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A B S T R A C T

With the rapid growth and widespread application of electronic health records (EHRs), similar patient retrieval
has become an important task for downstream clinical decision support such as diagnostic reference, treatment
planning, etc. However, the high dimensionality, large volume, and heterogeneity of EHRs pose challenges to
the efficient and accurate retrieval of patients with similar medical conditions to the current case. Several
previous studies have attempted to alleviate these issues by using hash coding techniques, improving retrieval
efficiency but merely exploring underlying characteristics among instances to preserve retrieval accuracy. In
this paper, drug categories of instances recorded in EHRs are regarded as the ground truth to determine the
pairwise similarity, and we consider the abundant semantic information within such multi-labels and propose a
novel framework named Graph-guided Deep Hashing Networks (GDHN). To capture correlation dependencies
among the multi-labels, we first construct a label graph where each node represents a drug category, then a
graph convolution network (GCN) is employed to derive the multi-label embedding of each instance. Thus, we
can utilize the learned multi-label embeddings to guide the patient hashing process to obtain more informative
and discriminative hash codes. Extensive experiments have been conducted on two datasets, including a real-
world dataset concerning IgA nephropathy from Peking University First Hospital, and a publicly available
dataset from MIMIC-III, compared with traditional hashing methods and state-of-the-art deep hashing methods
using three evaluation metrics. The results demonstrate that GDHN outperforms the competitors at different
hash code lengths, validating the superiority of our proposal.
1. Introduction

In past decades, healthcare data stored in electronic health records
(EHRs) have experienced a sky-rocketing increase. EHR data are rel-
atively complex because of their massive volume, heterogeneity and
high dimensions, calling for efficient processing and exploitation. The
solid data foundation has prompted great interest from researchers in
personalized healthcare [1–6], which aims to provide patient-specific
treatment for better prognosis at a lower cost. Realizing personalized
healthcare typically involves two steps, first identifying similar patients
and grouping them into cohorts, then analyzing the cohorts for further
diagnosis, prescribing, etc [7]. Hence, learning patient similarity plays
a basic but crucial role in personalized healthcare. Previous researches
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have made significative attempts to learn clinically meaningful similar-
ity measures [8], based on statistical techniques, traditional machine
learning [9–11] and deep metric learning [7,12,13]. In practice, given
the proper similarity measures, more comprehensive applications with
respect to patient similarity rely on efficient and accurate similar
patient retrieval [14].

The workflow of similar patient retrieval is shown in Fig. 1, refer-
ring to the process of retrieving the cases most similar to the current
query patient from an existing patient database based on a certain
similarity measure. Some existing researches focus on similar patient
retrieval based on the medical images [15], while others focus on
the conversational-agent-based patient retrieval [16]. Recently, with
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Fig. 1. The workflow of similar patient retrieval.

the rise of EHRs, more and more preliminary studies begin to inves-
tigate similar patient retrieval on EHR data. Some of them rely on
hand-crafted features, e.g., [10] uses a low-rank structure to select
features for similar patient retrieval. Some require physicians’ manual
annotation or feedback, e.g., [17] relies on the pairwise similarity
labels annotated by physicians for patient indexing, and [18] performs
similar patient retrieval based on a visual system of interactive patient
labeling. Other researches are limited to the transductive setting and
can only be used for in-database retrieval with a fixed number of
patients. For example, [19] refers to the cosine similarity of patient
features to retrieve similar patients in-database, and [20] organizes
EHRs as a patient graph to learn encounter-level patient representations
for in-database retrieval. Considering the complexity and difficulty of
EHR data, an end-to-end framework with efficient implementation and
scalability to the inductive setting is of urgent need.

To perform similar patient retrieval on EHR data with rapidly
expanding volumes, a feasible scheme is to adopt hash coding (abbr.
hashing) techniques, which aims to map the high-dimensional raw fea-
tures to a low-dimensional Hamming space and represent each instance
by a compact binary hash code. In this way, the distance between
instances can be easily calculated through an XOR operation, thereby
achieving efficient information retrieval. The conventional hashing
methods are data-independent, and their hash functions are typically
designed with randomized projection [21]. Recent researches have
concentrated more on data-dependent hashing, which is also known as
learning to hash. Along this path, there are generally two categories:
unsupervised and supervised. The unsupervised hashing methods de-
rive hash functions directly based on the structure and distribution of
the data, while the supervised ones additionally utilize semantic labels
for learning hash functions.

Due to the powerful feature extraction capability of deep neural
networks, some researchers have introduced deep hashing methods to
improve retrieval performance [22–26]. In particular, [14,27] have
made attempts to apply deep hashing in the field of similar patient
retrieval. In this study, we focus on learning to hash in a supervised
manner and regard the drug categories as labels for supervising training
processes. Naturally, for a given patient, his/her drug categories in the
form of multi-labels [28,29] usually present the expertise of physicians.
If two instances share some common drug categories, they are consid-
ered to be similar, otherwise, they are considered to be dissimilar. Note
that it is the same with most existing deep hashing methods, which
treat the multi-labels of instances as the ground truth to determine
2

Fig. 2. Different drug combinations reveal the underlying relations among drug
categories.

the pairwise similarity. However, we argue that the abundant semantic
information contained in the multi-labels might be overlooked, i.e., ex-
cept for ground truth, the inherent characteristics within multi-labels
can serve to guide the hashing process.

Our inspiration comes from cross-modal hashing [30,31], which
adopts deep neural networks for extracting multi-label embeddings to
guide the learning procedure of image and text hashing. For EHR data,
it can be observed that there are generally underlying relations among
the semantic labels, e.g., some drugs have a high probability of co-
occurring in prescriptions, while some are rarely prescribed together.
As shown in Fig. 2, for some IgA nephropathy patients, physicians may
prescribe ACEI and ARB drugs to them simultaneously, while for other
patients, these two kinds of drugs may be used with activated vitamin D
respectively. As different drug combinations signify different therapies
based on the health status of patients [32], our objective is to capture
the intrinsic correlation dependencies among multi-labels for better
patient hashing. Motivated by graph neural networks (GNNs) [33] with
their powerful capability to represent data points that have relations be-
tween each other [34–37], we employ GNNs to exploit the underlying
relations between semantic labels.

In this paper, we propose a novel deep supervised hashing frame-
work, Graph-guided Deep Hashing Networks (GDHN), for similar pa-
tient retrieval on EHR data. GDHN consists of two modules, the patient
encoder and the label encoder. The patient encoder uses a multilayer
perceptron (MLP) to perform representation learning and hash encod-
ing on the raw features of patients. For the label encoder, we first
construct a label graph, where each node represents a label, and the
edges are determined according to the pointwise mutual information
(PMI) between labels. Then we adopt a graph convolutional network
(GCN) to explore the semantic information contained in the labels and
the correlation dependencies between them to derive the multi-label
embedding of each patient. To ensure the similarity between instances
is retained in the embedding space of multi-labels, a pairwise nega-
tive log-likelihood function is introduced to measure the multi-label
embedding similarity loss. Furthermore, to realize graph guidance, we
design another pairwise negative log-likelihood loss between patient
embeddings and multi-label embeddings. The above two loss terms are
combined as the overall objective to supervise the network optimiza-
tion in an end-to-end manner, to produce more informative hash codes
for efficient and accurate similar patient retrieval.

To summarize, the major contributions of our work lie in three-fold:

• We propose a novel deep supervised hashing framework, namely
GDHN, for similar patient retrieval on EHR data. Different from
simply regarding the multi-labels as the ground truth to define
the pairwise similarity between instances, GDHN makes effective
use of the semantic information contained in multi-labels during
the process of patient representation learning and binary hash
encoding, deriving more informative hash codes.

• To explore the underlying relations among the multiple labels, we
construct a label graph, where each node represents a label, and
the edges are determined based on the co-occurrence of the labels.
We propose to employ a GCN to extract the correlation dependen-
cies between nodes and generate multi-label embeddings, which
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are then utilized to guide the patient hashing procedure through
well-designed loss functions.

• We conduct extensive similar patient retrieval experiments on
two EHR datasets, including the IgA Nephropathy dataset and
the MIMIC-III dataset. The results confirm the effectiveness of
the proposed GDHN, and further analysis demonstrates that our
method allows the instances with higher similarity to the query to
be ranked higher in the retrieved results, which is more valuable
for clinical applications.

The rest of this paper is organized as follows. Section 2 provides
brief overview of the related works. In Section 3, we introduce the

otations used throughout this article, clarify the problem formulation,
nd describe the proposed GDHN in detail. The experimental study
s presented in Section 4 to verify the effectiveness of our method.
he ablation study and parameter analysis are included in Section 5.
inally, we make some concluding remarks and present the future work
n Section 6.

