the effec-
tiveness of our approach.

II. RELATED WORK

In this section, we briefly review the node-based interac-
tion representation for trajectory prediction and the literature
related to point cloud analysis with point-based relation
learning.

A. Trajectory Prediction with Node-based Interaction

Many approaches used different types of graph neural
networks (GNNs) to model social interactions, where the
vehicles are represented as graph nodes [5]–[14]. For in-
stance, VectorNet [5] and TNT [6] utilize a fully-connected
hierarchical graph, with each sub-graph containing the fea-
ture of an object (agent or map component) represented
as a sequence of vectors. SCALE-Net [8] considers edge
attributes and proposes interactions with edge feature iso-
morphic graphs, where edge features contain the relative
states between two connected agents. Other recent methods
[10], [12], [23] use road topology or lane constrains to
design graph encoders for interaction modeling. Besides the
aforementioned GNNs, attention mechanism is another top-
performing idea of encoding the social interaction among
agents [11], [15], [24]–[26]. Attention mechanism works by
assigning weights to each participant, based on its impor-
tance for predicting the accurate trajectory. This allows the
network to selectively attend to the most informative partic-
ipants in a scene, while ignoring irrelevant or noisy partic-
ipants. For example, LaneGCN [11] uses multiple attention
mechanisms to interact features between vehicle nodes and
lane maps information. HEAT [15] proposes a heterogeneous
edge-enhanced graph attention network, which considers the
heterogeneity of the road participants and the attribute of
edges. Due to the unstructured node data, there are also
approaches that use point cloud learning network to extract
spatio-temporal features [16], [17].

Fig. 1. Illustration of social interaction among the road participants in
uncontrolled traffic scene.

B. Point Cloud Analysis with Point-based Relation Learning

The approaches of relation learning in point cloud analysis
have become popular in recent years [19], [27]–[30]. The
thrive of graph-based method starts from DGCNN [27],
which learns on graphs dynamically updated at each layer.
It proposed a local feature aggregation operator, named
EdgeConv, which generates edge features that describe the
semantic relationships between key points and their neigh-
bors in feature space. RS-CNN [28] is another representative
approach of local feature aggregation, it learns the relations
within a local region by predefined geometric priors, but
the low-level relation cannot fully represent the relation
between two points. PointASNL [29] leverages non-local
network to enhance the long-range dependency correlation
learning. Point Transformer [19] and PointConT [30] applies
Transformer-like operator to learn the relations between
points or groups of points.

In this work, we explore the possibilities of point cloud
learning aggregator to model the social interactions on both
local level and global level, where road participants in a
scene are viewed as a set of points.

III. METHODOLOGY

A. Problem Statement

Given a sequence of observed positions during time steps
1 to Tobs for a set of agents involved in a scene, the trajectory
prediction problem aims to forecast the future positions of
these agents over a specified time horizon Tpred. Formally, we
have a set of N agents {pi}Ni=1 in a scene, and pti = (xt

i, y
t
i)

denotes the position of agent i at time step t. The observed
information is:

{pti|i ∈ 1, · · ·N ; t ∈ 1, · · · , Tobs}. (1)

The task of trajectory prediction can be defined as:

{p̂ti|i ∈ 1, · · ·N ; t ∈ Tobs + 1, · · · , Tobs + Tpred}. (2)

B. Overall Architecture

Fig. 2 shows an architectural overview of our proposed
model with the name IPT. Our model consists of temporal
encoder, social interaction module and decoder. The temporal
encoder is composed of two Transformer encoders. The
social interaction module includes local interaction module
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Fig. 2. Overall Architecture of our proposed IPT model.

and global interaction module, and the intermediate state
fuses the social and temporal information on both local and
global level. The decoder predicts the multi-modal future
trajectories based on the intermediate state. The following
subsections describe each component in detail.

