
Learning Video Localization
on Segment-Level Video Copy Detection

with Transformer

Chi Zhang1,2 , Jie Liu2 , Shuwu Zhang3, Zhi Zeng2,3 , and Ying Huang3(B)

1 University of Chinese Academy of Sciences, Beijing, China
2 Institute of Automation, Chinese Academy of Sciences, Beijing, China
3 Beijing University of Posts and Telecommunications, Beijing, China

ying.huang@bupt.edu.cn

Abstract. At present, research on segment-level video copy detection
algorithms mainly focuses on end-to-end optimization from key frame
selection and feature extraction to similarity pattern detection, causing
the deployment of such algorithms to be difficult and expensive, and
ignoring specific research on optimizing detectors for similarity pattern
detection. To address the above issues, we propose the segment-level
Video Copy Detection Transformer (VCDT), a transformer-based detec-
tor designed for similarity pattern detection. Its main novelty can be
summarized by two points: (1) An anchor training strategy that allows
the model to use the positional prior information in the anchor boxes to
make predictions more precisely, (2) A query adaptation module to fine-
tune the anchor boxes dynamically. Our experiments show that, without
bells and whistles, VCDT achieves state-of-the-art performance while
showing an impressive convergence speed.

Keywords: Video Copy Localization · Content Based Video
Retrieval · Temporal Alignment

1 Introduction

Segment-level video copy detection, also known as video copy localization, aims
to locate the start and end times of the copied segments in a pair of potentially
copied videos. As the phenomenon of copying emerges endlessly in many videos,
segment-level video copy detection has turned into one of the most urgent tech-
nologies in copyright protection. An efficient and popular pipeline has been sum-
marized in [11]. As shown in Fig. 1, first, the two videos get their respective key
frames through key frame selection, and then the features of frames are obtained
through feature extraction. After that, cosine similarities of the features are cal-
culated to generate the frame-to-frame similarity matrix. Finally, by detecting
similarity patterns of copied segments on the matrix, the video copy localization
system can give predictions of the start and end timestamps of the copied seg-
ments. Traditional methods for similarity pattern detection include Temporal
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14260, pp. 439–450, 2023.
https://doi.org/10.1007/978-3-031-44195-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44195-0_36&domain=pdf
http://orcid.org/0009-0003-8705-2814
http://orcid.org/0000-0001-8204-424X
http://orcid.org/0000-0003-2150-2088
https://doi.org/10.1007/978-3-031-44195-0_36

440 C. Zhang et al.

Frame
Features

… …
Copied
Pairs

Key
Frames

Similarity
Matrix Predictions

Ground Truths Evaluation

Fig. 1. A popular video copy localization pipeline nowadays. Elements marked in dark
red on the similarity matrix indicate that they have a greater value than surrounding
elements. (Color figure online)

Networks [13,18,19], Dynamic Programming [2], Temporal Hough Voting [4,13],
etc. In recent years, due to the superior performance of deep object detectors,
many works such as [8,11] have replaced these traditional methods with deep
detection models to detect similarity patterns on the similarity matrix.

However, there are some omissions in the current research. First, as the per-
formance improvement of object detection algorithms slows down [3], the focus
of research has become to simultaneously optimize key frame extraction, feature
extraction, and similarity pattern detection to seek the end-to-end optimum
to improve performance [6,8,11,19]. But most of the video databases store the
extracted key frame features, so this kind of algorithms are difficult to completely
deploy, leading to performance limitations. Second, most video copy localiza-
tion algorithms directly use existing deep object detectors for similarity pattern
detection, but these detectors are usually designed for detecting natural objects
in the real world. From the two points above, it is necessary to modify the general
object detectors to make them more suitable for detecting similarity patterns.

