
Accelerate Dense Matrix Multiplication on
Heterogeneous-GPUs

1st Jianan Sun
Institute of Automation,

Chinese Academy of Sciences.
School of Artificial Intelligence,

University of Chinese Academy of Sciences.
Beijing, China

sunjianan2021@ia.ac.cn

2nd Mingxue Liao
Institute of Automation,

Chinese Academy of Sciences.
Beijing, China

mingxue.liao@ia.ac.cn

3rd Yongyue Chao
Institute of Automation,

Chinese Academy of Sciences.
Beijing, China

chaoyongyue2020@ia.ac.cn

4th Pin Lv
Institute of Automation,

Chinese Academy of Sciences.
Beijing, China
pin.lv@ia.ac.cn

Abstract—Matrix multiplication is crucial in scientific com-
puting, but it demands substantial resources. We propose a
framework for effectively utilizing heterogeneous GPUs to large
matrix multiplication. By splitting matrices into small blocks
and using Douglas’s variant of Strassen’s algorithm, we enable
concurrent tasks on heterogeneous systems. Our framework
improves speed by 89.5% on homogeneous GPU servers and
by 108% in multi-server heterogeneous GPU setups.

Index Terms—GPU, parallel computing, heterogeneous system,
matrix multiplication

I. INTRODUCTION

Matrix multiplication is a crucial operation in various scien-
tific fields, but as the size of matrices increases, computation
time becomes impractical and a single GPU’s memory may not
be sufficient. This necessitating multi-GPU parallel computing.
Most of algorithms nowdays focus on homogeneous systems
([1]–[3], [7], [8]), ignoring the prevalence of heterogeneous
systems comprising different types of GPUs with varying
computing capabilities, and these algorithms treat GPUs as
a square or a cube, that is the number of GPUs should
be denoted as [m, n] or [m, n, p]. While these algorithms
improve the efficiency of matrix multiplication, they are ideal
for specific application scenarios that use a parallel system
with the same GPUs and the number of GPUs that is just
right for a square or a cube.

We propose a framework that can effectively utilize systems
with different types of GPUs. It use Douglas’s algorithm,
one variant of Strassen’s algorithm ([4]–[6]), to improve
concurrency of one GPU. To handle large input matrices
effectively, a divide-and-conquer strategy is often necessary.
Our framework achieves this by dividing the matrices into
smaller blocks and utilizing Douglas’s variant to multiply
corresponding blocks.

Here is contributions of this paper.

• We implemented a framework to execute large matrix
multiplication on heterogeneous GPU systems. It is re-
sponsible for matrix decomposition and task allocation.

• To enhance the performance of the framework, we have
made improvements from multiple dimensions. For single
GPU matrix multiplication, we implemented the Douglas
algorithm based on cuBLAS. For single-server multi-
GPU matrix multiplication, we enhanced the task alloca-
tion algorithm of cuBLASXt. In the case of multi-server
heterogeneous GPU matrix multiplication, we allocated
tasks according to the performance of each GPU.

• We conducted experiments for three scenarios which
illustrated that our framework is effective to execute
matrix multiplication on heterogeneous systems.

II. DESIGN AND IMPLEMENTATION

A. Matrix Decomposition

To accelerate multiplication on multi-GPU systems and
multi-server systems, we employed a two-layer decomposition
method. In the first layer of decomposition, we divided the
input matrices A and B into block matrices that were larger
than the cut-off point of Strassen’s algorithm.

In the second layer of decomposition, we further divided the
block matrices Aik and Bkj into 2 × 2 sub-block matrices,
which could then be multiplied using Strassen’s algorithm.
which is implemented on the basis of cuBLAS as detailed
in algorithm1. To calculate multiplication of AB = C, these
matrices are Firstly divided into 2 × 2 block matrices. Then
complete the conputing produces detailed in reference [5].

Our two-layer decomposition method proved effective in
maximizing the performance of matrix multiplication on multi-
GPU servers and multiple servers.

Algorithm 1: Implementation of Strassen’s algorithm
Input: Matrix A and B
Output: Matrix C

1: A11, A12, A21, A22 = did2(A)
2: B11, B12, B21, B22 = did2(B)
3: one = 1
4: minus one = -1
5: zero = 0
6: cublasSgeam(one, A11, minus one, A21, T1)
7: cublasSgeam(one, B22, minus one, B12, T2)
8: cublasSgemm(one, T1, T2, zero, C21)
9: . . . (complete produces of Douglas’s algorithm)

Fig. 1. Overview of tasks allocation. This figure shows how tasks are allocated
across three GPUs, with matrices stored in column-first format.