. Related work

Considering the task targeted by our approach, in this section, we
irst briefly outline the related works about patient similarity learning
nd similar patient retrieval on EHR data. Then the relevant studies
bout hashing methods are reviewed.

.1. Patient similarity learning

The objective of patient similarity learning is to derive a clinically
eaningful metric that can measure the similarity between patients

ccording to their EHRs [7]. Earlier related works are mainly based
n traditional machine learning methods. Chan et al. [38] proposed
patient similarity measure that could generate similarity scores for

4 clinical indicators, and then fed these scores into a support vector
achine (SVM) classifier to determine the similarity between patients

uffering from hepatocellular carcinoma. Sun et al. [39] presented
ocally supervised metric learning (LSML) to obtain a Mahalanobis
etric, and adopted the metric in conjunction with physician feedback

o assess patient similarity. Girardi et al. [40] considered the Interna-
ional Classification of Diseases (ICD) concept hierarchy and introduced

hierarchical distance measure to calculate the similarity between
atient concept sets.

In recent years, deep learning methods have demonstrated re-
arkable capabilities in feature extraction and have been increasingly

dopted in patient similarity learning. Ni et al. [12] proposed a deep
etric learning framework with a quadruple objective for fine-grained
atient similarity learning. Suo et al. [7] utilized a convolutional
eural network (CNN) to learn patient representations, and optimized
he model for learning pairwise similarity through the triplet loss
r softmax cross entropy loss. Wang et al. [41] presented a triplet
rchitecture based on a dynamic Bayesian neural network (TDBNN).
DBNN can capture the conditional dependencies among medical in-
icators and integrate them into multivariate time series analysis to
earn fine-grained patient similarity. Zhang et al. [42] proposed to
earn the representations of local and global patient states through a
nified framework, then measured patient similarity according to the
ocal state representations and predicted in-hospital mortality using the
lobal state representations. After determining the proper patient sim-
larity measures, exploiting these measures to retrieve similar patients
fficiently and accurately is a prerequisite to personalized healthcare
3

pplications, which is also the research focus of our work.
2.2. Similar patient retrieval

Similar patient retrieval refers to the process of retrieving the pa-
tients most similar to the given query patient from a database according
to a defined similarity measure [14]. Zhan et al. [10] proposed a
generalized Mahalanobis similarity function with pairwise constraints
to measure patient similarity, and used training samples as queries
to retrieve similar patients from the testing pool after deriving the
similarity function. Wang [17] presented an adaptive semi-supervised
recursive tree partitioning (ART) framework for patient indexing so that
similar patients could be retrieved efficiently and correctly with some
pairwise similarity labels annotated by physicians as supervision. Liu
et al. [18] proposed a method for similar patient retrieval based on in-
teractive patient labeling and automatic model updating, and designed
a visual system to assist patient labeling by physicians. Tashkandi
et al. [19] implemented patient similarity analysis using the cosine
similarity of patient features, and optimized similarity calculation for
in-database similar patient retrieval. Gu et al. [20] organized EHRs as
a patient graph to learn encounter-level patient representations for in-
database similar patient retrieval. The above similar patient retrieval
methods either rely on hand-crafted features, require physicians’ man-
ual annotation or feedback, or can only be used for in-database retrieval
with a fixed number of patients, and are not well adapted to EHR data
with rapidly expanding volumes. Different from the above studies,
the proposed GDHN extracts patient features automatically, does not
rely on physicians’ manual annotation, and has the scalability to the
inductive setting, achieving efficient similar patient retrieval.

2.3. Hashing methods

To efficiently retrieve similar patients on large-scale EHR data, a
feasible solution is to use hashing methods to accelerate the retrieval
process. The earlier hashing methods are mainly data-independent,
and the most representative is LSH [21]. LSH adopts a series of hash
functions with randomized projection to map the original data into
some hash buckets. The closer the two instances are to each other in
the original high-dimensional space, the higher the probability that
they will be mapped into the same bucket. Due to the lack of con-
sideration of data properties, the data-independent methods tend to
underperform in many real-world applications [43]. Therefore, later
studies focused more on the data-dependent hashing paradigm known
as learning-to-hash.

Learning-to-hash methods can be generally divided into two cat-
egories: unsupervised methods and supervised methods. The former
learns the hashing functions according to the structure and distribution
of data, and can be applied to unlabeled training data. One of the
most well-known methods is spectral hashing (SH) [44]. SH regards
semantic hashing as a certain type of graph partitioning and uses
spectral relaxation to calculate the hash codes efficiently. Later, Gong
et al. [45] proposed the iterative quantization (ITQ) algorithm. ITQ
learns hashing codes by minimizing the quantization error of mapping
PCA-projected data to vertices of the binary hypercube. Other represen-
tative unsupervised methods include isotropic hashing (IsoHash) [46],
scalable graph hashing with feature transformation (SGH) [47], latent
semantic minimal hashing (LSMH) [48], etc. Supervised methods lever-
age supervised information, including pointwise level, pairwise level,
tripletwise level, or listwise level, to generate similarity-preserving
hash codes [43]. Kernel-based supervised hashing (KSH) [49] takes
the pairwise similarity between instances as supervision, and exploits
the algebraic equivalence between the inner products and Hamming
distances of the hash codes to learn the kernel-based hash function.
Supervised discrete hashing (SDH) [50] assumes that good hash codes
should be optimal for linear classification, and utilizes discrete cyclic
coordinate descent to efficiently optimize the objective function and de-
rive high-quality hash codes. Additional influential supervised methods
include binary reconstructive embeddings (BRE) [51], hashing based
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Fig. 3. The overall architecture of the proposed GDHN for similar patient retrieval.
on linear discriminant analysis (LDAHash) [52], and column sampling
based discrete supervised hashing (COSDISH) [53], etc.

Deep hashing methods benefit from the powerful feature extrac-
tion capability of deep neural networks and have become mainstream
of recent learning-to-hash methods. Zhu et al. [22] proposed the deep
hashing network (DHN) for supervised hashing. DHN is able to learn
representations suitable for hash coding and control quantization errors
simultaneously. In order to alleviate the retrieval quality degradation
caused by the separate post-step binarization of continuous representa-
tions into hash codes, Cao et al. [25] proposed HashNet. HashNet lever-
ages the continuation method with convergence guarantees to learn
nearly exactly binary codes from imbalanced similarity data. The above
two methods use pairwise similarity as the supervised information, and
so do most representative deep hashing methods, e.g., deep supervised
hashing (DSH) [23], deep pairwise-supervised hashing (DPSH) [24],
and asymmetric deep supervised hashing (ADSH) [54], etc. These
methods determine the pairwise similarity coarsely. Two instances
are considered similar only if they share at least one label. Such a
determination cannot reflect the fine-grained pairwise similarity for
multi-label instances. Thus, Zhang et al. [55] proposed an improved
deep hashing network (IDHN) that quantifies the pairwise similarity
into a percentage based on the normalized semantic labels to improve
the multi-label instance retrieval quality.

Recently, some studies have tried to introduce deep hashing into
similar patient retrieval. For example, Wang et al. [14]. presented
a deep hashing approach adopting multi-task neural networks with
attention, and the continuous-valued embedding vectors and binary
hash codes of patients obtained from the networks were combined to
perform similar patient retrieval in a coarse-to-fine way. Xu et al. [27]
proposed the federated patient hashing framework, which derives the
binary hash codes of patients in the manner of federated deep learning
to alleviate privacy concerns. Compared to traditional hashing meth-
ods based on hand-crafted features, deep hashing approaches have
shown great progress in retrieval tasks. Nonetheless, most of these deep
hashing methods solely use multiple labels of instances as a reference
for determining the pairwise similarity, ignoring the rich semantic
information inherent in the labels. The proposed GDHN can effectively
address this limitation. GDHN organizes the multiple labels as a label
graph, and employs a GCN to extract the correlation dependencies
between labels and generate multi-label embeddings. The multi-label
embeddings are then adopted to guide the patient hashing procedure,
ensuring full utilization of the semantic information and correlation
dependencies in the multi-labels to generate more informative and
discriminative hash codes.

3. Method

In this section, we detail the proposed GDHN. The overview of
4

our framework is demonstrated in Fig. 3. First, we introduce some
necessary notations and the problem formulation. Next, the details of
the patient encoder and the label encoder are given. Finally, we present
the overall objective function and training strategy.