To address the two issues mentioned above, we propose VCDT: the segment-
level Video Copy Detection Transformer, a transformer-based detector to detect
similarity patterns of copied segments on similarity matrix. The VCDT is a
DETR-like model, since it is improved from DINO [22], which is a variant of
DETR [1]. There are 2 main contributions in VCDT:

– Anchor training: We propose a novel method to introduce anchor boxes
into transformer detector for similarity pattern detection. In this way, the
positional prior information in anchor boxes effectively improves the perfor-
mance of the model. Besides, with this strategy, the Hungarian matcher can
be removed to speed up the convergence of the model.

– Query adaptation module: We propose a query adaptation module to
dynamically adjust anchor boxes. In this way, the anchor box can provide a
more accurate initial position and size for the final prediction, which further
improves the performance of the model.

Video Copy Detection Transformer 441

Our experiment results show that, without bells and whistles, VCDT out-
performs the previous state-of-the-art (SOTA) method without optimizing key
frame selection and feature extraction. In addition, our method yields an impres-
sive convergence speed.

2 Related Work

Video copy detection is one of the important tasks in multimedia retrieval.
Datasets like FIVR [14] and SVD [12] are commonly used benchmarks of video-
level copy detection algorithms. Since 2014, the most widely used segment-level
video copy detection dataset is VCDB [13], which contains more than 9,000
copied segment pairs. VCSL [9] proposed by He et al. in 2022 is the largest
dataset for segment-level video copy detection, including 280k copied segments.

As for video copy localization algorithms, common traditional methods are
Temporal Networks [13,18], Dynamic Programming [2], and Temporal Hough
Voting [4,13], etc. [10] formulated the similarity pattern detection as an object
detection problem, [11] inherited this way, and proposed a novel frame extraction
method, so that the model can be trained end-to-end. Besides, both [8] and [19]
use attention layer to enhance frame features to improve performance.

For transformer [20] detectors, DETR [1] is the earliest transformer-based
detector. There are also attempts on other structures of transformer-based detec-
tors, and a typical work is ViTDet [15]. Anchor-DETR [21] uses anchor boxes
to introduce prior information, which is close to our method. Besides, some
vision transformers also perform well on detection tasks, such as Swin Trans-
former [16]. Deformable-DETR [23] proposed deformable attention, thus greatly
boosting up the convergence speed. Based on Deformable-DETR, Zhang et al.
proposed DINO [22], which is currently the most powerful DETR variant.

3 Method

3.1 Problem Formulation

Given a pair of potentially copied videos (V Q, V R) = ({fQ
n }NQ

n=1, {fR
n }NR

n=1),
where Q and R denote query video and reference video, N is the number of
video frames, and f is the frame feature. Usually, the videos are organized as
matrices V = {fQ

n }NQ

n=1 ∈ RN×d, and each row is a normalized feature vector.
The format of annotations is [(iQs1, i

Q
e1, i

R
s1, i

R
e1), (i

Q
s2, i

Q
e2, i

R
s2, i

R
e2, . . .], where sn and

en are the start and end frames of the n-th copied segment, and i represents the
frame index. The frame to frame similarity matrix will be:

S = V Q(V R)T = (si,j) ∈ RNQ×NR

(1)

Then, the similarity pattern detection is executed on the matrix, and the detector
can give the prediction as one or several bounding box(s), whose four coordinate
values are just the prediction of a copied segment.

442 C. Zhang et al.

…

Backbone

Encoder

Decoder

Query Fine-tune

Eval / Loss

Cluster Learnable
Content Queries

Multi-Scale
Features

Positional
Embeddings

Flatten

GT Boxes

Similarity
Matrix

Fine-tune
Anchors

Keys &
Values

Dataset

Predictions

Fig. 2. Overview of our method. The solid and hollow squares represent content queries
and positional queries respectively. The “Query Fine-tune” is our proposed query adap-
tation module, which is responsible for boosting the initial queries.

