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Abstract

With the thriving of deep learning, CNN-based object de-
tectors have made great progress in the past decade. How-
ever, the domain gap between training and testing data
leads to a prominent performance degradation and thus hin-
ders their application in the real world. To alleviate this
problem, Knowledge Transfer Network (KTNet) is proposed
as a new paradigm for domain adaption. Specifically, KT-
Net is constructed on a base detector with intrinsic knowl-
edge mining and relational knowledge constraints. First, we
design a foreground/background classifier shared by source
domain and target domain to extract the common attribute
knowledge of objects in different scenarios. Second, we
model the relational knowledge graph and explicitly con-
strain the consistency of category correlation under source
domain, target domain, as well as cross-domain conditions.
As a result, the detector is guided to learn object-related
and domain-independent representation. Extensive experi-
ments and visualizations confirm that transferring object-
specific knowledge can yield notable performance gains.
The proposed KTNet achieves state-of-the-art results on
three cross-domain detection benchmarks.

1. Introduction
Object detection is the task of identifying where and

what the interested targets are in the image. It is a key
component of visual perception and scene understanding,
and also the basic module of many advanced visual appli-
cations, such as multi object tracking [47, 4, 53], behavior
analysis [41, 2] and visual question answering [1, 39, 7].
With the development of deep learning, neural network-
based models [32, 30, 31, 24, 5, 43, 42] have gradually re-
placed traditional machine vision methods and become the
mainstream algorithm in the field of object detection. Al-
though remarkable progress has been witnessed in modern
Computer Vision systems such as autonomous driving and
intelligent surveillance, the deep learning methods suffer
from significant performance degradation when faced with

Figure 1. Detected objects in source domain (1st row) and target
domain (2nd row). The results are collected from a detector only
trained on Cityscapes. Green, red, and blue boxes are true posi-
tives, false positives and false negatives. We can observe that many
targets have been missed in the domain-shifted Foggy Cityscapes.

variations of object appearance, weather and illumination.
As illustrated in Figure 1, the detector trained with

source domain dataset performs well on testing set with
the same distribution. But if there is a severe disparity be-
tween the source and target domain, the output results are
prone to missing detection (blue boxes) or false alarm (red
boxes), which leads to a prominent performance degrada-
tion and hinders the deployment in real-world situations. In
practice, we can mitigate this impact by establishing a task-
specific dataset that covers various training samples. Un-
fortunately, the massive and high-quality annotation could
be costly and laborious, thus being not always feasible to
acquire adequate training images from new environments.

To deal with this urgent dilemma, many unsupervised
domain adaptive algorithms have been proposed to improve
detection accuracy in the target domain. Almost all adaptive
detectors have added adversarial training modules that are
actually some domain classifiers. This idea is drawn from
the classification task [44]. From coarse to fine, the do-
main alignment modules can be divided into image-level,
instance-level and pixel-level. Although adversarial train-
ing can mitigate the domain shift to a certain extent, it still
has three defeats leading to deteriorated detection perfor-
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mance. First, there are no restrictions on image-level fea-
ture alignment. In fact, the model should pay more atten-
tion to feature consistency of object regions. Other irrele-
vant information, such as background noise, does not need
to be aligned. Imagine that urban streets and rural wilder-
ness are two completely different scenes. Forcing them to
have similar distribution in the feature space not only vi-
olates human intuition, but also causes the calculated loss
difficult to be optimized. Second, instance-level alignment
may have noise that is generated by excessive low-quality
region proposals. Performing this alignment would be sen-
sitive to inaccurate predictions. Third, adversarial training
adopts minimax optimization. The gradient used to update
the model parameters is alternately reversed, which will af-
fect the stability of the training process.

