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Abstract. Goal-conditioned hierarchical reinforcement learning has
demonstrated impressive capabilities in addressing complex and long-
horizon tasks. However, the extensive subgoal space often results in
low sample efficiency and challenging exploration. To address this issue,
we extract informative subgoals by constraining their generation range
in mutual information distance space. Specifically, we impose two con-
straints on the high-level policy during off-policy training: the generated
subgoals should be reached with less effort by the low-level policy, and
the realization of these subgoals can facilitate achieving the desired goals.
These two constraints enable subgoals to act as critical links between the
current states and the desired goals, providing more effective guidance
to the low-level policy. The empirical results on continuous control tasks
demonstrate that our proposed method significantly enhances the train-
ing efficiency, regardless of the dimensions of the state and action spaces,
while ensuring comparable performance to state-of-the-art methods.

Keywords: Hierarchical reinforcement learning · Subgoal discovery ·
Mutual information

1 Introduction

Goal-conditioned hierarchical reinforcement learning (HRL) [9,11,12,19] has
received much attention due to its significant performance in solving complex
and long-term tasks. Among HRL frameworks, goal-conditioned HRL typically
consists of a high-level policy and a low-level policy. The high-level policy decom-
poses the desired goal into simpler subgoals, allowing the low-level policy to learn
and explore more effectively. However, identifying informative and reachable sub-
goals in the extensive subgoal space to enhance sample and training efficiency
still remains a major challenge.
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Over the past few years, several works [8,9,12,20] have been proposed to
improve sample efficiency in HRL. Kulkarni et al. [9] predefine a set of key states
as the subgoal space, which is efficient but requires task-relevant knowledge.
Nachum et al. [12] propose the off-policy correction method that enables the
high-level policy to be trained in an off-policy manner. However, its training cost
increases considerably when dealing with larger state and action spaces. Zhang
et al. [20] leverage the concept of adjacency distance to confine subgoals within
a reachable range of k steps, which reduces the subgoal space and enhances
training efficiency. Nonetheless, maintaining an adjacency matrix to calculate
the distances between subgoals can incur additional training expense and storage
requirement. Kim et al. [8] construct a landmark graph and select subgoals by
planning on the graph based on prior work [20]. Although these approaches
reduce the subgoal space, they also entail an increase in training time.

Fig. 1. The dashed blue line
denotes the historical transition,
the solid blue line denotes the new
transition, and the dashed orange
line denotes the subgoal constraint
range. The old subgoal may be
unachievable in reality due to being
too far away. (Color figure online)

In this paper, we propose a novel method
called Mutual Information-based Subgoal
Discovery (MISD) to improve training effi-
ciency while maintaining sample efficiency.
Concretely, by maximizing the mutual infor-
mation between the subgoal and the actually
achieved goal, this subgoal can be reached
easily by the low-level policy, as illustrated
in Fig. 1. Analogously, by maximizing the
mutual information between the subgoal and
the desired goal, the probability of achiev-
ing the desired goal will increase after accom-
plishing this subgoal. Our main contributions
are outlined below: 1) We introduce mutual
information as a metric of distance between
subgoals and identify the most informative
subgoals for the agent to explore in HRL. 2)
Our method can take advantage of the corre-
lation between subgoals to avoid costly goal-
relabeling and reduce the need for extensive exploration, resulting in improved
sample efficiency. 3) The experimental results demonstrate that our method is
dimension-agnostic with respect to the state and action spaces and significantly
improves training efficiency in diverse continuous control tasks.

The remaining of the paper is structured as follows: Sect. 2 discusses related
works in HRL. Section 3 briefly introduces goal-conditioned HRL and mutual
information estimator. Section 4 presents the framework of our method. Section 5
includes experimental settings, empirical results, ablation studies and visualiza-
tions. Last, Sect. 6 concludes this paper with a summary.

2 Related Works

Subgoal Discovery. Goal-conditioned HRL[9,13], which incorporates high-
level and low-level policies, has demonstrated immense potential in solving
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diverse complex tasks. By combining the hindsight technique [1], Levy et al.
[11] can train multiple levels of policies concurrently. However, the vast subgoal
space limits the identification of effective subgoals. In order to tackle this issue,
some methods [5,13] utilize online planning to select feasible subgoals. Hafner et
al. [5] apply a world model to generate an imagined trajectory and select sub-
goals. However, this approach needs additional training of the world model for
planning purpose. Some graph-based methods [7,19] have also been proposed to
address this challenge. Nevertheless, these approaches require creating a graph
and performing online planning over it, which can be computationally expensive
and time-consuming.