C. Temporal Encoder

Each road agent has its own unique motion pattern,
including different acceleration and preferred speed. Previous
research has shown that the Transformer model have certain
advantages in capturing sequence relationships. Therefore,
we adopt a similar approach by using Transformer for each
agent to obtain its motion temporal dependency. We employ
temporal Transformer encoder on top of the local agent-agent
interaction module and global motion state. For i-th agent
at time step t, we get the motion embedding zti and the
local interaction embedding sti from agent-agent interaction
module.

Zglobal = Transformerglobal({zti}
Tobs
t=1)

Zlocal = Transformerlocal({sti}
Tobs
t=1)

(3)

D. Social Interaction Module

In order to interact information across different agents in
a scene, we propose to consider the agents in a scene as
point cloud in 2D-coordinate space and leverage the recent
progress in point cloud analysis. Since Point Transformer
allows for aggregating information from neighbors by ap-
plying self-attention locally, we use the Point Transformer
aggregator as our interaction operator.

Point Transformer operates on the point cloud and com-
putes the features of each point by attention over its neigh-
bors, following a vector attention strategy [31]. We formulate
the Point Transformer layer in Eq. (4):

x′
i =

∑
j∈Ni

αi,j(Wvxj + δij)

αi,j = softmax (γΘ(Wqxi −Wkxj + δi,j))

δi,j = hΘ(pi − pj)

(4)

where Ni is the set of i-th agent’s local neighbors, Wq,k,v

are learnable matrices for linear projection. αi,j and δi,j are
the attention coefficients and the positional embedding with
γΘ and hΘ denoting embedding function (i.e. MLP blocks).

We first divide the scene into a set of local regions
centered on each agent. In each local region, we aggregate
the agent neighbor-related context features based on the
Point Transformer operator. Then, in order to compensate the
limited local field and capture the long-range dependencies in
the scene, we take two different ways for global interaction
module. One is the implementation of global interaction
among the local region centered on the agents, and the
other is directly modeling the motion pattern of all observed
trajectories in the scene.

For the interaction between road participants and maps,
it is planned to merge the local map information into the
social-temporal features of the local central agent. Map
information consists of lane centerlines, road intersections,
turn directions, and traffic controls. We incorporate the local
map information aξ into the embeddings zξ. With the central
agent’s social-temporal features zi, the interaction can be
defined as:

z′i =
∑
ξ∈Ni

αi,ξ(Wvzξ + δiξ)

αi,ξ = softmax (γΘ(Wqzi −Wkzξ + δi,ξ))

δi,ξ = ϕmap

([
(p1

ξ − p0
ξ), (p

0
ξ − pTobs

i ), aξ

]) (5)

E. Fusion of Social and Temporal Information

In the temporal encoder, two Transformer encoders are
used to model the motion pattern and the temporal correla-
tions of local interactions, respectively. In order to further
integrate these two parts to accomplish the fusion of the
temporal dependency and social interactions, we first ex-
tract social interaction relationships in the local interaction
module, and then learn temporal correlations. Moving on to
the global interaction module, we prioritize learning motion
pattern before modeling global interaction relationships. In
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addition, we apply skip-connections to concatenate the local
information and global information.

F. Multi-modal Decoder

Since the road environment is stochastic, a single prior
trajectory can lead to multiple future trajectories. Following
HiVT [32], we parameterize the distribution of future tra-
jectories as a mixture Laplace distribution model. For each
agent i and each component k, the Laplace density at time
step t is parameterized by the location µt

i,k and the scale
bti,k.

f({pti}
Tpred
t=1 ) =

K∑
k=1

πi,k

Tpred∏
t=1

Laplace(pti|µt
i,k, b

t
i,k) (6)

where πi,k is the mixing coefficient of the k-th mixture
component for i-th agent. We use an MLP to generate the
πi,k, and two side-by-side MLPs to predict µt

i,k and bti,k.

