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ABSTRACT

We propose an approach for enhancing pedestrian detec-
tion in thermal infrared images using paired visible-thermal
images in training. Recently, approaches that retrieve the
corresponding visible features from thermal features using a
key-value memory network have been proven effective for
improving detection results. However, for memory networks
storing thermal-visible features, random initialization and
end-to-end training may not be ideal, as this can reduce the
diversity of memory slots. Also, the retrieved visible features
have different reliability as the overall similarities between
key slots in the memory network and thermal features differ.
These motivate us to propose a DIscrepancy Preserving (DIP)
Memory that is updated manually to prevent convergence
of key-value memory slots. We also evaluate the reliabil-
ity of each retrieved visible feature and adjust the training
protocol of the detection head. Experiment results on two
visible-infrared pedestrian detection datasets demonstrate the
superiority of our framework.

Index Terms— Thermal infrared pedestrian detection,
DIscrepancy Preserving (DIP) memory

1. INTRODUCTION

Pedestrian detection is a crucial research area of object de-
tection and has numerous applications in autonomous driv-
ing and video surveillance [1]. Visible images are vulnera-
ble to changes in illumination, and multispectral pedestrian
detection is gaining popularity [2, 3] as it achieves around-
the-clock detection. However, it requires sensors with beam
splitter configuration to acquire registered image pairs [4].
Such sensor is expensive to use in real-world applications.
What’s more, deep-leaning based multispectral pedestrian de-
tection networks require much computation as they usually
adopt two-stream architecture. Furthermore, the use of vis-
ible or multispectral systems can raise privacy concerns [5].
In this context, thermal imagery-based pedestrian detection is
gaining popularity in recent years.

∗Corresponding author(lubin.weng@ia.ac.cn)

Using thermal infrared images can perform well at night
but deteriorates at daytime due to massive heat radiation.
There’s a compromise solution of using visible images in
aiding the thermal images in training only. Kieu et al. [5]
introduced an auxiliary classification task and proposed the
conditioning layer to utilize the internal representation. They
also proposed the bottom-up and layerwise adaptation strate-
gies to train the detector incrementally [6]. Some researchers
have used GANs [7, 8, 9] to generate pseudo visible im-
ages for use in training. Marnissi et al. [10] considered this
problem as an unsupervised domain adaptation problem.

Recently, Park et al. [11] proposed the VPA Memory
for storing paired thermal-visible RoI features in a key-value
memory network. In the testing phase, the thermal features
serve as queries to recall the visible features from memory.
Similar architecture has been applied to enhance the detec-
tion results of small-scale pedestrians [12] and build detectors
that can handle both visible and thermal inputs [13]. Mem-
ory networks were first used in QA tasks [14], and since then
they have been utilized in other tasks such as anomaly detec-
tion [15], video object detection [16], and multimodal learn-
ing [17]. Generally, the parameters of the memory network
can be updated automatically by back-propagation or manu-
ally with specially designed algorithms.

In this paper, we build upon the work of Park et al. and
present the DIscrepancy Preserving (DIP) Memory. The di-
versity of memory slot pairs is crucial for achieving better
generalization, but end-to-end training cannot ensure this di-
versity, as there may exist many similar RoI features in train-
ing. We have designed a specific algorithm to update the pa-
rameters of the DIP memory and explicitly delete adjacent
slot pairs. Furthermore, we evaluate the reliability of each re-
trieved feature and incorporate this information into the train-
ing protocol. Experiments on the KAIST [18] and FLIR [19]
datasets demonstrate the superiority of our framework.