B. Tasks Allocation

The cuBLASXt Library provides a multi-GPU capable Host
interface, allowing applications to allocate memory space
on the Host side while the GPU-related work is done by
cuBLASXt. To compute matrix multiplications on multi-GPU
systems, cuBLASXt divides matrices into square tiles and uses
a round-robin fashion to calculate the resulting tile. However,
this strategy can result in performance decrement due to
irrelevant tiles being processed by a single GPU, leading to
more redundant memory transfers. Instead, we conducted a
sequential task allocation approach, allowing block matrices to
be reused in multiple tasks (See Figure 1 for an illustration).
GPU0 computes tasks of block matrix C00 to C31, so a
column of matrix B is only needed to transfer to GPU0 once,
reducing the transferring time.

C. Thread Pool

We created a thread pool to manage the status of the entire
system that includes multiple servers, each equipped with a
number of specific GPUs. The system is composed of three
main components, which are illustrated in Figure 2.

Figure 2 illustrates the thread structure of the main server,
which controls the entire system through the system thread.
The system thread is responsible for managing the multi-server
system and takes three matrices as input, which are divided
into blocks. In addition, it takes as input the performance ratios
of different servers and the number of GPU that each server

system
Config IP

Matrices decomposition

Task distribution

Local compute

Remote compute

A, B, C

tasks

manager

Task distribution

Launch worker

tasks

Remote_compute

TCP connect

Send tasks

Receive results and store

computer

TCP connect

Receive tasks

Launch compute thread

Send results

tasks

worker

gemm Strassen
GPU

tasks

worker

gemm Strassen
GPU

tasks

worker

gemm Strassen
GPU

tasks

worker

gemm Strassen
GPU

Fig. 2. Overview of the thread pool. The framework consists of two main
components: the local part and the remote part. The local part is executed by
the main server, while the remote part is executed by subordinate servers.

TABLE I
CONFIGURATIONS OF SERVERS

CPU Memory GPU
Intel(R) Xeon(R) Gold 5218R 1 TB 8 × GeForce RTX 3090
Intel(R) Xeon(R) Gold 5117 30 GB 3 × GeForce RTX 2080 Ti
Intel(R) Xeon(R) Gold 5117 30 GB 2 × GeForce RTX 2080 Ti

is equipped to calculate the number of tasks for each server.
The system thread divides the result matrix into blocks and
creates a list that contains all the tasks. This task list is then
divided into several parts, with each part corresponding to a
specific GPU.

System launches a local compute routine to execute tasks
on local GPUs, which executes a manager thread that controls
all the GPUs on the local server and distributes tasks to
worker threads. A worker thread is responsible for computing
a series of specific tasks on a given GPU. It handles GPU
memory management, computes block matrix multiplications
using Strassen’s algorithm, and transfers the results from
GPU memory to the Host memory. System also launches
remote compute routines to connect with other servers via
TCP connections.

On other servers, a computer thread controls the entire
computing of this server. It connects to the main server to
receive tasks and distributes these tasks to GPUs. Worker
threads are launched to compute tasks on GPUs by computer
thread. After a worker finishes a task, the compute thread sends
the result back to main server.

III. EXPERIMENT

A. Experimental Platform

All experiments were conducted on the cluster of three
servers, connected through Gigabit networks. The configura-
tions of the servers are detailed in Table I.

B. Single GPU Multiplication

We implemented Strassen’s algorithm based on cuBLAS
and, we compare its performance to the cuBLAS general
matrix-to-matrix multiply (gemm) routine. Specifically, we
compute AB = C where A,B,C ∈ Rn×n and record
the computing time of multiplication operations for varying

2000 4000 6000 8000 10000 12000 14000 16000
matrix size

0

200

400

600

800

co
m

pu
tin

g
tim

e
(m

s)

Strassen on RTX 3090
cuBLAS on RTX 3090
Strassen on RTX 2080 Ti
cuBLAS on RTX 2080 Ti

Fig. 3. Performance of our implementation of Strassen’s algorithm and
cuBLAS gemm routine.

matrix sizes. Figure 3 shows the performance of our Strassen’s
algorithm implementation and the cuBLAS routine. As the
matrix size increases, the performance of Strassen’s algorithm
surpasses that of cuBLAS. When the matrix size is less than
8192, the computing time of Strassen’s algorithm and the
cuBLAS gemm routine are almost equal on both GPUs. When
the matrix size is 16384, the computing time of Strassen’s
algorithm is less than that of cuBLAS on both GPUs. For the
RTX 2080 Ti, Strassen’s algorithm runs 5% faster than the
cuBLAS routine, and for the RTX 3090, Strassen’s algorithm
runs 1.5% faster.