3.1. Notations and problem formulation

We denote the patient data as 𝐗 = {𝐱𝑖}𝑁𝑖=1 ∈ R𝑁×𝑀 , where 𝑁 is
the number of patient instances, and 𝐱𝑖 is a 𝑀-dimensional feature
vector corresponding to the patient 𝑖. In this work, we consider the
drug categories recorded in the patients’ prescriptions as multi-labels.
The multi-label matrix is denoted as 𝐋 = {𝐥𝑖}𝑁𝑖=1 ∈ {0, 1}𝑁×𝐶 , where
𝐥𝑖 = [𝑙𝑖1, 𝑙𝑖2,… , 𝑙𝑖𝐶 ] is the multi-label annotation of the patient 𝑖 and
𝐶 is the total number of distinct drug categories in the dataset. If the
patient 𝑖 is prescribed the 𝑗th category drug by a physician, 𝑙𝑖𝑗 = 1,
otherwise, 𝑙𝑖𝑗 = 0. Naturally, if two patient instances share some drug
categories, they can be considered to have a certain similarity. We
denote the similarity set as , and 𝑠𝑖𝑗 ∈  represents the similarity
between instances 𝑖 and 𝑗. To make better use of semantic information
in the multi-labels without losing generality, in this work, we determine
the similarity 𝑠𝑖𝑗 according to the generalized Jaccard index of 𝐥𝑖 and
𝐥𝑗 :

𝐽 (𝐥𝑖, 𝐥𝑗 ) =
⟨𝐥𝑖, 𝐥𝑗⟩

⟨𝐥𝑖, 𝐥𝑖⟩ + ⟨𝐥𝑗 , 𝐥𝑗⟩ − ⟨𝐥𝑖, 𝐥𝑗⟩
, (1)

where ⟨⋅, ⋅⟩ means inner product. Then 𝑠𝑖𝑗 can be formulated as:

𝑠𝑖𝑗 =

{

1, 𝐽 (𝐥𝑖, 𝐥𝑗 ) > 𝜏,
0, 𝐽 (𝐥𝑖, 𝐥𝑗 ) ≤ 𝜏,

(2)

where 𝜏 is a threshold.
The goal of hashing is to learn a non-linear function to project the

original data into compact hash codes while preserving the similarity
effectively. The function can be formulated as 𝑓 (⋅) ∶ 𝐗 ↦ 𝐁, 𝐁 =
{𝐛𝑖}𝑁𝑖=1 ∈ {−1, 1}𝑁×𝐾 , where 𝐛𝑖 is the 𝐾-bit hash code of instance 𝑖.
Given a pair of hash codes 𝐛𝑖 and 𝐛𝑗 , the similarity between them can
be measured by the Hamming distance:

𝑑
(

𝐛𝑖,𝐛𝑗
)

= 1
2
(

𝐾 − ⟨𝐛𝑖,𝐛𝑗⟩
)

. (3)

Further, we follow the paradigm of learning to hash and define the
conditional probability of 𝑠𝑖𝑗 as:

𝑝(𝑠𝑖𝑗 |𝐛𝑖,𝐛𝑗 ) =
{

𝜑(𝛤𝑖𝑗 ), 𝑠𝑖𝑗 = 1,
1 − 𝜑(𝛤𝑖𝑗 ), 𝑠𝑖𝑗 = 0,

= 𝜑(𝛤𝑖𝑗 )
𝑠𝑖𝑗 (1 − 𝜑(𝛤𝑖𝑗 ))1−𝑠𝑖𝑗 ,

(4)

where 𝜑(𝛤𝑖𝑗 ) = 1∕(1 + 𝑒−𝛤𝑖𝑗 ) is the sigmoid function and 𝛤𝑖𝑗 = ⟨𝐛𝑖,𝐛𝑗⟩.
Apparently, the larger the inner product of 𝐛𝑖 and 𝐛𝑗 , the smaller the
Hamming distance between them, and the higher the probability of
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𝑠𝑖𝑗 = 1. Conversely, if the inner product between 𝐛𝑖 and 𝐛𝑗 is smaller,
the probability of 𝑠𝑖𝑗 = 0 will be higher. The process of learning hash
codes 𝐁 is equivalent to the maximum likelihood estimation of 𝐁 given
the pairwise similarity set .

3.2. Patient encoder

For patient data 𝐗, each dimension usually represent a medical
indicator, and the ordinal relations among them may not have clear
spatial meaning. So we do not necessarily need to use the networks are
good at capturing the spatial relations across dimensions, such as CNNs,
as the backbone. For the sake of generality, we simply adopt a 3-layer
MLP to transform the original instances into 𝐾-dimensional hash-like
feature vectors. The number of layers is determined following [12].
In order to avoid an excessive number of parameters while ensuring
the fitting capability of the patient encoder, the numbers of neurons
in the first two layers are both set to 𝑀∕2, which is equal to half the
dimensionality of the input patient data. To alleviate the vanishing gra-
dient and make the networks easier to train, we use linear rectification
functions (relu) as the activation functions of the first two layers. The
third layer is used as the hash layer that outputs the hash-like patient
embeddings, and the output dimension is set to be consistent with
the hash code lengths. To reduce the quantization errors during the
subsequent binarization process, we use a hyperbolic tangent function
(tanh) as the activation function in the third layer, which can be viewed
as an approximation to the sign function.

This feature extraction process can be expressed as:

𝐇 = 𝐸𝑃 (𝐗;𝛩𝑃 ), (5)

where 𝐸𝑃 denotes the patient encoder, 𝛩𝑃 represents the trainable
parameters of 𝐸𝑃 , and 𝐇 = {𝐡𝑖}𝑁𝑖=1 ∈ R𝑁×𝐾 is the output patient embed-
dings. Note that each element of 𝐡𝑖 is still real-valued at this point, and
needs to be binarized to obtain the hash code 𝐛𝑖, which only contains
the values of 1 and −1. Referring to [26], the binarization process is
usually implemented through the element-wise sign function:.

𝑏𝑖𝑗 = sgn(ℎ𝑖𝑗 ) =

{

1, ℎ𝑖𝑗 > 0,
−1, ℎ𝑖𝑗 ≤ 0,

(6)

where ℎ𝑖𝑗 is the 𝑗th element of 𝐡𝑖 and 𝑏𝑖𝑗 is the 𝑗th element of 𝐛𝑖.

3.3. Label encoder

Due to the excellent ability of GCNs to deal with the relations
between data points [34–37], to better capture and explore the in-
formative label correlations, we adopt a GCN to learn the multi-label
embeddings of instances. We first construct a label graph  = ( , ).
The drug category label set serves as the node set  , meaning that each
node represents a drug category and || = 𝐶. The initial node feature
matrix can be denoted as 𝐘 = {𝐲𝑖}𝐶𝑖=1 ∈ R𝐶×𝐷, where each row 𝐲𝑖 ∈ R𝐷

is the 𝐷-dimensional feature vector of node 𝑖.  is the edge set, and the
edge between node 𝑖 and node 𝑗 is denoted as 𝑒𝑖𝑗 ∈  . The topology
of  can be represented as an adjacency matrix 𝐀 ∈ R𝐶×𝐶 , where each
element 𝐀𝑖𝑗 is the weight of edge 𝑒𝑖𝑗 . Here we use pointwise mutual
information (PMI) to calculate 𝐀𝑖𝑗 . Given a pair of drug category labels
𝑖 and 𝑗, their PMI value is computed as:

PMI(𝑖, 𝑗) = log
(

𝑛(𝑖, 𝑗)
𝑛(𝑖)𝑛(𝑗)

×𝑁
)

, (7)

here 𝑛(𝑖, 𝑗) is the number of patients’ prescriptions containing both
rug categories 𝑖 and 𝑗, and 𝑛(𝑖) and 𝑛(𝑗) are the total number of
atients’ prescriptions recording drug category 𝑖 and 𝑗 respectively.
fter obtaining the PMI values, 𝐀𝑖𝑗 can be formulated as:

𝑖𝑗 =

{

PMI(𝑖, 𝑗), PMI(𝑖, 𝑗) > 0,
(8)
5

0, PMI(𝑖, 𝑗) ≤ 0.
In order not to lose the information about the nodes themselves, the
adjacency matrix usually requires the addition of node self-connections
to get �̃� = 𝐀 + 𝐈, where 𝐈 is the identity matrix. Accordingly, we can
obtain the degree matrix �̃�, where �̃�𝑖𝑖 =

∑

𝑗 �̃�𝑖𝑗 . Then we feed the graph
into a multi-layer GCN for feature extraction. Specifically, the graph
convolutional layer takes the following form:

𝐙(𝑞) = 𝜎
(

�̃�− 1
2 �̃��̃�− 1

2 𝐙(𝑞−1)𝐖(𝑞−1)
)

, (9)

where 𝑞 is the layer number, 𝜎(⋅) denotes the activation function, 𝐙(0) =
𝐘 is the input feature matrix, and 𝐙(𝑞) is the node embedding matrix
output by the 𝑞th layer. In Eq. (9), 𝐖(𝑞−1) ∈ R𝐹×𝐹 ′ is a layer-specific
weight parameter matrix, where 𝐹 and 𝐹 ′ are the input and output
dimensions of the layer respectively. Given that we focus more on the
drug category co-occurrence information contained in the adjacency
matrix 𝐀, we simply set 𝐘 = 𝐈 as a 𝐶 × 𝐶 identity matrix, which
means each drug category is initialized as a one-hot vector. A node can
integrate information from its 1st-order neighborhood through a single
graph convolutional layer. By stacking multiple graph convolutional
layers, a node can further integrate information from its higher-order
neighborhoods. However, stacking too many convolutional layers in
a GCN may lead to over-smoothing [56], which means the output
features of nodes will become indistinguishable and the model perfor-
mance will decline. Therefore, we follow [57] and adopts just 2 graph
convolutional layers in our framework.

To guarantee the fitting capability of the label encoder, the numbers
of hidden neurons in each graph convolutional layer are set to the input
feature matrix dimensionality 𝐶. The activation functions of the graph
convolutional layers are set to relu to alleviate the vanishing gradient
and make the networks easier to train. The output 𝐙(2) of the GCN is
then fed to a fully connected layer containing 𝐾 neurons to obtain the
hash-like representations 𝐙(2)′ ∈ R𝐶×𝐾 . Note that each row of 𝐙(2)′ is
the embedding vector of a node. Subsequently, given the multi-label
annotation 𝐥𝑖 of patient 𝑖, the corresponding multi-label embedding can
be derived by integrating the embedding vectors of the drug categories
it contains, which is expressed as:

𝐳𝑖 = 𝜎

(

𝐥𝑖𝐙(2)′

∑𝐶
𝑗=1 𝑙𝑖𝑗

)

, (10)

where 𝐳𝑖 ∈ R𝑘 is the hash-like multi-label embedding of patient 𝑖, and
𝜎(⋅) is the tanh activation function. We employ the same activation
function as the hash layer of the patient encoder, because the multi-
label embeddings output by the label encoder will subsequently used
to guide the training process of the patient encoder. The tanh activation
function can make sure that the multi-label embeddings have less
heterogeneity with the patient embeddings.

The whole process of learning the multi-label embeddings can be
formulated as:

𝐙 = 𝐸𝐿(𝐋,𝐀,𝐘;𝛩𝐿), (11)

where 𝐸𝐿 denotes the label encoder, 𝛩𝐿 is the parameters to be trained,
the multi-label matrix 𝐋, the adjacency matrix 𝐀 of the label graph, and
the initial node feature matrix 𝐘 of the label graph are used as inputs,
and 𝐙 = {𝐳𝑖}𝑁𝑖=1 ∈ R𝑁×𝐾 is the output multi-label embedding matrix.

3.4. Objective function and learning strategy

As mentioned in 3.1, the process of learning hash codes can be
viewed as the maximum likelihood estimation of Eq. (4), which is also
equivalent to seeking the minimum negative log-likelihood of Eq. (4).
Therefore, the loss function of deep hashing can be derived in the
following formulation:

0 = − log 𝑝(|𝐁) = − log
∑

𝑠𝑖𝑗∈
𝑝(𝑠𝑖𝑗 |𝐛𝑖,𝐛𝑗 )

=
∑

(

log
(

1 + exp(⟨𝐛𝑖,𝐛𝑗⟩)
)

− 𝑠𝑖𝑗⟨𝐛𝑖,𝐛𝑗⟩
)

.
(12)
𝑠𝑖𝑗∈
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By minimizing this loss function, we can obtain the exact binary hash
codes while preserving the similarity between patient instances. How-
ever, this optimization problem is difficult to solve, because directly
using Eq. (6) to generate the hash codes will lead to vanishing gradients
during training and make the back-propagation infeasible.

Following [25], we adopt continuous relaxation and reformulated
the loss function as:

1 =
∑

𝑠𝑖𝑗∈
𝜔𝑖𝑗

(

log
(

1 + exp(⟨𝐡𝑖,𝐡𝑗⟩)
)

− 𝑠𝑖𝑗⟨𝐡𝑖,𝐡𝑗⟩
)

, (13)

where 𝜔𝑖𝑗 is the weight for mitigating data imbalance between
the similar and dissimilar pairs, which is defined as 𝜔𝑖𝑗 = (||∕|1|)

𝑠𝑖𝑗

(||∕|0|)
1−𝑠𝑖𝑗 , where 1 = {𝑠𝑖𝑗 ∈  ∶ 𝑠𝑖𝑗 = 1} is the set of similar

instance pairs, and 0 = {𝑠𝑖𝑗 ∈  ∶ 𝑠𝑖𝑗 = 0} is the set of dissimilar
instance pairs.

Furthermore, in order to fully exploit the semantic correlations
inherent in the label graph, we modify Eq. (13) as:

𝑔 =
∑

𝑠𝑖𝑗∈
𝜔𝑖𝑗

(

log
(

1 + exp(⟨𝐡𝑖, 𝐳𝑗⟩)
)

− 𝑠𝑖𝑗⟨𝐡𝑖, 𝐳𝑗⟩
)

, (14)

In this way, the semantic correlations contained in the label graph are
extracted from the label encoder and transferred to the patient encoder,
achieving graph guidance. Additionally, as the guidance information,
the multi-label embeddings themselves should also retain the similarity
between instances. So we introduce an additional loss function:

𝑙 =
∑

𝑠𝑖𝑗∈
𝜔𝑖𝑗

(

log
(

1 + exp(⟨𝐳𝑖, 𝐳𝑗⟩)
)

− 𝑠𝑖𝑗⟨𝐳𝑖, 𝐳𝑗⟩
)

. (15)

The final objective function of the overall framework can be formu-
lated as:

min
𝛩𝑝 ,𝛩𝑙

 = 𝑔 + 𝛼𝑙 , (16)

where 𝛼 is a hyper-parameter that makes a trade-off between 𝑔 and 𝑙.
Eq. (16) is differentiable, so the model parameters can be optimized by
the standard back-propagation algorithm with the mini-batch gradient
descent method, and the patient encoder and the label encoder can be
jointly trained in an end-to-end manner. To reduce the quantization
errors between the real-valued embeddings and the binary hash codes,
referring to [25], for the output layers of both encoders, we multiply
each value input to the tanh activation function by a scaling factor
𝛽. This scaling tanh function has a key property lim𝛽→∞ tanh(𝛽𝑥) =
sgn(𝑥). By increasing 𝛽 during training, the tanh function will gradually
converge to the sign function, thus decreasing the quantization error.
The pseudo-code of training procedure of GDHN is shown in Algorithm
1.

4. Experiments

In this section, we first describe the two datasets used for exper-
imental evaluation. Then we detail the experimental setup, including
the evaluation metrics for similar patient retrieval and the competing
methods. Finally, we show and analyze the results of the experiments.

4.1. Datasets

IgA Nephropathy is a clinical dataset collected by the Renal Division
of Peking University First Hospital [58]. This dataset contains encoun-
ters from 843 patients with IgA nephropathy over 13 years, and has
undergone an ethical review by the Institutional Review Board (IRB)
at Peking University First Hospital. EHRs in this dataset comprise 18
subsets with a total of 141 indicators. The data types covered by
these indicators include scalar (e.g., systolic pressure, 24-hour urinary
protein quantity, eGFR, etc.), binary (e.g., gender), text (e.g., diag-
nosis, blood/urine immunoprotein electrophoresis, etc.), and ordinal
(e.g., urinary protein level, occult blood level, etc.). We preprocessed
6

Algorithm 1: Training procedure of GDHN
Input: Patient data 𝐗; multi-label matrix 𝐋; adjacency matrix

𝐀; node feature matrix 𝐘; similarity matrix 𝐒; hash code
length 𝐾.