Motivated by these findings, we first raise the question
“Why can humans accurately recognize objects in different
weather and scenes?”. There are two factors worth noting.
First, humans have learned the intrinsic properties of target
objects. Second, humans can capture relationship knowl-
edge between object categories, which is also independent
of the domain distribution. Therefore, a new paradigm
of domain adaptive detector without adversarial training is
proposed. More concretely, two knowledge transfer mod-
ules are embed into the detection framework, which dis-
cover object-related knowledge from two aspects. First,
we train a binary classifier shared by the source and target
domain. If model can make the same classification deci-
sion for foreground and background representation in dif-
ferent domains, it means that the object/non-object features
in source and target datasets are aligned to some extent.
Second, we explore relational knowledge of object cate-
gories and explicitly constrain the consistency of relation
graph between different domains, which tends to further re-
fine the adaption process. In short, the similarity between
pedestrian and rider will not decrease due to changes in
weather, and the irrelevance between car and sky will not be
improved due to changes in the scene. Through maintain-
ing such object-related and domain-independent knowledge
consistent, the generalization performance of detectors can
be greatly enhanced.

In order to evaluate the proposed method, cross-domain
testing experiments are conducted on three benchmark
settings. Cityscapes [9] to Foggy Cityscapes [36] for
domain adaption under different weather. Sim10k [21]
to Cityscapes for synthetic domain to the real world.
KITTI [14] to Cityscapes is about different scenes and cross
cameras. The experimental results indicate that domain-
independent knowledge mining and transferring can be used
as a new paradigm for domain adaption models, which out-
performs existing state-of-the-art approaches. Moreover,
we also make ablation study to explore the effectiveness of
each knowledge mining strategy. Qualitative visualization

analysis intuitively illustrates the motivation and achieve-
ments of this paper. To sum up, our major contributions are
threefold as follows.

• The proposed domain-invariant classifier can teach the
model to extract common attribute knowledge of target
objects, which is the basis for detector to distinguish
foreground and background regions.

• We design a domain-independent category relation
constraint. The generalization performance of detector
is improved by explicitly constraining the consistency
of category correlation between different domains.

• Comprehensive experiments and visualizations val-
idate the effectiveness of knowledge mining and
transferring. The designed method further improves
the state-of-the-art level on three domain adaptation
benchmarks.

2. Related work
Object detection. Object detection is a low-level com-

puter vision task, which is regarded as a fundamental step in
many advanced tasks. Most of traditional approaches [11,
10, 12] rely on manually designed features and redundant
post-processes. With the thriving of deep learning, CNN-
based detectors can be roughly categorized into one-stage
and two-stage models. Faster R-CNN [32] designs a region
proposal network to replace selective search [46], which
makes the first end-to-end detection framework with faster
speed and higher accuracy than its predecessors. As for one-
stage detectors, YOLO [30] and SSD [27] detect objects
directly from features extracted by the backbone network,
without refining the classification and regression results re-
peatedly. In the last two years, anchor-free detectors are all
the rage. Taking FCOS [43] as an example, it can predict
the class and offsets of targets at each point on the feature
map without preset anchors. However, all of these generic
models only consider testing in the source domain, which
ignores the urgent domain shift problem in the real world.

Unsupervised Domain adaptation (UDA). The goal of
UDA is to generalize the model learned from labeled source
domain to another unlabeled target domain, which has at-
tracted the attention of many researchers [13, 44, 35, 22, 6,
18, 28, 26]. The classic methods can be divided into two
streams. The first is based on adversarial learning, in which
a classifier is proposed to improve domain-invariance on
feature level [13, 44, 28] or pixel level [18, 37, 50]. An-
other group of methods [45, 3, 38] tries to align feature
distributions through minimizing an explicitly defined do-
main discrepancy measurement. The specific criterion in-
cludes maximum mean discrepancy [45], H-divergence [3]
and wasserstein distance [38]. Although the study of do-
main adaptation has made great process, most of the above
methods are usually applied to image classification tasks.
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Adaptive object detectors. In the past few years, many
works extend the idea of UDA to object detection task. Be-
ginning with the Domain Adaptive Faster R-CNN [8], Chen
et al. designed image-level and instance-level domain clas-
sifiers. Later, He et al. [16] and Xie et al. [48] added various
domain classifiers for multi-layer feature adaptation, which
further improve the accuracy of cross-domain testing. Satio
et al. [34] proposed a strong-weak alignment strategy that
pays more attention to similar regions while ignoring glob-
ally dissimilar images. Zhu et al. [55] clustered discrim-
inative parts and aligned the corresponding local features
via adversarial training. Recently, some work has put effort
into achieving more accurate feature alignment. For exam-
ple, Zheng et al. [52] presented a coarse-to-fine adaptation
framework, which can progressively align deep representa-
tion. Xu et al. [49] designed two regularization modules
to focus on object areas and hard-aligned instances. Hsu et
al. [19] carried out pixel-level alignment and achieve better
feature adaptation. He et al. [17] produced an asymmetric
tri-way structure to enhance the transferability of detector,
which consists of a chief net and an ancillary net. Since
CycleGAN [54] can achieve the migration of image style,
Hsu et al. [20] employed it for the translation from source
domain images to target-like ones and then added them to
the training set. For the problem of imperfect translation,
Kim et al. [23] proposed multi-domain invariant representa-
tion learning to address domain diversification. Unlike the
above methods, our KTNet does not introduce adversarial
training or generative models for domain adaptation.