Mutual Information. In recent years, mutual information is applied in skill-
based HRL [3,18] to generate diverse skills, increase the exploration ability of
the agent, and enhance the transferability of the skills. Eysenbach et al. [3] can
train various skills using mutual information without relying on environmental
rewards, but these skills need to be pre-trained before they can be transferred to
downstream tasks. In practice, due to unknown data distributions, calculating
the mutual information accurately is often difficult [15]. Oord et al. [14] propose
the InfoNCE loss, a method of contrastive learning [4,10], to estimate the lower
bound on mutual information. In our paper, we utilize mutual information as
a distance metric [6,16] between subgoals by learning a representation function
which maps these subgoals to the mutual information distance space.

3 Preliminaries

Goal-Conditioned HRL can be expressed as a finite horizon Markov Decision
Process (MDP) with tuple (S,A,G, P,R, γ), where S is the state space, A is the
action space, G is the subgoal space which is mapped from S by the function
ϕ : S → G, P : S ×A×S → [0, 1] is the transition function, R : S ×A → R is the
reward function, and γ ∈ [0, 1) is the discount factor. Following prior works [12],
we formulate the framework composed of two hierarchies: a high-level policy πh

θh

and a low-level policy πl
θl

parameterized by θh and θl, respectively. The high-
level policy generates subgoal gt ∼ πh

θh
(st, gd) every k steps until the episode

terminates at step T , where gd ∈ G is the desired goal that the agent needs
to achieve. When t ≡ 0 (mode k), the low-level policy receives subgoal gt ∈ G
from the high-level policy, otherwise, it resorts to using a fixed subgoal transition
function:

gt+1 = h(st, gt, st+1) = ϕ(st) + gt − ϕ(st+1). (1)

Then, the low-level policy performs a primitive action at ∼ πl
θl

(st, gt), which
results in the environment transferring to the next state according to the tran-
sition function st+1 ∼ P (st+1|st, at) and giving reward rt ∼ R(st, at). Without
involving environmental rewards, the low-level policy is motivated by the high-
level policy with intrinsic reward rl

t = −||ϕ(st) + gt − ϕ(st+1)||2.
Based on the above setups, the transitions of high-level and low-level policies

can be denoted as (st, gd, gt, r
h
t , st+k) and (st, gt, at, r

l
t, st+1), respectively, where
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rh
t =

∑
t:t+k−1 rt, and st+k is the achieved state by the low-level policy. The

objective of the high-level policy is to maximize the expected cumulative reward
provided by the environment:

Lrew(θh) = −Eπh
θh

[ T−1∑

t=0

γtrh
t

]
. (2)

Mutual Information Estimator [14,17] is a technique used to estimate the
mutual information between two random variables. In our method, we employ
the InfoNCE loss [14] to estimate the lower bound on mutual information, which
learns representations by maximizing the similarity between positive samples and
minimizing the similarity between negative samples:

LInfoNCE = −Es∈S

[

log
exp(ψφ(si)T · ψφ(sj)/τ)

∑N
n=0 exp(ψφ(si)T · ψφ(sn)/τ)

]

≥ log(N) − I(si; sj),

(3)

where ψφ is a encoder network parameterized by φ, si and sj are different states,
τ is a temperature scale factor, sn is the state sample, N is the number of
samples, and I is the mutual information function.

4 Methodology

In this section, we present MISD: Mutual Infomation-based Subgoal Discovery,
a simple and effective method for training the high-level policy with mutual
information distance constraints, as shown in Fig. 2.