Output: Hash codes 𝐁.
1 Initialization: Encoder parameters 𝛩𝑃 and 𝛩𝐿;

hyper-parameter 𝛼; mini-batch size 𝑁𝑏; learning rate 𝜇; scaling
parameter 𝛽 = 1; update interval of the scaling parameter 𝑇𝛽 ;
maximum iteration number 𝑇𝑖𝑡𝑒𝑟 = ⌈

𝑁
𝑁𝑏

⌉; current iteration
number 𝑖𝑡𝑒𝑟; current epoch number 𝑒𝑝𝑜𝑐ℎ = 1.

2 repeat
3 if 𝑒𝑝𝑜𝑐ℎ mod 𝑇𝛽 = 0 then
4 𝛽 ←

√

1 + (1∕𝑇𝛽 ) × 𝑒𝑝𝑜𝑐ℎ;
5 end
6 for 𝑖𝑡𝑒𝑟 = 1, 2, ⋅ ⋅ ⋅, 𝑇𝑖𝑡𝑒𝑟 do
7 Randomly select 𝑁𝑏 instances to form a mini-batch;
8 Calculate the patient embeddings 𝐇 and the multi-label

embeddings 𝐙 of the current batch through forward
propagation according to Eqs. (5) and (11);

9 Compute the overall loss according to Eq. (16);
10 Update 𝛩𝑃 and 𝛩𝐿 using gradient descent and

backward propagation;
11 end
12 𝑒𝑝𝑜𝑐ℎ ← 𝑒𝑝𝑜𝑐ℎ + 1;
13 until Converge;
14 Obtain 𝐁 using Eq. (6);
15 return 𝛩𝑃 , 𝛩𝐿, 𝐁.

these EHR data following the expertise of physicians. Since the text-
based indicators are recorded in only a very few encounters, they were
converted to binary based on their presence (1 if present, 0 otherwise).
The values of ordinal indicators are recorded in the form of ordinal
categories, such as negative (−), weak positive (+/−), positive (+),
strong positive (++), etc. We assigned ascending integers to encode
the values according to the severity. Additionally, we eliminated the
indicators that have not been recorded in any encounter, and excluded
the encounters with outliers to mitigate the impact of noise. Then
the values of scalar and ordinal indicators were normalized. Finally,
we selected 1114 encounters with 136 indicators as the experimental
instances. Each instance is represented as a 136-dimensional real-
valued vector, with each dimension corresponding to an indicator.
More details on the description and preprocessing of IgA Nephropathy
can be found in [20]. As we mentioned before in Section 3.1, the
drug categories recorded in each encounter’s prescription are regarded
as multi-labels. Based on the physicians’ expertise, to reflect the
patient’s conditions relatively precisely, we chose 4th-level Anatomical
Therapeutic Chemical (ATC) classification codes2 as the drug category
labels. There are a total of 40 drug categories in IgA Nephropathy

MIMIC-III is a publicly available database containing the EHR data
of patients admitted to Intensive Care Units (ICUs) at the Beth Israel
Deaconess Medical Center [59]. It covers encounters from 38597 dis-
tinct adult patients over 11 years. To extract a multi-label dataset suit-
able for the retrieval task from the original database, we followed [29]
and preprocess the raw data using the open-source script.3 The patient
encounters containing prescriptions during the first 24 h were retained
because the first 24 h are often the most critical period for patients
to be treated promptly and effectively. Furthermore, the duplicate
encounters were removed. Finally, 15032 encounters were chosen as
experimental instances. The diagnoses and procedures recorded in

2 https://www.whocc.no/atc_ddd_index/
3 https://github.com/ycq091044/SafeDrug

https://www.whocc.no/atc_ddd_index/
https://github.com/ycq091044/SafeDrug
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Table 1
Statistics of the experimental datasets.
Dataset Instance Train Validation Query Retrieve Feature Multi-label

IgA Nephropathy 1114 892 111 111 1003 136 40
MIMIC-III 15032 12026 1503 1503 13529 3388 131
a
m

these encounters were extracted as the raw features of instances. As
the diagnoses and procedures have already been encoded with the ICD-
94 codes in the EHRs, they can be intuitively converted to multi-hot
vectors. The feature vector of each instance was derived by concate-
nating its corresponding diagnosis and procedure vectors. There are
a total of 1958 diagnosis codes and 1430 procedure codes in the ex-
tracted dataset, thus each instance is represented as a 3388-dimensional
multi-hot vector. Accordingly, the drug categories contained in each
encounter’s prescription are the corresponding multi-labels. Follow-
ing [29,60,61], we kept the drug category labels in the form of 3rd-level
ATC classification codes. There are a total of 131 drug categories in
MIMIC-III.

For each of the above datasets, all the instances were randomly
divided into training, validation, and test query sets in the ratio of
0.8:0.1:0.1, and the training and validation sets were taken together
as the retrieval database. The detailed information on the datasets is
summarized in Table 1.

4.2. Experimental setup

4.2.1. Evaluation metrics
We assess the quality of similar patient retrieval with three fre-

quently used metrics: normalized discounted cumulative gains (NDCG)
[62], mean average precision (MAP) [63], and precision–recall curves
[64].

NDCG is a persuasive evaluation metric for multi-label data re-
trieval. Given a query 𝑞, the DCG score of the top 𝑛 retrieved instances
is formulated as:

DCG@𝑛 =
𝑛
∑

𝑖=1

2𝑅𝑠(𝑞,𝑖) − 1
log(1 + 𝑖)

, (17)

where 𝑅𝑠(𝑞, 𝑖) is the relevance score between the query 𝑞 and the
nstance 𝑖. Note that in this work, we use the generalized Jaccard index
(𝐥𝑞 , 𝐥𝑗 ) as the relevance score 𝑅𝑠(𝑞, 𝑖). Then the NDCG score at the

position 𝑛 can be computed through NDCG@𝑛 = DCG@𝑛
𝑁𝑜𝑟𝑚 , where 𝑁𝑜𝑟𝑚

is a normalization factor equal to the theoretical maximum of DCG@𝑛,
also known as the ideal DCG (IDCG) score. A higher NDCG score means
better performance.

MAP is a widely used retrieval evaluation metric that is the mean
of average precision (AP) scores. For query 𝑞, the AP score of the top
𝑛 retrieved instances can be calculated as:

AP(𝑞)@𝑛 = 1
𝑁𝑅𝑑 (𝑞)@𝑛

𝑛
∑

𝑖=1

(

𝑅𝑑(𝑞, 𝑖)
𝑁𝑅𝑑 (𝑞)@𝑖

𝑖

)

, (18)

where 𝑅𝑑(𝑞, 𝑖) ∈ {0, 1} is a relevance determination indicator function.
ithout loss of generality, we adopt a relaxed criterion to determine
𝑑(𝑞, 𝑖) following the convention of previous studies. If the instance 𝑖
nd the query 𝑞 share at least one drug category, or both of them are not
rescribed any drug, they are considered to be relevant and 𝑅𝑑(𝑞, 𝑖) = 1;

otherwise, 𝑅𝑑(𝑞, 𝑖) = 0. 𝑁𝑅𝑑 (𝑞)@𝑖 is the number of instances relevant
o the query 𝑞 within the top 𝑖 retrieved results. Then the MAP score

is calculated by MAP = 1
𝑄
∑𝑄

𝑞=1 AP(𝑞), where Q is the cardinal number
of the test query set. Similar to NDCG, a higher MAP score indicates
superior model performance.

Precision–recall curves plot the precision values at various degrees
of recall. When using precision–recall curves to evaluate the model per-
formance, the area under the curve (AUC-PR) is a reasonable measure.
The larger the AUC-PR is, the better the performance is.

4 https://www.cdc.gov/nchs/icd/icd9.htm
7

4.2.2. Competitors and implementation details
We compare our proposed GDHN with several baselines, includ-

ing well-known traditional hashing methods and state-of-the-art deep
hashing methods. A brief description of these competitors and the
corresponding parameters is given below.

• SH [44] is a classical unsupervised hashing method. It equates
semantic hashing with a certain type of graph partitioning and
adopts spectral relaxation to obtain hash codes.

• KSH [49] is a kernel-based supervised hashing method that ex-
ploits the equivalence between the hash codes’ inner products and
the Hamming distances. The Gaussian radial basis function (RBF)
is employed as the kernel to formulate the target hash functions.
The number of support samples 𝑚 is set to 300.

• SDH [50] is a supervised discrete hashing method. It treats hash-
ing as a discrete optimization problem, i.e., good hash codes
should also be optimal for linear classification. We set the reg-
ularization parameter 𝜆 = 1, the penalty parameter 𝜈 = 1𝑒 − 5,
and the maximum iteration number 𝑡 = 5. Besides, the number
of anchor points 𝑚 is set to 10 for IgA Nephropathy and 800 for
MIMIC-III, respectively.