3. Method
In this section, an overview of the framework is first

presented. Then, the intrinsic knowledge transfer module
is described in details. Finally, we dig deep into the rela-
tional knowledge between various categories and constrain
the consistency of class relation graph in different domains.

3.1. Overview of the framework

As illustrated in Figure 2, the training input includes a
set of labeled source imagesDs = {(Trains, Bs)} and un-
labeled target images Traint, whereBs denotes the bound-
ing box annotations. A shared backbone network is uti-
lized to extract multi-level semantics feature maps and it is
VGG-16 if not stated otherwise. After that, the image fea-
tures are passed to three fully convolutional blocks (FCB),
each of which comprises four successive convolution layers
activated by ReLU function. Finally, the prediction heads
utilize the local-aggregated features from FCB to produce
classification scores, location offsets as well as a center-
ness map. Among them, the classification scores reflect
category response at each position on the feature maps, re-
gression offsets show distance to the four edges of poten-
tial bounding box for each pixel, and centerness indicates

the probability that each feature point belongs to the object
center. In order to correctly predict the above information,
we choose Focal loss [25], IoU loss [51] and binary cross-
entropy (LBCE) to supervise the training of three branches.
So far, the details of detection part on source domain have
been introduced, which are consistent with FCOS [43]. The
corresponding objective is defined as:

Ldet = LFocal + LIoU + LBCE . (1)

To obtain more accurate bounding boxes on the test-
ing target images Testt, we propose two knowledge trans-
fer modules to improve the generalization performance of
the detector. The centerness and classification scores are
used to extract object-related knowledge hidden in source
and target domain. Firstly, since centerness map can high-
light object centers, it is employed to attend foreground-
sensitive features using Hadamard multiplication. On the
other hand, we can also obtain background-related repre-
sentation through reversing the activation value of centr-
erness map. Then, these object/non-object features are used
to train a binary classifier shared by the source and target
domains, as shown by blue dashed lines in Figure 2. Sec-
ondly, the classification confidence map describes the cat-
egory response of each pixel position in the feature map.
We first define the representation of all classes, and then
calculate the category cross-correlation matrices in source,
target, and cross domains as the relationship descriptors.
The object-related and domain-independent knowledge is
mined by explicitly constraining the consistency between
category relationship graphs in different scenarios. The spe-
cific optimization objective and training processes are de-
tailed in Section 3.2 and Section 3.3. In conclusion, the
proposed knowledge transfer modules are bridges connect-
ing the source and target domains, which can effectively
capture the commonality of objects to be detected.

3.2. Domain independent classifier

From the perspective of biological cognition and objec-
tive facts, humans have a good recognition ability for target
objects in different scenes, environments and weather con-
ditions. We speculate that this may be attributed to two rea-
sons. First, humans have learned the intrinsic knowledge of
objects, which is irrelevant to the environment. For exam-
ple, cars parked on city streets and trucks driving on coun-
try roads have common characteristics, such as shape and
volume, which are also called shared attribute knowledge.
If the model can extract object-specific features and use
them to complete subsequent classification, regression and
other predictions, the degradation problems that occur dur-
ing cross-domain testing will be alleviated. On the contrary,
if inference process is implemented by using the feature rep-
resentation that is confused with scene information, then the
predicts of detectors could be easily affected by the distri-
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Figure 2. The schematic of our framework. Given the source and target images, a shared backbone network is used to extract image
features. Settings of detection part are consistent with FCOS. Fs and Ft are knowledge maps in source and target domains. We compute
Hadamard product � of centerness maps CTR and Fs(Ft) to obtain object intrinsic properties. Similar calculation is performed between
classification maps CLS and Fs(Ft) to extract specific category knowledge.