G. Loss Function

We use the sum of regression loss Lreg and classification
loss Lcls for end-to-end training:

L = Lreg + λLcls, (7)

where λ = 1.0. For regression loss, we use the negative
log-likelihood of Eq.(6):

Lreg = − 1

NTpred

N∑
i=1

Tpred∑
t=1

log P(pti|µ̂t
i, b̂

t
i) (8)

where P(·|·) is the Laplace probability density function.
In addition, we adopt the Winner-Takes-All (WTA) strat-
egy [29]. WTA only conducts backpropagation on the
best-predicted trajectory k̂, which has the minimum fi-
nal displacement error among K predicted trajectories. So
{µ̂t

i}
t=Tpred
t=1 , {b̂ti}

t=Tpred
t=1 are the locations and the scales of the

best-predicted trajectory for i-th agent.
For the classification loss, we adopt the soft displacement

error as target probability πk and use cross-entropy loss to
optimize the mixing coefficients:

Lcls =

K∑
k=1

−πk log(π̂k) (9)

IV. EXPERIMENTS

A. Experimental Setups

1) Dataset: We evaluate the proposed model on the
widely used Argoverse1 motion forecasting dataset [22].
There are 323,557 scenarios collected in Miami and Pitts-
burgh, split into 205,942 for training, 39,472 for validation,
and 78,143 for testing. The dataset includes multiple object
types, tagged with AV, agent and others. Each scenario is 5
seconds long sampled at 10 Hz. The training and validation
sets contain the full 5-second observations, while the test
set only provides the first 2-second motion. The Argoverse
motion forecasting challenge requires to predict the next 3-
second motion of the target agents. In addition to the motion
dataset, we also use the HD-maps provided by the Argoverse.

2) Metrics: Following the previous works, we adopt the
Average Displacement Error (ADE), the Final Displacement
Error (FDE) and the Miss Rate (MR) as metrics. ADE is
calculated by taking the mean of the Euclidean distances
between the predicted and ground-truth positions at each time
step, while FDE measures the Euclidean distance between
the predicted endpoint and the ground-truth endpoint. For
multi-modal predictions, minimum ADE and minimum FDE
are used by selecting the smallest value of ADE and FDE
across all predictions. MR is the percentage of the forecasted
trajectories exceeding 2.0 meters of ground truth according
to endpoint error.

3) Implementation details: During preprocessing, we first
apply some common preprocessing steps as previous works
[11], [13], including coordinate transformation of each sce-
nario and displacement of each trajectory. We transform the
coordinate in each scenario to be originated at the agent
position at t = Tobs (orientation between the position at
t = Tobs and t = Tobs − 1 as positive x-axis), and calculate
the displacement ∆pti (∆pti = pti − pt−1

i ) of each trajectory.
All local regions have a radius of 50 meters. We used the
AdamW optimizer with an initial learning rate of 3× 10−4

and weight decay of 1 × 10−4 to train our model for 64
epochs using a batch size of 32. Besides, The learning rate
is decayed using the cosine annealing scheduler. All the
experiments are performed on two Tesla V100 GPUs. We fix
the random seed in all experiments to eliminate the influence
of randomness.

B. Quantitative Results

In Table I and Table II, we compare our model with
previous works on the Argoverse 1 validation and online test
datasets, respectively. The metrics are minADE, minFDE and
MR for K = 6, and the leaderboard is ranked by minFDE
for K = 6. We can observe that our model achieves excellent
results on the validation set. It also achieves very competitive
performance on the test set without any ensemble strategies.

TABLE I
THE RESULTS ON THE ARGOVERSE 1 VALIDATION SET

Methods minFDE minADE MR

LaneRCNN [10] 1.19 0.77 0.082
TNT [6] 1.29 0.73 0.093
mmTransformer [33] 1.21 0.72 0.092
DenseTNT [7] 1.05 0.73 0.098
SSL-Lanes [34] 1.01 0.70 0.086
TPCN [16] 1.15 0.73 0.11
HiVT [32] 0.96 0.66 0.09

IPT (ours) 0.95 0.65 0.09

C. Qualitative Results

Fig. 3 shows qualitative results of our proposed model
prediction examples on four diverse sequences of the Ar-
goverse validation set. From the visualizations, it is evident
that the model has a strong capability to accurately predict
multi-modal trajectories.
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(a) The ground-truth trajectories

(b) The past observed trajectories and multimodal predictions

Fig. 3. Qualitative results of our model on the Argoverse validation set.