• HashNet [25] is a famous deep hashing framework that learns
nearly exactly binary hash codes from imbalanced similarity data
using continuous relaxation with the convergence guarantee. We
set the hyper-parameter 𝛼, which controls the bandwidth of the
adaptive sigmoid function, to 10∕𝐾 for IgA Nephropathy and
0.1∕𝐾 for MIMIC-III, where 𝐾 is the hash code length.

• DHN [22] is a deep hashing framework capable of simultaneously
learning representations suitable for hash coding and controlling
quantization errors. We set the quantization penalty parameter
𝜆 to 0.001 and 1 for datasets IgA Nephropathy and MIMIC-III,
respectively.

• DSH [23] employs a CNN framework, which takes pairs of in-
stances as input and outputs approximate discrete values via
an objective function containing contrastive loss terms and a
binarization regularizer. The regularization parameter 𝛼 is set to
0.01, and the margin 𝑚 of the contrastive loss terms is set to 2𝐾,
where 𝐾 is the hash code length.

• DPSH [24] conducts concurrent learning of feature and hash
codes by maximizing the likelihood of the pairwise labels. We set
the regularization parameter 𝜂 to 0.1 for IgA Nephropathy and 1
for MIMIC-III, respectively.

• ADSH [54] is a deep hashing framework applied to the large-scale
nearest neighbor search. ADSH only learns the deep hash function
for query points, whereas the hash codes for database points are
learned directly. We set the iteration numbers 𝑇𝑜𝑢𝑡 = 50, 𝑇𝑖𝑛 = 3,
and the constraint coefficient 𝛾 = 200. The numbers of sampled
query points |𝛺| are set to 200 for IgA Nephropathy and 4000 for
MIMIC-III, respectively.

• IDHN [55] is a deep hashing framework for multi-label instance
retrieval. It divides the pairwise instance similarity into ‘‘hard
similarity’’ used for the cross-entropy loss, and ‘‘soft similarity’’
used for the mean square error loss. We set the constraint band-
width controlling parameter 𝛼 = 5∕𝐾, the mean square error
loss coefficient 𝛾 = 0.1∕𝐾, and the quantization loss coefficient
𝜆 = 0.1, where 𝐾 is the hash code length.

For a fair comparison, all the deep methods use the same backbone
s the patient encoder of the proposed GDHN, i.e., the 3-layer MLP
entioned in Section 3.2. The only difference is that the activation

https://www.cdc.gov/nchs/icd/icd9.htm
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Table 2
NDCG@10 on IgA Nephropathy and MIMIC-III datasets.

NDCG@10

Method IgA Nephropathy MIMIC III

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

SH [44] 0.2106 0.2092 0.2029 0.2058 0.4866 0.4885 0.4859 0.4869
SDH [50] 0.1973 0.1971 0.1971 0.1963 0.4009 0.3918 0.3959 0.3923
KSH [49] 0.2283 (0.2331) 0.2235 (0.2269) 0.2226 (0.2263) 0.2192 (0.2249) 0.4776 (0.5239) 0.4826 (0.5282) 0.4852 (0.5269) 0.4891 (0.5241)
HashNet [25] 0.2245 (0.2378) 0.2206 (0.2402) 0.2293 (0.2404) 0.2287 (0.2376) 0.4592 (0.4559) 0.4596 (0.4558) 0.4606 (0.4592) 0.4614 (0.4571)
DHN [22] 0.2215 (0.2222) 0.2239 (0.2301) 0.2227 (0.2384) 0.2227 (0.2388) 0.4133 (0.4607) 0.4486 (0.4721) 0.4522 (0.4859) 0.4577 (0.4977)
DSH [23] 0.2187 (0.2161) 0.2266 (0.2165) 0.2194 (0.2182) 0.2215 (0.2202) 0.3882 (0.4646) 0.3915 (0.4691) 0.3882 (0.4674) 0.3882 (0.4712)
DPSH [24] 0.2158 (0.2131) 0.2295 (0.2229) 0.2224 (0.2225) 0.2224 (0.2289) 0.4116 (0.4441) 0.4318 (0.4718) 0.4352 (0.4775) 0.4448 (0.5009)
ADSH [54] 0.2131 (0.2516) 0.2122 (0.2508) 0.2083 (0.2518) 0.2083 (0.2536) 0.4545 (0.4558) 0.4525 (0.4608) 0.4518 (0.4618) 0.4514 (0.4601)
IDHN [55] 0.2299 0.2328 0.2337 0.2325 0.4556 0.4580 0.4667 0.4621
GDHN 0.2746 0.2740 0.2822 0.2753 0.5574 0.5844 0.5957 0.5950

The best results are in boldface, and the second-best results are in italics. For some methods, the results of using the same pairwise similarity determination manner as in their
original papers are demonstrated outside parentheses, and those of using the same pairwise similarity determination manner as in our proposed method are shown in parentheses.
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functions used in their hash layers are identical to those described in
their respective papers. For GDHN, we fix the mini-batch size as 32,
and adopt a root mean square propagation (RMSprop) optimizer with
a learning rate of 1𝑒 − 4 and a weight decay of 5𝑒 − 4. The threshold 𝜏
in Eq. (2) is chosen to be 0.3, and the hyper-parameter 𝛼 in Eq. (16) is
chosen to be 10 according to the validation set. In addition, since both
GDHN and HashNet use the scaled tanh activation function tanh (𝛽𝑥) to
reduce quantization errors, the 𝛽 values of both methods are updated in
the same way as in Algorithm 1 for fairness, with the update interval 𝑇𝛽
set to 20. To avoid overfitting, all the deep hashing methods, including
our GDHN, are trained for no more than 400 epochs and adopt the
early-stopping strategy with the patience of 25 epochs.

We implement the traditional hashing methods by Matlab, while
the deep hashing methods are implemented using PyTorch [65]. All
experiments are conducted on a workstation with an Intel(R) Xeon(R)
Gold 5218R @ 2.10 GHz CPU, 251G RAM, and 6 NVIDIA GeForce RTX
3090 GPUs.

4.3. Experimental results

In this section, we compare the performance of the proposed GDHN
and the aforementioned competitors on two datasets. For a more com-
prehensive evaluation, referring to [25], we set four distinct lengths
of hash codes generated by each method throughout the experiments,
i.e., 16, 32, 48, and 64 bits. The corresponding NDCG and MAP scores
of the top 10 retrieved cases (NDCG@10 and MAP@10) are reported
as the mean values of 10 random trials, and the precision–recall curves
are plotted. Furthermore, the Wilcoxon rank sum test is performed to
verify the statistical significance.

4.3.1. Performance comparison in NDCG
Table 2 shows the results of NDCG@10 on the IgA Nephropathy

and MIMIC-III datasets. Note that the pairwise similarity determination
of KSH, HashNet, DHN, DSH, DPSH, and ADSH is relatively crude in
their original papers, i.e., 𝑠𝑖𝑗 = 1 if instance 𝑖 and 𝑗 share no less
than one semantic label, otherwise 𝑠𝑖𝑗 = 0. For a fair comparison,
we also reproduce these works using the same pairwise similarity
determination manner as in our proposed method (Eq. (2)) and present
the corresponding results in parentheses. Note that in our experiments,
the better results obtained through these two similarity determinations
are used to compare performance with GDHN. Although IDHN also
requires pairwise similarity as supervised information, we do not make
additional changes to it because of its unique approach to deter-
mining similarity. By the way, the above setting and clarification of
performance evaluation carry over to the MAP metric.

Compared to the second-best method, GDHN achieved improve-
ments of 9.14%, 9.25%, 12.07%, and 8.56% at different code lengths
(i.e., 16, 32, 48, and 64 bits) on IgA Nephropathy, and 6.82%, 11.44%,
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15.00%, and 16.12% at different code lengths on MIMIC-III. We can o
also observe some notable findings for the competitors. Most deep
hashing methods do not perform better than the traditional hashing
methods on MIMIC-III. It may be because the raw features of the
instances in the MIMIC-III dataset are relatively simple, and the feature
extraction capability of deep neural networks does not work well
without the help of semantic information in multi-labels. In addition,
most of the competitors improve their NDCG scores after adopting the
same pairwise similarity determination as in our approach. The possible
reason is that our pairwise similarity determination causes the instances
with low relevance to the queries to be treated as ‘‘dissimilar’’ and thus
ranked lower in the retrieved results, in line with the requirements of
the NDCG metric. We also notice that the NDCG scores on MIMIC-
III are higher than those on IgA Nephropathy. It may be due to the
fact that, as mentioned in Section 4.1, the raw features of instances
in IgA Nephropathy contain 4 data types (i.e., scalar, binary, text, and
ordinal), whereas the raw features of instances in MIMIC-III are solely
represented in the code type. The more complex instance features
make it more difficult for the retrieval results of each method on IgA
Nephropathy to be close to the ideal ranking list.