Section II-B describes task allocation method that outper-
forms cuBLASXt, by avoiding redundant memory transfers.
We illustrate the performance of this method by multiply-
ing a series of matrices

∑
k AikBkj. We reduce memory

transfers by using the same Bkj for all k, and Strassen’s
algorithm is used in these multiplications, compared with
regular operations (with excessive memory copy) of the series
of matrix multiplications that use both cuBLAS routines and
Strassen’s algorithm, that is when multiplying AikBkj our
implementation of Strassen’s algorithm or cuBLAS gemm
routine is utilized. Figure 4 shows the performance of a series
of block matrix multiplications

∑
k AikBkj with different

block sizes executed on both RTX 3090 and RTX 2080
Ti. When the block size is 8192, the computing time of
cuBLAS routines and Strassen’s algorithm is roughly equal,
and that time increases linearly with the number of block
matrices. When the block size is 16384, our implementation
of Strassen’s algorithm outperforms cuBLAS routines in every
number of block matrices, and the gap between these two
methods becomes larger as the number increases.

C. multi-GPU Server Multiplication

We evaluate the performance of our framework for multiply-
ing large matrices on a multi-GPU server. The results of three
types of experiments are presented in Figure 5, demonstrating
the speedup achieved by our framework. In the first type of
experiment, we use cuBLASXt to multiply two large matrices.
In the second type of experiment, our framework is responsible
for dividing matrices and memory transfer, while cuBLAS
gemm routine multiplies two block matrices. This allows us

2 4 6 8 10 12

200

400

600

800

1000

1200

co
m

pu
tin

g
tim

e
(m

s)

block size: 8192, GPU: RTX 3090

2 3 4 5 6
1000

1500

2000

2500

3000

3500

block size: 16384, GPU: RTX 3090
cuBLAS
Strassen
memory-reduced Strassen

2 4 6 8
200

400

600

800

block size: 8192, GPU: 2080 Ti

2.0 2.5 3.0 3.5 4.0
number of block matrices

1500

2000

2500

3000

block size: 16384, GPU: 2080 Ti

Fig. 4. Performance of a series of block matrix multiplications
∑

k AikBkj.

to illustrate the impact of Strassen’s algorithm and our task
allocation method. The last type of experiment also utilizes our
framework, and Strassen’s algorithm is used when multiplying
two block matrices.

Our framework outperforms cuBLASXt when executing
matrix multiplication on Server 1, which contains 8 RTX 3090
GPUs. This improvement in performance can be attributed
to our task allocation method, which reduces the need for
memory transfers from CPU to GPU. When the block size is
8192, our framework using Strassen’s algorithm performs as
fast as that using cuBLAS routine. Moreover, when the block
size is increased to 16384, our framework using Strassen’s
algorithm outperforms that using cuBLAS routine.

Similar results were observed on the other two servers, each
containing two or three RTX 2080 Ti GPUs. Our framework
outperforms cuBLASXt, especially when the block size is
16384. However, the performance improvement is not as
significant as on server 1. This can be attributed to two reasons.
Firstly, the RTX 2080 Ti exhibits lower performance, resulting
in more time being spent on computing matrix multiplication.
This reduces the impact of memory transfer on the overall
computation time, as the total time is primarily determined
by the calculations. Secondly, our task allocation method has
limited effectiveness on servers with a small number of GPUs.