bution of data domain. Therefore, we build a domain inde-
pendent classifier through self-supervised learning, which
aims to accurately classify the foreground and background
activation features from both domains. In order to gener-
alize in source and target datasets, the model needs to ex-
tract consistent features of foregrounds and backgrounds
in different scenarios, otherwise it will cause classification
losses due to misjudgment. To summarize, the detector is
guided to have unified predictions in both domains by train-
ing domain-invariant foreground and background classifier.

In practice, the predicted centerness map derives two
kinds of mask guidance that can highlight the position cod-
ing of foreground and background pixels with great proba-
bility. Assume that the knowledge feature map extracted by
FCB (the blue one) is F ∈ RH×W×K , where K represents
the feature dimension andH×W corresponds to the spatial
size. The mechanism of attribute knowledge mining works
as follows. First, we compute Hadamard product of F and
the centerness to get object-related features. As the shape of
class-agnostic centerness map is CTR ∈ RH×W , it needs
to be duplicated for K channels to perform element-wise
operation. Second, the sigmoid function is used to activate
CTR, so we can get background-attentive mask by sub-
tracting it from ones matrix. Then, the Hadamard operation
is repeated with newly calculated weight map (1 − CTR)
to extract background features. Finally, an adaptive av-
erage pooling layer fuses the 2D representation of fore-
ground/background into a feature vector (FG/BG), which
is shown by blue dashed lines in Figure 2. The entire feature

extraction process can also refer to Eq. (2):

FG =

∑H
m=1

∑W
n=1 CTR(m,n)× F (m,n)

H ×W
,

BG =

∑H
m=1

∑W
n=1(1− CTR(m,n))× F (m,n)

H ×W
.

(2)

In this way, each feature map can produce two semanti-
cally aggregated 1D vectors for optimizing the proposed bi-
nary classifier. During training, input images come from the
source and target domain. Since source domain dataset pro-
vides supervision signals to ensure the validity of centerness
map, as long as classifier has the same class prediction for
background and foreground features in different domains, it
can be deduced that the detector does extract some common
knowledge. Moreover, the foreground/background features
in source and target datasets are aligned to a certain ex-
tent, which is analyzed in the supplementary material. For
simplicity, we set the classification label yi of object and
non-object features as 1 and 0, respectively. P(FG) is the
foreground probability and the corresponding optimization
objective Lintr is binary cross-entropy loss, which can be
written as:

Lintr = −
∑
i

yi log(P(FG)) + (1− yi) log(1− P(BG)).

(3)
Ideally, the classifier trained by Eq. (3) will predict FG
in different domains as 1, and BG as 0. In other words,
the detector’s perception of foregrounds in both domains
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should be similar. Compared with background clutter, fore-
grounds of different scenarios share some implicit but gen-
eral attribute knowledge. Although the strategy of ad-
versarial training is not introduced, our model is inclined
to extract and maintain intrinsic characteristics of objects
through knowledge mining and transferring, which reduces
the domain disparity from another perspective.

3.3. Relational knowledge constraints

In addition to intrinsic attribute knowledge, humans can
also capture the inherent relationship between object cat-
egories, which is not affected by external environments.
Simply put, the similarity between pedestrian and rider will
not decrease due to changes in weather, and the irrelevance
between car and sky will not be improved due to changes in
the scene. In this regard, we propose a non-parameterized
constraint to teach the detector to learn domain-independent
category relational knowledge as human does. A more fine-
grained alignment is performed in the following three steps.