3.2 Model Overview

VCDT is mainly modified from DINO [22], and just like other DETR-like models,
it contains a multi-layer transformer encoder, a multi-layer transformer decoder,
and a MLP prediction head. Figure 2 shows the pipeline of our method. Given a
similarity matrix, the backbone like ResNet [7] treats it as an image and yields
multi-scale features. Then, features with corresponding positional embeddings
are fed into the encoder to be enhanced. Instead of initializing reference boxes
from encoder output as DINO, the anchor boxes clustered from the training
data will serve as the initial reference boxes in our method. In addition, we
add a query adaptation module before decoder, which initializes decoder queries
and fine-tunes the anchor boxes. Finally, the decoder outputs the prediction
bounding boxes by refining the initial reference boxes layer by layer, and each
prediction has a confidence score.

3.3 Anchor Training

It has been proven in classic deep detection models like YOLO [5], that the
anchor boxes can improve the performance of model by introducing positional
prior information. As shown in Fig. 1, the similarity patterns basically follow
the same two characteristics: a. Appearing as a path on, or near the main or
auxiliary diagonal of the similarity matrix. b. The element values on the path are
greater than the surrounding elements. Therefore, similarity pattern detection
can be formulated as a single-class object detection problem.

The most representative work of introducing anchor boxes into the DETR
architecture is Anchor-DETR [21]. However, since Anchor-DETR is a general
detector, it is designed not to be sensitive to the number of classes, and its anchor
boxes are manually set without obtaining prior information from data, because
the positional prior information obtained from multiple classes will confuse each
other and lose the ability to predict a certain category’s target. As shown in
Fig. 2, we take the cluster centers of training data as the anchor boxes:

A = Cluster(tgt) (2)

Video Copy Detection Transformer 443

where A ∈ RNq×4 denotes anchor boxes. tgt ∈ RNt×4 denotes all the ground
truth bounding boxes in training set. Nq is the number of decoder queries. Note
that the anchor boxes are set as parameters of the model, so that the model can
utilize the positional prior information in them during inference.

In a single input, namely a similarity matrix, there may be more than one
target that corresponds to the same anchor box. In order to handle this, Anchor-
DETR [21] sets Np patterns for each decoder query, so that one query can
predict Np boxes. However, when the number of targets belonging to the same
anchor is greater than Np, there will be predictions refined by other anchors are
selected by the Hungarian matcher to calculate the loss with the extra targets,
thus misleading the learning process. Here, our solution is to merge the targets
belonging to the same anchor:

tk = Merge({tk,j}N
k

j=1) (3)

tik =

⎧
⎨

⎩

min({tik,j}N
k

j=1
), i ∈ {0, 1}

max({tik,j}N
k

j=1
), i ∈ {2, 3}

(4)

where k denotes the k-th anchor box, tk denotes the merged target, and Nk is
the number of all targets belonging to this anchor box in the current training
sample. tk,j means the j-th target belongs to the k-th anchor. Note that both in
Eqs. 3 and 4, tk and tk,j are of the form (x0, y0, x1, y1), which means the first two
dimensions are normalized coordinates of left top, and the last two dimensions
are right bottom. Considering it is important to recall all the copied segments
in copyright protection, we design this Merge function so that when there are
multiple targets corresponding to one anchor, a prediction wrapping these target
boxes will be output to recall them all.

Additionally, because each target has been bound to its cluster center, that
is, the anchor box, in the clustering process, the Hungarian matcher is no longer
needed to match predictions and targets, which makes the convergence of the
model being greatly faster than the original DINO [22].

3.4 Query Adaptation Module

Just as DETR [1] and almost all its variants follow, the decoder query consists
of two parts, which respectively contain the positional information of the initial
reference box and the content information of current input:

Q = Qc + Qp (5)

where Q ∈ RNq×C is the decoder queries, and C denotes the dimension of
the query. Superscript c and p stand for content query and positional query.
One thing that’s very important is the initialization of queries Q. Usually Qp is
obtained by sine-cosine encoding the initial reference boxes, so the problem of
initializing Qp is how to initialize the reference boxes:

Qp,init = Sine(Ref init) (6)