To evaluate the statistical significance of the results in Table 2, we
use the Wilcoxon rank sum test [66] to statistically compare the NDCG
values over 10 runs of GDHN and each other competitor. Regarding
GDHN as the control method, the statistics of the p-value concerning
different code lengths are shown in Table 3. In this study, we consider
the results of the two methods to be significantly different if the p-
alue is less than 0.05. It can be found that the statistical significance
f GDHN’s superiority over other methods in terms of the NDCG metric
s validated. We observe a substantial number of p-values in Table 3 are
dentical, as our proposal consistently outperforms the competitors and
ields the same ranks across most comparisons.

.3.2. Performance comparison in MAP
The results of MAP@10 on the IgA Nephropathy and MIMIC-III

atasets are presented in Table 4. For the IgA Nephropathy dataset,
DHN outperforms the second-best method by 1.24%, 0.27%, 1.11%,
nd 0.29% at different code lengths, respectively. However, the perfor-
ance of GDHN on the MIMIC-III dataset seems moderate. Compared to

he best results, GDHN’s MAP scores exhibit slight decreases of 0.11%,
.10%, 0.08%, and 0.06% at different code lengths. The quantitative
esult of GDHN in MAP@10 on the MIMIC-III dataset reveals that the
elatively lenient criteria employed by the MAP metric in determining
he relevance of retrieved results to the query, as mentioned in Sec-
ion 4.2.1, may cause negative influence to the performance. Due to the
ame reason, for most of the competitors, using the pairwise similarity
etermination consistent with ours does not improve the MAP scores.

Though the results on the MIMIC-III dataset look impressively favor-
ble in terms of Table 4, the MAP scores of different competitors are
ntuitively very close. So we also perform the Wilcoxon rank sum test
n the MAP scores obtained from 10 trials of the proposed GDHN and

guyif
高亮
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Table 3
p-values of the Wilcoxon rank sum test on NDCG scores where GDHN is the control method.

Method IgA Nephropathy MIMIC III

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

SH [44] 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05
SDH [50] 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05
KSH [49] 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05)
HashNet [25] 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (2.17e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05)
DHN [22] 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (2.17e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05)
DSH [23] 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05)
DPSH [24] 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05)
ADSH [54] 1.08e−05 (1.08e−05) 1.08e−05 (4.33e−05) 1.08e−05 (2.17e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05)
IDHN [55] 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05
Table 4
MAP@10 on IgA Nephropathy and MIMIC-III datasets.

MAP@10

Method IgA Nephropathy MIMIC III

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

SH [44] 0.7409 0.7314 0.7517 0.7483 0.9961 0.9960 0.9965 0.9953
SDH [50] 0.7252 0.7261 0.7249 0.7259 0.9946 0.9944 0.9949 0.9948
KSH [49] 0.7666 (0.7463) 0.7542 (0.7477) 0.7550 (0.7517) 0.7502 (0.7479) 0.9973 (0.9968) 0.9970 (0.9967) 0.9967 (0.9970) 0.9967 (0.9968)
HashNet [25] 0.7921 (0.7745) 0.7846 (0.7730) 0.7779 (0.7669) 0.7781 (0.7747) 0.9977 (0.9978) 0.9973 (0.9976) 0.9974 (0.9976) 0.9974 (0.9977)
DHN [22] 0.7964 (0.7609) 0.8016 (0.7690) 0.7948 (0.7848) 0.7792 (0.7740) 0.9977 (0.9972) 0.9983 (0.9972) 0.9981 (0.9972) 0.9980 (0.9970)
DSH [23] 0.8056 (0.8047) 0.8062 (0.8046) 0.8108 (0.8104) 0.8137 (0.8079) 0.9971 (0.9988) 0.9969 (0.9989) 0.9968 (0.9986) 0.9970 (0.9986)
DPSH [24] 0.8040 (0.7829) 0.8037 (0.7553) 0.8020 (0.7535) 0.8025 (0.7585) 0.9974 (0.9971) 0.9984 (0.9974) 0.9982 (0.9974) 0.9978 (0.9976)
ADSH [54] 0.8026 (0.7939) 0.8047 (0.7832) 0.7993 (0.7826) 0.8063 (0.7658) 0.9985 (0.9972) 0.9985 (0.9969) 0.9985 (0.9967) 0.9986 (0.9969)
IDHN [55] 0.7977 0.7916 0.7895 0.7868 0.9977 0.9977 0.9972 0.9978
GDHN 0.8156 0.8134 0.8198 0.8161 0.9977 0.9979 0.9978 0.9980
Table 5
p-values of the Wilcoxon rank sum test on MAP scores where GDHN is the control method.

Method IgA Nephropathy MIMIC III

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

SH [44] 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.08e−05
SDH [50] 1.08e−05 1.08e−05 1.08e−05 1.08e−05 1.20e−03 7.79e−04 1.94e−02 1.24e−02
KSH [49] 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.08e−05 (1.08e−05) 3.81e−01 (3.03e−04) 3.36e−04 (1.08e−05) 1.08e−05 (1.41e−04) 1.08e−05 (1.08e−05)
HashNet [25] 6.50e−05 (1.08e−05) 2.17e−05 (1.08e−05) 1.08e−05 (1.08e−05) 1.30e−04 (1.08e−05) 9.26e−01 (4.42e−01) 1.95e−01 (1.33e−02) 1.74e−01 (1.35e−01) 8.10e−03 (2.30e−03)
DHN [22] 9.63e−04 (9.63e−04) 2.46e−02 (1.08e−05) 1.90e−03 (3.60e−03) 1.30e−04 (1.08e−05) 6.66e−01 (9.16e−02) 8.66e−04 (1.20e−03) 7.62e−02 (7.10e−03) 6.39e−01 (1.08e−05)
DSH [23] 1.58e−02 (8.10e−03) 1.00e−02 (1.80e−03) 4.92e−02 (3.23e−02) 4.68e−01 (8,19e−02) 2.09e−02 (1.08e−05) 1.20e−03 (2.17e−05) 1.08e−05 (7.58e−05) 1.08e−05 (2.06e−04)
DPSH [24] 9.80e−03 (1.40e−03) 4.13e−02 (1.08e−05) 1.08e−02 (1.08e−05) 2.81e−02 (1.08e−05) 7.00e−02 (1.20e−03) 6.00e−03 (2.87e−01) 3.60e−03 (5.70e−03) 1.41e−01 (1.20e−03)
ADSH [54] 1.10e−03 (2.60e−04) 1.70e−03 (1.84e−04) 6.50e−05 (9.63e−04) 3.39e−02 (1.08e−05) 1.08e−05 (1.67e−02) 1.52e−04 (6.39e−04) 1.52e−04 (1.08e−05) 1.00e−03 (1.08e−05)
IDHN [55] 1.37e−02 1.50e−03 4.33e−05 1.60e−03 5.66e−01 7.08e−02 3.06e−02 2.24e−01
the comparison methods. Table 5 presents the p-values at different code
lengths, with GDHN as the control method. For the IgA Nephropathy
dataset, GDHN outperforms other methods significantly, except for DSH
when the code length is 64 bits. For the MIMIC-III dataset, there
are no significant differences between the MAP scores of GDHN and
most competing methods. It may be because that, for the patient
instances in MIMIC-III, the drugs are prescribed within a brief span
of the first 24 h [29], and there is a high degree of overlap between
the drugs given to different patients in emergencies. While for the
IgA Nephropathy dataset, the patients are followed up regularly every
3–6 months and prescribed drugs based on their disease conditions
by physicians [58]. The drug category labels in MIMIC-III may not
reflect the medical conditions of patient instances as finely as those
in IgA Nephropathy, resulting in little difference in the MAP scores of
different methods. Moreover, the simplicity of the raw features and
the leniency in judging the relevance of retrieved results also lead to
a lack of significant disparity in MAP scores on the MIMIC-III dataset.
Taking the results with respect to MIMIC-III in both Tables 4 and 5
into account, we consider it necessary to further verify the superiority
of GDHN. Therefore, we have conducted an analytical experiment in
the following.