TABLE II
THE RESULTS ON THE ARGOVERSE 1 ONLINE TEST SET

Methods minFDE minADE MR

LaneRCNN [10] 1.4526 0.9038 0.1232
GOHOME [35] 1.4503 0.9425 0.1048
TNT [6] 1.4457 0.9097 0.1656
THOMAS [36] 1.4388 0.9423 0.1038
mmTransformer [33] 1.3383 0.8436 0.1540
MultiModalTransformer [37] 1.2905 0.8372 0.1429
DenseTNT [7] 1.2815 0.8817 0.1258
SSL-Lanes [34] 1.2493 0.8401 0.1326
TPCN [16] 1.2442 0.8153 0.1333
HiVT [32] 1.1693 0.7735 0.1267

IPT (ours) 1.2272 0.7959 0.1349

D. Ablation Study

For ablation study, we investigate our model with different
control settings. In Table III, we show the results of the abla-
tion study conducted on the validation set. First, We explore
the impact of different embedding dimensions on model
performance. We conduct experiments based on a small
model with 64 embedding dimensions and a large model with
128 embedding dimensions. We find that higher embedding
dimensions can further improve the model performance, but
we keep 128 embedding dimensions for higher efficiency.
Besides, without the incorporation of map information, the
model suffers from performance drop by a large margin.
This indicates that map information has a crucial role in
trajectory prediction since the trajectories are constrained by
the geometry of the lane.

In addition to the models with different control settings,
we investigate a variation of 64-dimension model to analyze

TABLE III
ABLATION STUDY OF THE MAP INFORMATION AND EMBEDDING

DIMENSION ON THE ARGOVERSE VALIDATION SET.

Map Embedding minFDE minADE MR

✓ 64 1.02 0.68 0.101
✓ 128 0.95 0.65 0.091

128 1.14 0.72 0.122

TABLE IV
ABLATION STUDY OF THE GLOBAL INTERACTION MODULE AND GRAPH
MESSAGE PASSING OPERATORS ON THE ARGOVERSE VALIDATION SET.

GMP: GRAPH MESSAGE PASSING.

Global GMP minFDE minADE MR

PT 1.09 0.71 0.113
✓ PT 1.02 0.68 0.101
✓ Transformer 1.03 0.68 0.102
✓ CGConv 1.06 0.70 0.106

the contributions of different parts of our model, shown in
Table IV. In this case, we only use the temporal correlations
of local interactions and ignore the global motion pattern. For
a more in depth performance analysis, we choose different
graph message passing operators to consider the social
interactions in the scene. The results validate the effec-
tiveness of the global motion pattern component and Point
Transformer aggregator as graph message passing operator.
While prior approaches applied Transformer and observed an
improvement in the performance, our experiments confirm
that Transformer is indeed able to learn social interactions
in the scene, but the point cloud relation learning aggregator
can express the features of spatial relative information more.
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V. CONCLUSION
In this work, we propose a novel framework for trajectory

prediction. We use the Point Transformer aggregator to
model the social interactions between agents on both local
and global level. Besides, we use two Transformer encoders
to capture the motion pattern and the temporal correlations
of local interactions. Quantitative experiments show that
the multi-hierarchical social interaction network provides a
powerful tool for modeling the complex interactions that
occur in autonomous driving systems, and the point cloud
learning network is an innovative application to the field of
trajectory prediction. We hope that these findings could shed
new light on the network design for trajectory prediction.
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