First, determine how to describe the representation of a
certain category. Because the classification branch will out-
put the prediction that can characterize the category seman-
tics of each local region, we extract the representation from
knowledge feature maps element by element with the help
of classification confidence maps. As mentioned in Sec-
tion 3.1, the class score map CLS ∈ RH×W×C is obtained
from the prediction head, where C is the number of cat-
egories. After being activated by sigmoid function, each
pixel on CLS depicts the category response at that loca-
tion. With the pixel-level classification scores, we are able
to highlight the region where specific category should pay
attention and activate for representation. Through utilizing
the complementarity of all pixel-level features, the multi-
modal information of each category can be characterized
comprehensively. For instance, we multiply the confidence
map CLSij of j-th category by the feature map Fi and use
an average pooling layer to obtain the aggregated vector Vij
for i-th image. Then, the averaged Vj of all training sam-
ples is taken as the j-th category representation, which is
also shown by orange dashed lines in Figure 2.

Second, define the relationship between different cat-
egories. Given input images from source and target do-
main, the feature descriptors of each category is regarded
as one vertex of the relational graph. Then, we use two
2D feature sets Ps, Pt to maintain the class represen-
tation of source and target domain. Taking Cityscapes
and Foggy Cityscapes as examples, because datasets con-
tain eight categories, the shape of Ps and Pt is 8 × K,
where K denotes the channel dimension of feature maps
extracted from backbone network. Furthermore, the rela-
tional graph is constructed as G = {V, E}, where V is
the representation of each class, and E denotes an affin-
ity matrix that measures the correlation between every two

categories. More precisely, we calculate cosine similarity
(E∗ij =

V∗i ·V∗j

‖V∗i‖2·‖V∗j‖2
) between two items in the feature

sets to build E∗, which is symmetric and contains object-
related knowledge. As shown in Eq. (4):
Es =

[
Vs0 , Vs1 , · · · , Vsj

]T × [Vs0 , Vs1 , · · · , Vsj ]
Et =

[
Vt0 , Vt1 , · · · , Vtj

]T × [Vt0 , Vt1 , · · · , Vtj ]
Ec =

[
Vs0 , Vs1 , · · · , Vsj

]T × [Vt0 , Vt1 , · · · , Vtj ] ,
(4)

using class representation of both domains, we can con-
struct three relation descriptors with the shape of j × j, i.e.,
source Es, target Et, and cross-domain Ec cross-correlation
matrices through matrix multiplication. These relational
graphs are derived to depict the correlation between cate-
gories in the source and target domains.

Finally, a new optimization objective is added to con-
strain the consistency of category relationship knowledge
between different domains, which is calculated as follows:

Lrelation = Lcs + Lct + Lst

= SmoothL1(Ec − Es)
+ SmoothL1(Ec − Et) + SmoothL1(Es − Et).

(5)

There are three consistency constraints Lcs, Lct, Lst that
penalize the inconsistent relationship with larger loss and
relax the consistent ones with smaller gradient. SmoothL1

function can avoid gradient explosion caused by excessive
loss and gradient dispersion caused by too small value. The
proposed regularization can explicitly transfer relational
knowledge from source domain to the target domain. In
other words, the category correlation obtained in the labeled
dataset can be extended to the unlabeled data domain. Our
purpose is to make the detection model focus on object-
related and domain-independent knowledge, so as to im-
prove its testing performance in the target domain. The
rationale of consistency constraint is that the inherent re-
lations between object categories should be invariant to dif-
ferent domain distributions.

From what has been discussed above, the overall train-
ing objective of our framework integrates the supervised
detection loss Ldet on labeled source data and two knowl-
edge transferring losses, i.e., Lintr and Lrelation on both
domains:

Lall = Ldet + λ1Lintr + λ2Lrelation, (6)

where λ1 and λ2 are designed to balance the optimization
process and the default settings are 0.5 and 1. The cooper-
ation of Lintr and Lrelation leads to an adaptation that fo-
cuses on object-related knowledge, thus improving the gen-
eralization performance of original detectors. Furthermore,
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we extend these knowledge transfer modules to multi lay-
ers of the backbone network, which takes feature semantics
into account.

4. Experiment

In this section, we first introduce three domain shifts
datasets, including normal-to-foggy, synthetic-to-real as
well as cross-camera situation. Then, the detailed exper-
imental settings are also provided. Second, we compare
our KTNet with previous state-of-the-art detectors. In the
end, the ablation experiments and visualization analysis in-
tuitively demonstrate the effectiveness of our knowledge-
based transfer modules.