2. PROPOSED METHOD

Fig. 1 illustrates the overall architecture of our framework.
We choose Faster RCNN [20] as the base detector and two
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Fig. 1: Overall architecture of our framework. The read operation retrieves fr and reliability score Wr using thermal RoI
features ft from the DIP memory. The paired RoI features of thermal and visible images ft and fv are used to update the
key-value slot pairs of the DIP memory. The data flows and structures represented by dashed lines are only used in training.

backbone networks are employed to extract features of ther-
mal and visible images in training. The region proposals are
generated using thermal feature map and paired RoI features
ft and fv are utilized to update the key-value slot pairs in the
DIP memory. For the read operation, we get the retrieved RoI
features fr and the corresponding reliability scores Wr. After
concatenation and convolution, the final RoI features fc1 and
fc2 are feed into the detection head to compute Lbbox1 and
Lbbox2. For each training iteration, the initialize or update
operation is conducted first, followed by the read operation.

2.1. Initialize and Update Operation

We initialize or update the parameters of the DIP memory
manually and delete the adjacent slot pairs explicitly to pre-
serve discrepancy. In each training iteration, N pairs of RoI
features f i

t and f i
v (i = 1 . . . N) with shape c×h×w are used.

Let Kj and Vj (j = 1 . . . L) denote a key-value slot pair in
the DIP memory, they have the same shape as f i

t and f i
v . We

randomly choose two pairs of RoI features and randomly gen-
erate two weights that sum to 1 to initialize every key-value
slot pair at the first iteration.

As we use N pairs of RoI features in an iteration, we can
get a similarity matrix SKF ∈ RN×L by calculating cosine
similarity between each pair of f i

t and Kj . The softmax func-
tion is applied to SKF along the vertical direction to get WV .

Now we assign each RoI feature pair to the memory slot
pair with highest similarity. The set of RoI feature pair indices
assigned to the ith memory slot pair is U i

F :

U i
F = {i|i = argmax(Sj,0

KF , . . . S
j,L
KF ),∀j}. (1)

We update the key-value memory pairs using EMA:

Ki = γKi + (1− γ)
∑
k∈Ui

F

wk
i f

k
t , (2)

Vi = γVi + (1− γ)
∑
k∈Ui

F

wk
i f

k
v , (3)

wk
i =

W i,k
V∑

k∈Ui
F
W i,k

V

, (4)

where W i,k
V means the element in the ith row and kth column

of WV . γ is a hyperparameter and we set it to 0.9.
To preserve discrepancy, we should delete the adjacent

memory slot pairs each iteration before updating. We can get
the cosine similarity matrix SK ∈ RL×L between every Ki

pairs and select the indices of key-value pairs having a simi-
larity score higher than the threshold τ to get the set UD:

UD = {j|Si,j
K > τ, j < i,∀i}, (5)

and memory slot pairs whose indices are in UD will not be
assigned to any f i

t -f i
v pairs as in (1).

We substitute the key-value pairs using RoI feature pairs
that have low similarity with the key slots. Set UQ contains
the indices of f i

t whose maximum cosine similarity score is
lower than a threshold δ:

UQ = {i|max(Si,0
KF , . . . S

i,L
KF ) < δ, ∀i}. (6)

Usually |UQ| is larger than |UD|, so we sort the elements
of UQ in ascending order according to the maximum similar-
ity score and substitute each key-value pairs in UD with f i

t -f i
v

pairs in UQ in order.

2.2. Read Operation

Read operation is performed after update operation in train-
ing. We recompute SKF and apply softmax to it along the
horizontal direction to get WH . The retrieved feature f i

r and
the reliability score W i

r of f i
r are computed as follows:

f i
r =

L∑
j=1

W i,j
H Vj , (7)

W i
r = max(Si,0

KF , . . . S
i,L
KF ). (8)

2.3. Reliability Weighting

The reliability score measures the domain discrepancy be-
tween query feature ft and the key slots of DIP memory.
Since the number of memory slots is limited and the distri-
bution of queries is much wider than the space of memory
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Table 1: Comparison with other thermal pedestrian detectors
trained using thermal and visible images on KAIST dataset.

Method MR all MR day MR night

Domain Adaptor† [8] 42.65 49.59 26.70
Kieu et al.† [9] 25.62 31.86 12.92
Bottom-up [6] 22.54 29.04 9.65

TC Det [5] 22.17 28.64 9.21
Park et al. [11] 20.83 26.68 9.81

Ours 19.12 25.16 7.49

Table 2: Comparison with other thermal detectors trained us-
ing thermal and visible images on FLIR dataset.