444 C. Zhang et al.

where Ref init ∈ RNq×4 denotes initial reference boxes, and Sine is the sine-
cosine encoding. DINO [22] initializes Ref init from the encoder output embed-
dings, and leaves the Qc as model’s parameters and learnable:

Qc = Embedding(Nq, C) (7)

Recall Sect. 3.3 and Fig. 2, in our model, Ref init is the anchor boxes, namely
A in Eq. 2, lacking the information of current input similarity matrix included
in encoder output embeddings. Therefore, we add a query adaptation module
before the decoder, which is composed of a cross-attention layer, a self-attention
layer and a feed-forward network:

Qf = FFN(MHA(MSDA(Q,K, V))) (8)

where
Q = Qc + Qp = Embedding(Nq, C) + Sine(A) (9)

K = V = encoder output (10)

In Eq. 8, MSDA is the multi-scale deformable attention layer that implements
cross-attention, MHA is the multi-head attention layer to implement self-
attention, and FFN is the feed-forward network. In Eq. 9, we set content queries
Qc the same as Eq. 7, and positional queries Qp is the sine-cosine embedding of
anchor boxes in Eq. 2. In Eq. 10, the encoder output ∈ RH×W×C serves as the
keys and values in Eq. 8. At last, after Qf ∈ RNq×C pools the information of
current input similarity matrix from encoder output, it is used to fine-tune the
anchor boxes, and serves as the content queries of decoder:

Qd = Qd,c + Qd,p (11)

where
Qd,c = Qf (12)

Qd,p = Sine(Encode(Qf) + A) (13)

Superscripts c and p denote content and positional query respectively, as always.
A is the anchor boxes as in Eq. 2, and the function Encode is an auxiliary
prediction layer in the query adaptation module to predict the offset of A from
Qf . Finally, the queries that will be feed into decoder are the Qd ∈ RNq×C

in Eq. 11, which contain not only the content information of the current input
similarity matrix, but also the positional prior information from the training set.

3.5 Learning Objective

We adopt the same configuration as DINO [22] to optimize the model: L1 loss
and GIOU loss for box regression and focal loss for classification.

Video Copy Detection Transformer 445

Table 1. Main results of the comparison on VCSL dataset. ∗ indicates that the per-
formance of these methods are published by the VCSL official team in [8]. † indicates
that these methods follow the same hyperparameters, and the performance are taken
from the convergence point.

Method HV∗ TN∗ DP∗ DTW∗ SPD∗ TransVCL∗ DINO† Deformable DETR† VCDT (ours)†

Recall 86.94 75.25 49.98 45.10 56.49 65.59 64.78 64.89 65.70

Precision 36.82 51.80 60.61 56.67 68.60 67.46 67.83 67.19 70.34

F1-score 51.73 61.36 54.48 50.23 61.96 66.51 66.27 66.02 67.94

Table 2. Comparison of the video-level
performance.

Method FRR FAR F1-score

SPD 0.2974 0.0958 79.08

TransVCL 0.1666 0.0173 90.19

VCDT 0.1594 0.0157 90.68

Table 3. Comparison on VCDB. * indi-
cates fixed anchors.

Method Recall Precision F1-score

TransVCL 76.69 74.09 75.37

VCDT* 77.12 75.01 76.05

VCDT 77.37 75.34 76.34

4 Experiments

4.1 Datasets and Evaluation Metrics

We use the VCSL dataset [9] due to its remarkably large scale. Besides, we adopt
VCDB [13] to verify the generalization ability of the anchor boxes.

For evaluation metrics, we use the novel method proposed in VCSL [9] to
calculate recall and precision. Rather than metrics like Intersection over Union
(IOU) that are used in object detection, this metric can better reflect the perfor-
mance of video copy localization. Besides, we adopt F1-score to reflect the overall
performance. Because there are many distractive samples in the testing set that
do not have any copied segments, we also adopt False Rejection Rate (FRR) and
False Alarm Rate (FAR) to evaluate the video-level retrieval performance.