4.1. Datasets

Cityscapes→Foggy Cityscapes. The Cityscapes dataset
consists of 3,475 street scene images in different cities,
which are captured by onboard cameras under normal
weather condition. Foggy Cityscapes dataset is created by
adding fog noise, so the images and annotations of two
datasets are compatible. We regard the former and the lat-
ter as source and target domain respectively. In this exper-
iment, we only employ the training set of Cityscapes for
supervised learning and test the final model on foggy envi-
ronments. There are 2,975 labeled training samples and 500
testing images.

Sim10k→Cityscapes. Sim10k dataset is obtained in the
computer game scene of Grand Theft Auto V. We use 10k
synthesized city scene images for training and evaluate de-
tection accuracy on the testing set of Cityscapes. Note that
only car objects are used in training, we report the results of
common category among two datasets, which is the same
as [8] for fair comparison.

KITTI→Cityscapes. KITTI dataset contains 14,999
images collected by vehicle-mounted cameras in real-world
traffic scenes, with 7,481 for training and 7,518 for testing,
which is widely used for autonomous driving research. In
the experiments of cross-camera adaptation, KITTI dataset
is set as the source domain and Cityscapes dataset consti-
tutes target domain. According to the protocol of [8], we
also evaluate detection accuracy on cars.

4.2. Implementation details

Considering generalization, we build the domain-
adaptive model based on two kinds of backbone network,
i.e., VGG-16 [40] and ResNet-101 [15], which are pre-
trained on ImageNet-1K [33]. For the training process de-
scribed in Section 3, two NVIDIA 1080 Ti are employed
and the mini-batch per GPU is set to 4 images. More
concretely, our model is trained for 24,000 iterations and
stochastic gradient descent optimizer is applied to update
the parameters. The learning rate is initialized to 0.005,

Method personrider car truck bus trainmbikebikemAP
DAF[8] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
SCDA[55] 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8
MAF[16] 28.2 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0
SWDA[34] 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
MDA[48] 33.2 44.2 44.8 28.2 41.8 28.7 30.5 36.5 36.0
GACA[19] 41.9 38.7 56.7 22.6 41.5 26.8 24.6 35.5 36.0
ECR[49] 32.9 43.8 49.2 27.2 45.1 36.4 30.3 34.6 37.4
CTF[52] 34.0 46.9 52.1 30.8 43.2 29.9 34.7 37.4 38.6
ATF[17] 34.6 47.0 50.0 23.7 43.3 38.7 33.4 38.8 38.7
D&M[23] 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2 34.6
PDA[20] 36.0 45.5 54.4 24.3 44.1 25.8 29.1 35.9 36.9
KTNet 46.4 43.2 60.6 25.8 41.2 40.4 30.7 38.8 40.9

Table 1. Experimental results (%) on adaptation from Cityscapes
to Foggy Cityscapes.

Method Sim10k→C KITTI→C
DAF[8] 39.0 38.5
SWDA[34] 40.1 37.9
MAF[16] 41.1 41.0
MDA[48] 42.8 -
ATF[17] 42.8 42.1
SCDA[55] 43.0 42.5
CTF[52] 43.8 -
PDA[20] 43.9 -
GACA[19] 49.0 43.2
KTNet 50.7 45.6

Table 2. Experimental results (%) of adapting Sim10k/KITTI to
Cityscapes (C). Average precision is evaluated on Car category.

warmed up in the first 500 iterations and decayed by a fac-
tor of 0.1 at 20,000 iterations. We use the PyTorch frame-
work [29] to implement the training and testing process. In
order to better illustrate our ideas and designs, the code is
available at https://github.com/kuntian18/KTNet.

4.3. Comparison with state-of-the-art methods

In this section, we conduct experiments under three
cross-domain settings and make comparison to previous
state-of-the-art models, including feature-level adaption:
DAF [8], SCDA [55], MAF [16], SWDA [34], MDA [48],
GACA [19], ECR [49], CTF [52], ATF [17] and pixel-level
adaption: D&M [23], PDA [20].