Method car person bicycle mAP

Bottom-up [6] 82.09 70.17 50.55 67.60
TC Det [5] 85.49 74.42 26.93 72.28

Park et al. [11] 87.31 80.42 61.88 76.54
Ours 86.95 80.66 62.93 77.28

keys, it is natural that some queries have low similarity with
all key slots. These queries result in unreliable retrieved fea-
tures, so we focus more on the queries themselves during the
detection process. The reliability weighting in generating fi-
nal RoI features can be formulated as follows:

f i
c1 = Conv([f i

t , vif
i
r]), (9)

vi =
1

1 + e−α(W i
r−β)

, (10)

where Conv represents 1×1 convolution, [·] denotes concate-
nation operation and α, β are hyperparameters. The same
convolution layer is used in generating f i

c2 in training.

3. EXPERIMENTS

3.1. Data Description

The KAIST dataset is a popular benchmark for visible-
thermal pedestrian detection. We use the sanitized training
annotations [21] and Liu’s testing annotations [21]. The ex-
periments are conducted on the “reasonable” setting [18] and
log average miss rate (MR) is the metric. We use the evalu-
ation code provided by Kim et al. [4]. FLIR is a road scene
dataset and we use the “aligned” version [22] with the three
most frequent classes. VOC2007 style AP50 is the metric.

3.2. Implementation Details

We use pretrained VGG16 [23] as the backbone to make a
fair comparison with other works for KAIST and pretrained
ResNet50 [24] with FPN [25] for FLIR. The RoI features have
7×7 feature maps, and we select 256 RoIs to train the detec-
tion head per image. Our experiments are implemented on
MMDetection [26] toolbox using a TITAN Xp GPU. We train
the network using SGD optimizer with batchsize 4 and initial
learning rate of 0.004. For KAIST, we train for 4 epochs and

Table 3: Ablation study on the KAIST dataset.

Memory DIP RW MR all MR day MR night

✗ ✗ ✗ 24.44 31.27 11.41
! ✗ ✗ 20.26 26.36 9.05
! ! ✗ 19.54 24.86 8.79
! ! ! 19.12 25.16 7.49

Table 4: Effects of memory slot number L on KAIST dataset

L 25 50 100 150 200

MR all 20.4 20.24 19.12 19.81 19.35
MR day 26.76 26.34 25.16 25.83 25.44

MR night 8.29 9.32 7.49 8.19 8.05

“1x” scheduler is used to train FLIR. The default number of
memory slots L is 100. For other hyperparameters, τ = 0.9,
δ = 0.5, α = 20 and β = 0.75. When calculating the softmax
function, we use a temperature parameter of 0.0625.

3.3. Comparison to State-of-the-art

To validate the superiority of our framework, we compare the
performance with other thermal detectors trained using both
thermal and visible images. The results on KAIST and FLIR
datasets are shown in Tab. 1-2. We re-implement the methods
for fair comparison except for those marked with a dagger in
the tables. Our framework outperforms Park et al. [11] whose
VPA memory is trained end-to-end in all three metrics on the
KAIST dataset. On the more challenging FLIR dataset with
diverse scenes and multiple object categories, our framework
also achieves consistent improvements.

3.4. Detection Results Visualization

In Fig. 2, we visualize some detection results on the two
datasets in comparison to Park et al. [11]. The first and sec-
ond columns are visible and thermal images with ground truth
annotations. The rest two columns display detection results.
Remember that we only use thermal images for testing, the
thermal features are somewhat not distinguishable and false
positives occur. Better visible features can be retrieved in our
framework to achieve more robust classification.