4.2 Implementation Details

Experiments are performed on a single NVIDIA GeForce RTX 3090. The cluster
method is K-Means, and the number of queries, namely the number of anchor
boxes, 100. Backbone is ResNet50 [7], which extracts 4-scale features. The opti-
mizer is AdamW, and the initial learning rate is 1 × 10−4. Batch size of 8, and
weight decay 1 × 10−4. The confidence threshold of valid predictions is 0.32.

4.3 Main Results

Performance. We compare the performance of our method with several typ-
ical algorithms. There are four traditional methods, including Hough Voting
(HV), Dynamic Programming (DP), Temporal Network (TN) and Dynamic
Time Warping (DTW). Two CNN-based methods SPD [11] and TransVCL [8]

446 C. Zhang et al.

Fig. 3. Convergence curves on VCSL of the three transformer-based methods.

(SOTA). In addition, since our method is mainly improved from DINO [22],
and DINO is derived from Deformable-DETR [23], we also add them in the
comparison. The main results are shown in Table 1, where we can see that our
method (VCDT) outperforms all other methods. Compared with the previous
SOTA method TransVCL, our method (VCDT) has a significant improvement
in the F1-score (+1.43%), reaching 67.94%. Especially in terms of precision, our
method reaches 70.34%, having strong advantages over TransVCL (+2.88%)
and SPD (+1.74%), both of which use CNN detectors. For the video-level per-
formance reflected by FRR and FAR, our method exceeds the previous SOTA
TransVCL by +0.49% F1 as shown in Table 2. As for the other two transformer-
based detectors, our method improves +1.92% and +1.67% F1 respectively com-
pared to Deformable-DETR [23] and DINO [22].

Convergence Speed. During the experiment, we found that the transformer-
based models converge very fast on the dataset in 20-epoch setting experiment.
Therefore, in order to verify the effect of our strategies on improving the conver-
gence speed, we save the models every 0.1 epoch and verify their performance on
the testing set. The convergence curves are plotted in Fig. 3. Our method pro-
vides an impressive convergence speed, and it reaches convergence in less than 1
epoch, which means 2.1× faster than the original DINO (1.9 epochs) and 2.4×
than the Deformable-DETR (2.2 epochs). Moreover, compared with the method
SPD [11], which also does not enhance the frame features and similarity matri-
ces as we do, our method reaches 63.35% F1 at only 0.2 epoch, and leads SPD
(61.96%) by +1.39% F1. This means that VCDT only needs 2442 iterations, or
19536 training samples to defeat the CNN-based method significantly.

Generalization. Since the anchor boxes are obtained from the training data, it
is necessary to verify the generalization ability of them on different benchmark.
We trained two versions of VCDT on VCDB [13], one of which fixes the anchor
boxes obtained from VCSL [9], and the other one is trained from scratch. The
results are shown in Table 3, and it is intuitive that the version trained from
scratch performs better. However, the performance gap (0.29% F1) between the

Video Copy Detection Transformer 447

Table 4. Ablation comparison of our proposed strategies. “AT” and “QAM” represent
our anchor training and query adaptation module strategies. In the “Epoch” column
are convergence points of the methods.

#. Method Epoch Recall Precision F1-score

1. DINO (baseline) 1.9 64.78 67.83 66.27

2. +AT 1.1 65.52 67.53 66.46

3. +AT+QAM (ours) 0.9 65.70 70.34 67.94

two versions is acceptable, indicating the generalization ability of anchor boxes.
In addition, both versions are stronger than TransVCL (SOTA) [8].

4.4 Ablation

The results of our ablation study are shown in Table 4. DINO [22] is set as
the baseline, since our method is mainly modified from it. Note that the query
adaptation module cannot be separated from the anchor training to be an inde-
pendent strategy. Compared with the baseline, the anchor training reduces the
convergence point from 1.9 epochs to 1.1 epochs, which means a 73% increase
in convergence speed. In addition, the recall is obviously increased (+0.74%),
which shows the effect of the merge function in Eq. 4. However, compared to the
reference boxes from the encoder output in DINO, the anchor boxes obtained
from training data lack information about the current input, despite including
prior information, so the precision decreases slightly. Still, anchor boxes brings
performance improvement (+0.19% F1) to the model and obviously accelerates
the convergence, illustrating the superiority of positional prior information.