Normal to Foggy. The experiments from normal images
to foggy images are reported in Table 1. The KTNet obtains
40.9% mAP detection accuracy that surpasses all the coun-
terparts on weather transfer task. Compared with the best
feature-level adaption method, KTNet has higher accuracy.
Especially for person and car categories, the average pre-
cision has improved by 4.5% and 3.9%. Despite not using
style transfer algorithm for data augmentation, our approach
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Method backbone person rider car truck bus train mbike bike mAP
Source-only VGG-16 26.3 24.9 31.4 6.2 15.4 6.5 10.3 23.9 18.1
+IK VGG-16 30.1 29.8 36.7 5.5 18.7 1.7 14.9 27.3 20.6
+RK VGG-16 43.3 40.7 59.1 24.6 39.8 28.2 30.6 35.9 37.8
+IK+RK VGG-16 46.4 43.2 60.6 25.8 41.2 40.4 30.7 38.8 40.9
Oracle VGG-16 49.6 44.8 67.6 28.7 48.9 35.5 30.8 36.9 42.9
Source-only ResNet-101 33.5 34.5 37.2 19.2 27.1 6.4 22.8 28.9 26.2
+IK ResNet-101 36.8 38.5 44.4 16.2 29.8 8.0 21.9 32.2 28.5
+RK ResNet-101 43.1 42.7 56.6 32.0 38.1 41.0 29.3 37.8 40.1
+IK+RK ResNet-101 43.0 42.7 60.0 32.3 46.6 38.4 31.2 38.2 41.5
Oracle ResNet-101 47.2 46.6 66.5 30.3 52.6 35.4 32.2 36.7 43.4

Table 3. Ablation experiments on adaption from Cityscapes to Foggy Cityscapes. IK represents that mining intrinsic attributes knowledge
via domain-invariant classifiers. RK denotes that maintaining the consistency of class relational knowledge in different domains.

still exceeds the state of the art [20] by 4.0% mAP. The in-
crease of detection accuracy demonstrate that the model can
better adapt to different weather conditions.

Synthetic to Real. Due to the huge cost of manual an-
notation, training with synthetic data has attracted more and
more attention. The second domain transfer scenario is
from synthetic images to real ones. As shown in the left part
of Table 2, KTNet performs better than the previous meth-
ods using gradient reverse layers, which achieves 50.7% AP
with a gain of 1.7% over the second-best model.

Cross Camera Adaptation. It is widely existed in
the field of autonomous driving that the setup of vehicle-
mounted cameras and the layout of street scenes are both
different. Another domain-shift task is cross-camera adap-
tation from KITTI dataset to Cityscapes dataset. The results
of different methods are reported in the right part of Table 2.
It is obvious that KTNet has reached a higher level (+2.4%
AP) than the state of the arts, which consistently validates
that knowledge transferring does reduce the domain gap be-
tween different scenarios.

Experiments on the above three benchmark settings
show that the proposed method yields certain improvements
over existing state-of-the-art methods, and the detection ac-
curacy is increased by 1.7% to 2.4%. Next, we will investi-
gate the effectiveness of each designed knowledge transfer
modules.

4.4. Ablation Study

In order to further analyze the proposed method, we pro-
vide some in-depth ablation studies that are recorded in Ta-
ble 3. The base model is referred as the source-only trained
detector. First, we alternately apply domain-invariant clas-
sifiers (IK) and relational consistency constraints (RK) to
quantify the benefits brought by each knowledge transfer
module. Second, IK and RK are introduced in the base
model simultaneously to verify their collaboration capabili-
ties. Finally, to further investigate the robustness of knowl-
edge transfer paradigm, we repeat the above experiments

based on a new backbone network (ResNet-101).
With the help of domain-invariant classifier, the accuracy

of source-only model has been upgraded, which proves that
exploiting common knowledge of foregrounds can boost the
transferability of the detector. However, training domain-
invariant classifiers can only implicitly align foreground and
background features in different domains, and thus the im-
provements are limited (no more than 2.5%). The task of
object detection not only has to distinguish objects and non-
objects, but also needs to accurately identify specific cate-
gories of the foregrounds. To this end, we design another
module to capture class-aware information.