3.5. Ablation Study

We conduct the ablation study to investigate the effects of our
DIP memory and the reliability weighting. In Table 3, “Mem-
ory” signifies the DIP memory without the deletion proce-
dure in updating, and “RW” refers to the reliability weighting
of retrieved RoI features. The first row is the simple Faster
RCNN baseline. The effectiveness of deleting adjacent slot
pairs is evident from the table. Reliability weighting can fur-
ther improve performance. In Table 4, we change the number
of memory slots from 25 to 200. Decreasing memory slot
numbers significantly affects the miss rate and increasing the
number of slots doesn’t guarantee better performance.
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Fig. 2: Qualitative comparison of detection results on the two
datasets. We visualize the results of our framework, Park et
al. [11] and the ground truth annotations.

4. DISCUSSION

4.1. Discrepancy Preserving and Deletion Procedure

The domain shift between the training set and testing set ex-
ists and under certain circumstances, the difference of distri-
bution between key slots and RoI features can be large. We
find a test image to exemplify this phenomenon using t-SNE
in Fig. 3(a). The red dots represent key slots and blue dots
query features. Almost all keys are far away from the queries
for VPA memory [11], while some keys of our DIP memory
are close to the queries, indicating greater discrepancy and
better generalization. In Fig. 3(b) we visualize the cosine sim-
ilarity matrices between key (lower left part) and value slots
(upper right part) with or without the proposed deletion pro-
cedure. The locations marked with yellow denotes similarity
scores higher than 0.9. It is clear that without deletion, high-
similarity key slot pairs exist and value slots have high con-
centration, reducing the diversity of retrieved RoI features.

4.2. Reliability of RoI features

In our framework, thermal RoI features with low similarity
with the key slots will have low reliability scores on the re-
trieved features. This approach is empirical but in general,
these retrieved features may provide incorrect information. In
Fig. 3(c) we select a pair of images from the KAIST dataset
and visualize the thermal and retrieved features of two RoIs
marked with red and green with different reliability scores.
For the green RoI, the fr concentrates differently with the
reference fv while fr and fv of the red RoI have more simi-
lar patterns. So it is reasonable to down-weight the retrieved
features with low reliability scores to reduce interference.

4.3. Distribution of memory slots

As RoI features can be divided into positive and negative sam-
ples in training, we investigate the distribution of key slots
to see the proportion of slot pairs near positive and negative
samples. We select part of all KAIST training samples and

𝑓𝑣 𝑓𝑣 𝑓𝑟𝑓𝑟

𝑊𝑟 = 0.7261𝑊𝑟 = 0.5126

(b)

(c)

(d)

Keys

Values

w/ adjacent slots deletion w/o adjacent slots deletion
(a)

Park et.alOurs

Keys

Values

L

Proportion

Fig. 3: Some visualized analysis. (a) exemplifies the key slots
of our DIP memory has greater discrepancy and better gener-
alization. (b) illustrates the effects of deletion procedure. (c)
provides examples of RoI features with different reliability.
(d) shows the different concentration distributions of positive
and negative samples on DIP memory slots.

assign each RoI feature to the nearest key slot, as in Sec. 2.1.
In Fig. 3(d), the proportion of RoI features assigned to each
key slot as a percentage of total feature numbers is shown.
It can be concluded from the figure that the concentration of
positive and negative features are different, a key slot either
attracts positive samples or negative samples. So it is not nec-
essary to explicitly divide the memory slots into positive and
negative parts for datasets with only one object category, but
it deserves further study for multi-category datasets.

5. CONCLUSION

In this paper, we propose a novel DIscrepancy Preserv-
ing (DIP) Memory for retrieving visible RoI features to
improve the performance of two-stage thermal pedestrian
detectors. Unlike previous key-value memory network
which is trained end-to-end, our DIP memory is manu-
ally updated and adjacent slot pairs are deleted, result-
ing in better generalization. Additionally, we introduce a
reliability weighting mechanism to mitigate the interfer-
ence brought by the unreliable retrieved features. Com-
prehensive experiments and visualizations demonstrate the
effectiveness of our DIP memory and the improvement it
brings to thermal pedestrian detection. Code is available at
https://github.com/a21401624/DIP_memory.
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