For the instances in the MIMIC-III dataset, a total of 131 3rd-level
ATC classification codes are used as multi-labels (see Section 4.1).
These 3rd-level ATC classification codes can be further grouped into
14 1st-level ATC classification codes. Given each query, the maximum
9

number of the consistent 1st-level ATC classification codes between the
query and its top 10 retrieved results is considered, referred to as ‘‘the
max hit number’’. That is, the max hit number equal to 14 indicates
that among the top 10 retrieved results, there must be at least one
instance whose 1st-level ATC classification codes exactly match those
of the query. If the most relevant retrieved instance still has one code
inconsistent with the query, the max hit number is 13, and so forth. We
select several competitors that obtain excellent MAP scores and count
the queries with different max hit numbers. During this experiment,
we opt for the code length of 32 bits due to the fact that, in terms of
the MAP metric, the competitors exhibit more apparent advantages at
this particular code length. The mean results obtained from 10 random
trials are presented in Fig. 4. It can be observed that in regards to the
max hit number, GDHN outperforms other methods. With GDHN, an
average of 473.1 queries realize the max hit number of 14, whereas
only 291.7 queries reach the max hit number of 14 with the second-best
DHN. This finding is promising, proving that GDHN can preferentially
return instances with higher similarity to the query, which is more
aligned with the requirements of clinical applications.

4.3.3. Precision–recall curves
The precision–recall curves of the various methods on the IgA

Nephropathy and the MIMIC-III datasets are presented in Fig. 5 and
Fig. 6, respectively. Considering the results in Table 4, in Fig. 6 we also
illustrate the precision–recall curves of the variants of KSH, HashNet,
and DSH, which adopt the same pairwise similarity determination as

our method. It is clear that GDHN outperforms its competitors in terms
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Fig. 4. The number of queries with different max hit numbers on the MIMIC-III dataset.
All the competitors refer to those with better pairwise similarity determination in MAP
scores. DSH* employs the same pairwise similarity determination as GDHN.

Fig. 5. Precision–recall curves on the IgA Nephropathy dataset.

of AUC-PR at different code lengths on both datasets, which further
evidences the overall superiority of GDHN.

5. Discussion

In this section, we first conduct an ablation study to validate the
efficacy of our design in Section 3. Then, we analyze the influence of
the hyper-parameter on GDHN. Finally, we offer some in-depth views
of the proposed GDHN, including its adaptability and scalability.

5.1. Ablation study

To gain a better comprehension of how the key ideas contribute to
our GDHN for similar patient retrieval, we conduct an ablation study.
We mainly focus on the IgA Nephropathy dataset and compare GDHN
10

ith two variants, GDHN-L and GDHN-G. In GDHN-L, in order not
Fig. 6. Precision–recall curves on the MIMIC-III dataset. The superscript * denotes that
the method employs the same pairwise similarity determination as GDHN.

Table 6
Ablation experiments on the IgA Nephropathy dataset.

Measure Method IgA Nephropathy

16bit 32bit 48bit 64bit

GDHN-L 0.2389 0.2428 0.2450 0.2535
NDCG@10 GDHN-G 0.2590 0.2574 0.2593 0.2567

GDHN 0.2746 0.2740 0.2822 0.2753

GDHN-L 0.7821 0.7764 0.7785 0.7753
MAP@10 GDHN-G 0.8132 0.8040 0.7911 0.8011

GDHN 0.8156 0.8134 0.8198 0.8161

to utilize the semantic information in multi-labels, we remove 𝑙 in
Eq. (16) and change 𝑔 to 1 (refer to Eq. (13)), meaning only the
patient encoder retained. In GDHN-G, to eliminate the effect of the label
graph structure, compared to the full model of GDHN, we substitute the
graph convolutional layers in the label encoder with fully connected
layers while maintaining the numbers of hidden neurons unchanged.
The evaluation results are shown in Table 6.

In comparison to the full model, the performance of GDHN-L de-
creases by 13.00%, 11.39%, 13.18%, and 7.92% at different code
lengths in terms of the NDCG metric. For the MAP metric, the per-
formance of GDHN exhibits decreases of 4.11%, 4.55%, 5.04%, and
5.00% at different code lengths. The significant performance degra-
dation strongly supports that the utilization of semantic information
contained in multi-labels is critical for generating more informative
hash codes. From the evaluation of GDHN-G, we can find that lever-
aging the semantic information in multi-labels but removing the label
graph structure can also lead to a performance decline. The step-
by-step performance improvement of the proposed GDHN evidences
that appropriately exploring underlying relations among the semantic
labels can effectively improve the model’s capability in similar patient
retrieval.

5.2. Parameter analysis

According to Eq. (16), 𝛼 is a hyper-parameter of GDHN. Fig. 7 shows
how the NDCG score changes with the values of 𝛼 varying on the two
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r-
Fig. 7. NDCG@10 of GDHN with different 𝛼 values on the IgA Nephropathy and
MIMIC-III datasets.

Fig. 8. Label graphs constructed based on different kinds of multi-labels (taking drug
categories and diseases as examples): (a) drug category label graph, (b) disease label
graph, (c) drug-disease heterogeneous label graph.

datasets. Note that we only report the results when the code length is
16 bits since the observations display similar trends at the other code
lengths. For both of the two datasets, the NDCG scores increase rapidly
as 𝛼 rises from 0.01 to 1. And when the 𝛼 values exceed 10, the NDCG
scores begin to drop. So we set 𝛼 = 10 for both two datasets.

5.3. In-depth views of GDHN

As a deep supervised hashing framework, GDHN in this study
chooses drug categories as the multi-labels to supervise its training
process. However, in clinical applications, drug categories are not the
only option, and diseases, procedures, symptoms and many others
recorded in EHRs could also be used as multi-labels. Different kinds of
multi-labels can be used to build different label graphs respectively, or
be used together to construct heterogeneous label graphs, as indicated
in Fig. 8. Once the graph construction is completed, the corresponding
adjacency matrix can be input into a GCN to extract semantic infor-
mation and underlying relations among multi-labels with the proposed
GDHN framework. In other words, regardless of the specific multi-
labels employed, if they can be organized as graphs, researchers can
conveniently adopt our GDHN to process and exploit the EHR data,
thus showcasing the adaptability of our proposal. It is worth noting
that in order to guarantee the model performance, for different EHR
data, the selected multi-labels should reflect the medical conditions of
patients as comprehensively as possible.

The retrieval approaches using GCNs usually regard instances as
nodes to build graphs, which inevitably limits the scalability of their
models. This is because GCNs require a predetermined graph structure.
If new instances are added to the database, the graph structure will
change, and the entire network parameters will need to be retrained,
which is both time and resource consuming. Therefore, using instances
as nodes is only suitable for transductive in-database patient retrieval.
In contrast, constructing the graph with labels as nodes in GDHN’s
11
manner reveals distinct advantages. First, the graph structure is in-
dependent of instances and remains unaffected by newly recorded
instances. Second, the graph edges are determined according to the co-
occurrence of labels in a large number of EHRs, which might reflect the
physician’s expertise and contain clinical evidence applicable to new
patients. Therefore, GDHN has better scalability for rapidly growing
EHR data volumes and the inductive setting in clinical applications.

6. Conclusions

This paper introduces a novel deep hashing framework named
GDHN for similar patient retrieval on EHR data. GDHN consists of
a patient encoder and a label encoder. The patient encoder is used
to learn patient representations and generate hash codes. The label
encoder organizes the multiple semantic labels (i.e., drug categories)
into a graph and acquires the multi-label embeddings of each patient
through a GCN. Then, we utilize the multi-label embeddings to im-
prove the patient hashing through a well-designed graph-guided and
similarity-preserving objective.

By constructing the label graph and adopting the GCN, GDHN can
effectively explore the rich semantic information and underlying rela-
tions among the multi-labels recorded in EHRs, thereby obtaining more
informative and discriminative hash codes. We conducted extensive
experiments on similar patient retrieval using a private dataset IgA
Nephropathy and a publicly available dataset MIMIC-III. The experi-
mental results validate the superiority of GDHN and the respective
contributions of various considerations in GDHN.

Our work also has some limitations. First, we focus more on encounte
level similar patient retrieval, wherein each encounter of a patient
is treated as an individual instance. This consideration may not be
comprehensive enough since some patients need long-term follow-up,
and the same patient can have multiple encounters. For the patient
data with multiple encounters, models that can capture long-term
dependencies are potential to process them. Second, with the increasing
diversification of medical testing methods, in addition to the EHRs,
patients tend to have medical imaging, genomics, or other medical
data. For the different modalities of medical data, using the cross-
modal large language models is able to incorporate them. In the future,
we will consider whole course medical management and more data
sources, and investigate them.
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