As listed in the third row of Table 3, adding category con-
sistency constraints considerably improves the results, e.g.,
19.7% gains compared with the baseline without adaptation.
In contrast to domain-invariant classifiers, explicitly con-
straining the category relationship to be consistent can more
directly teach the model to extract class-specific features
and alleviate the impact of domain distribution changes. Al-
though relational consistency constraints provide more sig-
nificant improvements, RK and IK essentially concentrate
on different object knowledge. The former considers cor-
relation between various categories, while the latter focuses
on extracting common knowledge of all foregrounds in a
class-agnostic manner. As such, these two transfer mod-
ules act as a different role. Combining both of them is
complementary and boosts the highest detection accuracy.
The 4-th row of Table 3 also convey the same argument
that common attribute knowledge and relational knowledge
can cooperate well to improve the performance of detectors
in cross-domain scenarios. After replacing VGG-16 with
ResNet-101 as the backbone network, it can be observed
that compared with non-adaptive models, the detection ac-
curacy of our method is increased consistently. The mean
average precision is enhanced by 22.8%/15.3% with VGG-
16/ResNet-101 respectively. Oracle indicates the detector
is trained and tested on the target domain. An interesting
result is worth noting. The performance of KTNet with IK
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Figure 3. Comparison of object activation response. The first row
shows original testing images in the target domain. The second
and third rows present attentive regions from source-only model
and our KTNet, respectively. Best viewed in color.

and RK in person, rider, truck and mbike is close to that of
the oracle model. For train and bike categories, the accuracy
of KTNet is even higher.

In summary, we can directly perceive the superiority of
our proposed knowledge transfer modules. Comprehensive
experiments have confirmed the argument that “focusing on
object-related and domain-independent knowledge can ef-
fectively improve the robustness and generalization of the
detector”. The results also demonstrate that our designs can
be generalized to different feature extractors.

4.5. Qualitative visual analysis

In addition to quantitative comparison of experimental
results, we also provide qualitative visual analysis to illus-
trate our claim that the transfer of object-related knowledge
is conducive to training a domain adaptive detector.

We first exhibit some visualization examples that our
model tries to localize foreground objects. In Figure 3, the
source-only model pays more attention to the background,
but after introducing the knowledge transfer modules, KT-
Net is able to maintain activation response to foreground
regions and suppress the focus on irrelevant background
noise. The warmer the color, the stronger the response.

Thanks to effective knowledge transferring, the detection
network can activate objects of interest more accurately in
the target domain and thus leads to better adaption results.
As displayed in Figure 4, green, red and blue boxes are true
positives, false positives and false negatives. Due to do-
main discrepancy, the non-adaptive models (1st row) only
respond to some salient objects. Missing detection is an
urgent problem to be solved. On the other hand, the pro-
posed method (2nd row) can not only detect more fore-

Figure 4. Qualitative examples on the target domain. The results
of the first and second rows are from source-only model and KT-
Net. The first column to the second represent two cross-domain
settings: Cityscapes→Foggy Cityscapes, SIM10k→Cityscapes.
More visualizations are available in the supplementary material.

grounds (i.e., increase the true positives), but also reduce
false alarms. Even when the source and target domains have
completely different styles, our model can still localize and
identity objects correctly.

5. Conclusion

In this paper, we have proposed a cross-domain detection
model based on the idea of knowledge transferring, which
can be regarded as a new paradigm of domain adaptive
framework, in addition to adversarial training and genera-
tive models. Specifically, we present two novel knowledge
transfer modules that can be applied as plug-and-play com-
ponents. First, the domain-invariant classifier is designed
to explore common attribute knowledge of foreground ob-
jects in source and target domains, which effectively aligns
feature distributions from another perspective. Second, we
model the relationship between object categories, and main-
tain this inherent knowledge by explicitly constraining the
consistency of category correlation in different domains.
The incorporation of these two delicately designed modules
further refreshes the best historical performance under var-
ious cross-domain settings. Our study also reveals a crucial
aspect to the success of adaptive detection, that is, focus-
ing on object-related and domain-invariant knowledge can
effectively improve the robustness of detectors in different
testing scenarios.
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