4.1 Mutual Information Distance Space

Previous works [8,20] have extensively studied the measurement of the distance
between different subgoals, utilizing the shortest transition steps. However, these
approaches overlook the correlation between subgoals which can be used to gauge
the difficulty of achieving them. In contrast, we propose the concept of the
mutual information distance space to estimate the distance between subgoals
without considering the transition steps. In the mutual information distance
space, a smaller distance corresponds to a higher mutual information, indicating
a stronger correlation and a higher likelihood of achieving the subgoals jointly,
even with a random policy. Therefore, we define the distance between the sub-
goals gi and gj as follows:

dst(gi, gj) := −Eπ∈∏[I(gi; gj |π)], (4)

where
∏

is the set of policy π used by the agent, gi = ϕ(si), and gj = ϕ(sj).
Minimizing the distance between subgoals can facilitate their successful real-

ization with less effort. However, accurately and directly calculating mutual
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Fig. 2. The MISD framework with mutual information distance constraints imple-
mented by the subgoal encoder ψφ (dashed red box), where est+k = ψφ(ϕ(st+k)), egt =
ψφ(gt), and egd = ψφ(gd). The encoder, trained using a contrastive loss, maps the
subgoals to the mutual information distance space which is then utilized to train the
high-level policy to constrain subgoals generation. (Color figure online)

information is often impractical due to intractable data distributions [15].
Instead, we estimate a lower bound on mutual information by using the
InfoNCE [14] along with a limited set of policies that the agent has employed
in recent C episodes. Based on the fact that the adjacent states have relatively
higher mutual information in MDP, we select the next achieved goal reached
by the low-level policy as the positive sample, and randomly sampled achieved
goals from the current episode as the negative samples. Consequently, we derive
the following optimization objective function:

Ldis(φ) = −Esi∈S

[

log
exp(ψφ(ϕ(si))T · ψφ(ϕ(si+1))/τ)

∑N
n=0 exp(ψφ(ϕ(si))T · ψφ(ϕ(sn))/τ)

]

, (5)

where ψφ is the subgoal encoder parameterized by φ, si+1 is the next state
following state si, τ is a temperature scale, sn is the state sample, and N is the
number of samples.

By optimizing the objective function, we can obtain a subgoal encoder ψφ(·),
which allows for the mapping of subgoals to the mutual information distance
space and simplifies the calculation of distances between them. For subgoals gi

and gj , the minimization of distance is equivalent to the maximization of the
numerator of Eq. 5, as they demonstrate a negative correlation:

I(gi; gj) ∝ exp(sim(ψφ(gi), ψφ(gj)))
∑N

n=0 exp(sim(ψφ(gi), ψφ(gn)))

∝ sim(ψφ(gi), ψφ(gj))
∝ −dst(gi, gj),

(6)

where gi and gj are different subgoals, gn is the subgoal sample, N is the number
of samples, and sim denotes the similarity scoring function. Inspired by [14], we
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choose the cosine similarity function defined as follows:

fcs(ψφ(gi), ψφ(gj)) =
ψφ(gi)T · ψφ(gj)

||ψφ(gi)||2 · ||ψφ(gj)||2 . (7)

Alternatively, the minimization of mutual information distance is equivalent to
the maximization of Eq. 7, which we then employ to enforce the aforementioned
distance constraints.

4.2 Efficient Subgoal Discovery with Distance Constraint

To identify informative subgoals that efficiently guide the low-level policy to
accomplish the desired goal, we introduce two mutual information distance con-
straints on the high-level policy.

Constrain with the Achieved Goal. In HRL, goal-relabeling [1,12] is an
effective technique to help the high-level policy more quickly learn to choose
achievable subgoals. However, this approach has a limitation in that the high-
level policy may only be aware of specific subgoals that the low-level policy can
achieve while remaining unaware of other subgoals that may be more relevant.
We address this limitation by constraining the distance between subgoals and
achieved goals to make these subgoals representation more informative and rel-
evant, allowing for more effective guidance of the low-level policy. Specifically,
the subgoals proposed by the high-level policy are highly correlated with the
achieved goals that have already been reached by the low-level policy, making
them easier to achieve. Moreover, the ability of the low-level policy can be fed
back to the high-level policy to generate more effective subgoals, maintaining
the consistency between hierarchical policies and enhancing the stability of the
learning process. Therefore, transition samples can be used directly for training
to improve data efficiency without goal-relabeling. In summary, the objective
function can be written as follows:

Lag(θh) = −Eπh
θh

[fcs(ψφ(gt), ψφ(ϕ(st+k)))], (8)

where gt ∼ πh
θh

(st, gd), and ϕ(st+k) is the achieved goal reached by the low-level
policy after k steps.