D. Multi-Server Multiplication

In this section, we evaluate the performance of our frame-
work for large matrix multiplication on a heterogeneous sys-
tem consisting of multiple servers with different types of
GPUs. Task partitioning has a significant impact on the system,
so we conduct two experiments. The first experiment divides
the tasks evenly, calculating similar tasks across three servers.
The second experiment involves manually dividing the tasks
to optimize performance by adjusting the amount of tasks
per server. We also compare the performance of multiple
servers with that of a single server (server 1) to demonstrate
the benefits of using a multiple server system for matrix
multiplication, as there is limited research on accelerating
matrix multiplication on heterogeneous systems. We choose

0

10000

20000

30000

40000

co
m

pu
tin

g
tim

e
(m

s)

server 1, block size: 8192
cuBLASXt
our framework with cuBLAS
our framework with Strassen

server 1, block size: 16384

0

2500

5000

7500

10000

12500

15000

17500

server 2, block size: 8192 server 2, block size: 16384

20000 40000 60000 80000 100000
0

5000

10000

15000

20000

25000

server 3, block size: 8192

40000 60000 80000 100000
matrix size

server 3, block size: 16384

Fig. 5. Performance of large matrix multiplication on a server with multiple
GPUs.

the block size of 8192 to maximize the number of tasks with
a smaller size.

Figure 6 presents the experimental results. The computation
time significantly decreases when using multiple servers for
matrix multiplication. As the matrix size increases, it becomes
more flexible to schedule tasks for each server, and choosing a
better scheduling method can further accelerate performance.
The speedup of multiple servers reaches 2.08 when the input
matrix size is 98304.

IV. CONCLUSION

In this paper, we propose a framework for matrix mul-
tiplication on heterogeneous systems that contain different
types of GPUs. Our framework leverages the resources of
each GPU by assigning tasks that optimize the occupancy
of the entire system. The framework sequentially allocates
tasks to each GPU to avoid unnecessary memory transfers,
which can improve system performance. Our experiments
show that our implementation of Strassen’s algorithm outper-
forms cuBLAS gemm routine when the input matrix is larger

30000 40000 50000 60000 70000 80000 90000 100000
matrix size

0

5000

10000

15000

20000

co
m

pu
tin

g
tim

e
(m

s)

single server
multiple servers with tasks divided equally
multiple servers with tasks divided best

Fig. 6. Performance of large matrix multiplication on multiple servers.

than 8192. Our framework also outperforms cuBLASXt when
multiplying large matrices on a server with homogeneous
GPUs, achieving a speedup of 89.5%. Our framework is
capable of efficiently utilizing multiple servers to compute
large matrix multiplication, with a 108% speedup compared
to using a single server. In the future work, we antici-
pate using the framework to accelerate matrix multiplication
and improve tensor parallelism in training deep learning
models. The source code of our framework is available at
https://github.com/Sunjnn/mutGPUStrassen.

REFERENCES

[1] B. Wang, Q. Xu, Z. Bian, and Y. You, “2.5-dimensional Distributed
Model Training,” ArXiv, vol. abs/2105.14500, 2021.

[2] L. E. Cannon, “A Cellular Computer to Implement the Kalman Filter
Algorithm,” PhD Thesis, Montana State University, USA, 1969.

[3] E. Solomonik and J. Demmel, “Communication-Optimal Parallel 2.5D
Matrix Multiplication and LU Factorization Algorithms,” in Euro-Par
2011 Parallel Processing, E. Jeannot, R. Namyst, and J. Roman, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 90–109.

[4] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathe-
matik, vol. 13, pp. 354–356, 1969, doi: 10.1007/BF02165411.

[5] C. C. Douglas, M. Heroux, G. Slishman, and R. M. Smith, “GEMMW:
A Portable Level 3 BLAS Winograd Variant of Strassen’s Matrix-Matrix
Multiply Algorithm,” Journal of Computational Physics, vol. 110, no. 1,
pp. 1–10, 1994, doi: https://doi.org/10.1006/jcph.1994.1001.

[6] D. Coppersmith and S. Winograd, “Matrix Multiplication via Arith-
metic Progressions,” in Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing, in STOC ’87. New York, NY,
USA: Association for Computing Machinery, 1987, pp. 1–6. doi:
10.1145/28395.28396.

[7] Z. Bian, Q. Xu, B. Wang, and Y. You, “Maximizing Parallelism
in Distributed Training for Huge Neural Networks,” ArXiv, vol.
abs/2105.14450, 2021.

[8] R. A. Van De Geijn and J. Watts, “SUMMA: scalable universal matrix
multiplication algorithm,” Concurrency: Practice and Experience, vol.
9, no. 4, pp. 255–274, 1997, doi: https://doi.org/10.1002/(SICI)1096-
9128(199704)9:4¡255::AID-CPE250¿3.0.CO;2-2.