After appending the query adaptation module before decoder, the anchor
boxes can provide more accurate initial reference positions and sizes, so that the
overall performance of model is further improved, and achieves state-of-the-art.

4.5 Visualization

We combine visualization to analyze the mechanism behind the performance
growth. For DINO [22], since the training process is a single-class object detec-
tion task, in the initial stage of the learning, the model tends to use only a part of
decoder queries to predict targets, and these queries therefore learn more infor-
mation from the backpropagation. Then, the Hungarian matcher always matches
targets with the predictions from these queries, because their predictions have
higher confidence scores. Finally, there is an unbalanced learning between queries
which result in a waste of parameters. In the PyTorch [17] implementation, the
queries that dominate the initial learning stage are those in the front of the
decoder, which have the smallest indexes. The above analysis can be easily veri-
fied in Fig. 4. In DINO, as the index increases, there is a very large gap between
the number of predictions output by the subsequent queries and the previous

448 C. Zhang et al.

(a) DINO

(b) VCDT(Ours)

Fig. 4. Visualization of the predictions from the first 12 decoder queries of DINO and
VCDT. The blue points represent the centers of prediction boxes, and the green points
are centers of the anchor boxes corresponding to each query. (Color figure online)

(a) DINO (b) VCDT(Ours) (c) Ground Truth

Fig. 5. Visualization of the cross-attention. The red points are reference points, and
the blue points are sampling locations, where the darker points have greater attention.
(Color figure online)

ones. With the anchor training strategy, the predictions are more concentrated
and distributed near the corresponding anchor boxes, and the numbers of pre-
dictions between queries are also on the same level, which means VCDT can
make full use of all decoder queries to predict the targets.

We also observed that our strategy makes the model more sensitive to the
similarity patterns. Take the test sample in Fig. 5 as an example, where both
DINO [22] and VCDT have a valid output with nearly identical confidence,
and we visualize the cross-attention in the last decoder layer. The reference
point marked in red is the center of the current reference box, and the sampling
locations marked in blue are the positions on the input similarity matrix that
the attention layer focuses on. It can be observed that the reference point of

Video Copy Detection Transformer 449

VCDT is closer to the center of the ground truth than DINO. In Fig. 5(a), even
at the last decoder layer, the cross-attention is still searching for the target in a
lot of irregular positions. This is because DINO uses encoder output to initialize
reference boxes, causing the initial reference box’s center change frequently at
different inputs, and this didn’t happen in VCDT thanks to the anchor boxes.
With a stable initial position provided by anchor boxes, cross-attention in VCDT
learns a specific rule for finding similarity patterns. In Fig. 5(b), the sampling
locations proposed by VCDT are mostly on the line from upper left to lower
right, which just looks like the ground truth. Besides, points near the reference
point, and the ones at top-left and right-bottom are given greater attention
weights. Compared with DINO, the cross-attention of VCDT is obviously better
at finding the centers and starting and ending points of similarity patterns.

5 Conclusion

In this paper, we propose VCDT, a transformer-based detector for video copy
localization. Our method leads the previous SOTA by a large margin. In the
future, we hope that other researchers will be interested in further exploring the
potential of transformer architecture in segment-level video copy detection.

Acknowledgement. This work was supported by the National Key R&D Program
of China under Grant 2021YFF0901604.