Constrain with the Desired Goal. After imposing the distance constraint
mentioned above, the subgoals generated by the high-level policy may be too
simple for the low-level policy, resulting in limited exploration capability. To
address this issue, we introduce another constraint with the desired goal, aim-
ing to ensure that the desired goal can be easily achieved once the subgoal is
accomplished by the low-level policy. For this purpose, we minimize the distance
between the subgoal and the desired goal, thereby expanding the exploration
area around the achieved goal by the low-level policy, formulated as follows:

Ldg(θh) = −Eπh
θh

[fcs(ψφ(gt), ψφ(gd))], (9)

where gt ∼ πh
θh

(st, gd), and gd is the desired goal.
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Algorithm 1. MISD algorithm
Initialize: the trajectory buffer B ← ∅;
Initialize: θh, θl, and φ for πh

θh
, πl

θl
, and ψφ;

1: for n = 1 to num−episodes do
2: t = 0;
3: Reset the environment, sample the initial state s0 and the desired goal gd;
4: repeat
5: if t ≡ 0 (mod k) then
6: Generate subgoal gt ∼ πh

θh
(st, gd);

7: else
8: Perform subgoal transition gt = h(st−1, gt−1, st);
9: end if

10: Execute low-level action at ∼ πl
θl

(st, gt);
11: Sample next state st+1 ∼ P(st+1|st, at) and reward rt ∼ R(st, at);
12: t = t + 1;
13: until episode terminates;
14: Store the trajectory in buffer B;
15: Train high-level policy πh

θh
according to Equation 10;

16: Train low-level policy πl
θl

;
17: if n ≡ 0 (mod C) then
18: Train the subgoal encoder ψφ with Equation 5 using buffer B;
19: Clear B;
20: end if
21: end for

4.3 The Policy Optimization

By enforcing mutual information distance constraints on both parts as previously
stated, we can obtain the final objective function of the high-level policy:

Lhigh(θh) = Lrew(θh) + α · [(1 − β) · Lag(θh) + β · Ldg(θh)], (10)

where α ∈ [0,+∞) is a scale factor, and β ∈ [0, 1] is the distance coefficient used
to determine the exploration range. In practice, we incorporate Lag and Ldg as
additional terms into the original loss function Lrew of the high-level policy. For
the low-level policy, we utilize a common reinforcement learning algorithm, e.g.,
temporal-difference learning methods, to train it as usual without modification.
The main process of our method is presented in Algorithm 1.

5 Experiments

We design experiments to answer the following questions: 1) How does MISD per-
form compared to state-of-the-art methods on various continuous control tasks?
2) Can MISD enhance sample and training efficiency in HRL? 3) Does the dimen-
sionality of the state and action spaces affect the training efficiency of MISD?
4) What is the impact of hyperparameters on the performance of MISD?
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Fig. 3. Environment descriptions. (a) Spiral: navigate from the edge (denoted as ’S’) to
the center (denoted as ’G’) with sparse rewards. (b) Point Maze (U-shape) and (c) Ant
Maze (U-shape): navigate from a fixed position to a fixed target location with dense
rewards. (d) Ant Maze (S-shape): navigate from a random position to a fixed target
location with sparse rewards. (e) Ant TwoRooms: navigate from a fixed position in
one room to a fixed target position in another room with dense rewards. (Color figure
online)

5.1 Environment Setup

We evaluate our method on diverse control tasks with continuous state and action
spaces based on the Mujoco simulator [2], as illustrated in Fig. 3. In all tasks,
the agent needs to achieve goals with either sparse or dense rewards, where
the subgoal space consists of two dimensions that correspond to the position
(x, y) of the agent. The code of our method is available at https://github.com/
RandyButters/MISD.

5.2 Comparative Experiments

We compare MISD with the following baselines: 1) HIRO [12]: a baseline that
proposes the off-policy correction method to improve data efficiency. 2) HRAC
[20]: a baseline that employs k-step reachability to constrain the range of subgoal
and reduce the subgoal space. 3) HIGL [8]: a baseline that utilizes a graph of
landmarks for online planning and to guide the generation of subgoals.