References

1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58452-8 13

2. Chou, C.L., Chen, H.T., Lee, S.Y.: Pattern-based near-duplicate video retrieval and
localization on web-scale videos. IEEE Trans. Multimedia 17(3), 382–395 (2015)

3. Code, P.W.: Object detection on coco test-dev (2018). https://paperswithcode.
com/sota/object-detection-on-coco

4. Douze, M., Jégou, H., Schmid, C.: An image-based approach to video copy detec-
tion with spatio-temporal post-filtering. IEEE Trans. Multimedia 12(4), 257–266
(2010)

5. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOX: exceeding yolo series in 2021.
arXiv preprint arXiv:2107.08430 (2021)

6. Han, Z., He, X., Tang, M., Lv, Y.: Video similarity and alignment learning on
partial video copy detection. In: Proceedings of the 29th ACM International Con-
ference on Multimedia, pp. 4165–4173 (2021)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

8. He, S., et al.: TransVCL: attention-enhanced video copy localization network with
flexible supervision. arXiv preprint arXiv:2211.13090 (2022)

https://doi.org/10.1007/978-3-030-58452-8_13
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/object-detection-on-coco
http://arxiv.org/abs/2107.08430
http://arxiv.org/abs/2211.13090

450 C. Zhang et al.

9. He, S., et al.: A large-scale comprehensive dataset and copy-overlap aware eval-
uation protocol for segment-level video copy detection. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21086–
21095 (2022)

10. Hu, Y., Mu, Z., Ai, X.: STRNN: end-to-end deep learning framework for video
partial copy detection. In: Journal of Physics: Conference Series, vol. 1237, p.
022112. IOP Publishing (2019)

11. Jiang, C., et al.: Learning segment similarity and alignment in large-scale content
based video retrieval. In: Proceedings of the 29th ACM International Conference
on Multimedia, pp. 1618–1626 (2021)

12. Jiang, Q.Y., He, Y., Li, G., Lin, J., Li, L., Li, W.J.: SVD: a large-scale short
video dataset for near-duplicate video retrieval. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5281–5289 (2019)

13. Jiang, Y.-G., Jiang, Y., Wang, J.: VCDB: a large-scale database for partial copy
detection in videos. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.)
ECCV 2014. LNCS, vol. 8692, pp. 357–371. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10593-2 24

14. Kordopatis-Zilos, G., Papadopoulos, S., Patras, I., Kompatsiaris, I.: FIVR: fine-
grained incident video retrieval. IEEE Trans. Multimedia 21(10), 2638–2652 (2019)

15. Li, Y., Mao, H., Girshick, R., He, K.: Exploring plain vision transformer backbones
for object detection. arXiv preprint arXiv:2203.16527 (2022)

16. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted win-
dows. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 10012–10022 (2021)

17. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

18. Tan, H.K., Ngo, C.W., Hong, R., Chua, T.S.: Scalable detection of partial near-
duplicate videos by visual-temporal consistency. In: Proceedings of the 17th ACM
International Conference on Multimedia, pp. 145–154 (2009)

19. Tan, W., Guo, H., Liu, R.: A fast partial video copy detection using KNN and
global feature database. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 2191–2199 (2022)

20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

21. Wang, Y., Zhang, X., Yang, T., Sun, J.: Anchor DETR: query design for
transformer-based detector. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, pp. 2567–2575 (2022)

22. Zhang, H., et al.: DINO: DETR with improved denoising anchor boxes for end-to-
end object detection. arXiv preprint arXiv:2203.03605 (2022)

23. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable
transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159
(2020)

https://doi.org/10.1007/978-3-319-10593-2_24
https://doi.org/10.1007/978-3-319-10593-2_24
http://arxiv.org/abs/2203.16527
http://arxiv.org/abs/2203.03605
http://arxiv.org/abs/2010.04159

	Learning Video Localization on Segment-Level Video Copy Detection with Transformer
	1 Introduction
	2 Related Work
	3 Method
	3.1 Problem Formulation
	3.2 Model Overview
	3.3 Anchor Training
	3.4 Query Adaptation Module
	3.5 Learning Objective

	4 Experiments
	4.1 Datasets and Evaluation Metrics
	4.2 Implementation Details
	4.3 Main Results
	4.4 Ablation
	4.5 Visualization

	5 Conclusion
	References