We present the learning curves of success rate plotted against both training
time and steps, as shown in Figs. 4 and 5, respectively. The results indicate that
our proposed MISD algorithm demonstrates a significant improvement in train-
ing efficiency by reducing the overall training time while achieving a comparable
performance and sample efficiency to other baselines.

https://github.com/RandyButters/MISD
https://github.com/RandyButters/MISD


84 K. Wang et al.

Fig. 4. The learning curves over training time, averaged over 5 trials and smoothed
equally for visual clarity. The dashed line represents the best performance achieved by
our method. (Color figure online)

Fig. 5. The learning curves over training steps, averaged over 5 trials and smoothed
equally for visual clarity. (Color figure online)

Fig. 6. Training time on different environ-
ments within the same benchmark, aver-
aged over 5 trials. (Color figure online)

Additionally, we generate a bar
chart of the training time across the
Mujoco environments utilized in our
experiments, as illustrated in Fig. 6.
The results demonstrate that the
training efficiency of MISD remains
stable, while other baselines experi-
ence a significant increase in train-
ing time as the state and action
spaces become larger. For example, the
Ant environment has larger state and
action spaces compared to the simpler
Point environment, additional training
time is required due to its increased
complexity, resulting in lower training efficiency for the baseline methods.

5.3 Visualizations

We visualize both achieved goals and subgoals at different training stages in the
Ant Maze (U-shape) environment in Fig. 7. These subgoals generated by the
high-level policy are consistently located near the achieved goals by the low-
level policy, effectively guiding the low-level policy to reach the desired goal and
improving training efficiency. Figure 8 displays the features of subgoals extracted
by the subgoal encoder ψφ after dimension reduction by t-SNE. Initially, the
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Fig. 7. Visualization of subgoals generated by the high-level policy and achieved goals
accomplished by the low-level policy within one episode at a series of training steps
in the Ant Maze (U-shape) environment (red for the subgoals, blue for the achieved
goals, light for the start, dark for the end). (Color figure online)

Fig. 8. Subgoal representation learning process in the Ant Maze (U-shape) environ-
ment at different training steps. Each subfigure contains 5 trajectories with the start
positions highlighted in blue and the end positions in yellow. The visualization only
shows the learning phase and excludes the stable phase that occurs afterward. (Color
figure online)

feature map is disordered at 0.05M steps but becomes gradually more ordered
over time, reaching stability at 0.3M steps and remaining stable thereafter. This
indicates that the features can be learned quickly and become stable as the
environment is explored extensively, facilitating the generation of reliable and
consistent subgoals by the high-level policy.

5.4 Ablation Studies

We perform ablation studies on the Ant Maze (U-shape) environment to analyze
the impact of parameter α, parameter β, and component loss in Fig. 9.

Parameters α and β: The result of Fig. 9a indicates that α = 20 is better
for promotion in the learning process. Our algorithm MISD is robust against
β due to the comparable performance with various values, as shown in Fig. 9b.
Notably, we set α = 20 and β = 0.1 as default values based on our ablation
study results.

Component loss: The high-level policy employs three loss functions: Lrew, Lag

and Ldg, represented as RL, AGL, and DGL in the Fig. 9c, respectively. Com-
pared to the algorithm with only loss Lrew, the addition of loss Lag can signifi-
cantly improve performance by generating efficient samples that can be directly
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(a) Parameter α (b) Parameter β (c) Component loss

Fig. 9. Ablation studies on different parameters and components: (a) parameter α,
(b) parameter β, and (c) component loss. All curves are averaged over 5 trials and
smoothed equally for visual clarity. (Color figure online)

used for training without goal-relabeling. By incorporating loss Ldg under the
constraint of loss Lag, the algorithm can enhance exploration capability and
speed up learning process.

6 Conclusion

We propose a novel method MISD, Mutual Information-based Subgoal Discov-
ery, which utilizes mutual information constraint to identify informative sub-
goals in hierarchical reinforcement learning. By minimizing the mutual informa-
tion distance between subgoals and both the achieved and desired goals, MISD
effectively enhances sample and training efficiency. The experimental results
demonstrate that our method achieves comparable performance to state-of-the-
art methods while significantly reducing the training time in various continuous
control tasks. Moreover, MISD is dimension-agnostic with respect to the state
and action spaces, highlighting its potential applicability in real-world scenarios.
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