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Abstract. Human’s ability to describe the tactile sensation of objects has piqued
the interest of numerous researchers seeking to augment the dexterity of robots in
delicate tasks. However, most existing approaches are limited by their two-stage
framework, resulting in low inference efficiency and unsatisfactory performance.
To address this challenge, we propose the first end-to-end framework for haptic
adjective classification. Specifically, our framework leverages the Space Encoding
Module to capture long-term dependencies, and the Order Encoding Module to
learn order information explicitly. We conduct experiments on the public PHAC-2
Dataset and the result shows that our method achieves F1 score of 0.759, outper-
forming previous work in a significant way.
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1. Introduction

Haptic perception is an essential component of human interaction with the external en-
vironment and can serve as a crucial modality in extreme scenarios described as dark,
rainy, or foggy [1] . In recent years, tactile sensors have been increasingly integrated
into robotic systems to perform various tasks, including texture classification [2] , slip
detection [3] , and object recognition [4] . However, some researchers have shifted their
focus towards more abstract haptic learning tasks, such as adjective recognition [5] . Ad-
jective recognition aims to quantify the haptic properties that humans use to describe
objects, including roughness, hardness, and compressibility. By processing tactile data,
adjective recognition algorithms provide a feature description of an object, which can
help robots perform practical downstream tasks such as grasping and classifying. For
example, robots can classify previously unseen objects by identifying their properties
and judging whether their surfaces are smooth or bumpy. Thus, adjective recognition is a
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practical and challenging research topic with numerous potential applications in the field
of robotics.

Previous studies on adjective recognition have largely relied on hand-crafted fea-
tures [5] or have been limited to specific tasks [6] . Richardson et al. [7] avoided these
limitations by using unsupervised feature learning methods such as K-SVD and Spatio-
Temporal Hierarchical Matching Pursuit (ST-HMP), but their method is based on a two-
stage framework, which is not efficient during the inference process. To the best of our
knowledge, although the end-to-end learning method has been successfully applied to
multiple tactile applications such as texture image recognition [2] and slip detection
[3] , it has not been used in adjective classification yet. Therefore, we introduce the first
end-to-end haptic adjective recognition framework in this paper. Motivated by the suc-
cess of Transformer [8] , we propose a novel attention-based Long Short-Term Memory
(Atten-LSTM) model to evaluate haptic adjectives.

Our main contributions can be summarized as follows.

• We introduce the first end-to-end framework for haptic adjective recognition,
which exhibits high inference efficiency and satisfactory performance. Specifi-
cally, in our proposed Atten-LSTM model, the Space Encoding Module is to cap-
ture long-term dependencies, while the Order Encoding Module is to learn order
information.

• We conduct experiments on the Atten-LSTM model with the aim of evaluating its
performance. The experimental results clearly demonstrate the effectiveness and
strong generalization capability of the proposed network.

2. Related Work

Certain studies have placed a significant emphasis on guiding robots to learn intricate
concepts and representations. The work of Chu et al. was pioneering in adjective recog-
nition where they introduced a predefined set of adjectives and trained SVMs on tactile
data to match adjectives with various objects [5] . In a similar vein, Strese et al. used
acceleration sensors to capture vibrations when tapping onto an object with a tool, and
developed a classification system that uses perception-related features such as hardness,
roughness, and friction [9] . These approaches rely on hand-crafted features, which often
require expertise and have a strong dependence on the data format. In contrast, Madry et
al. proposed an unsupervised feature learning algorithm to avoid designing features [6] .
However, their learned properties were only evaluated in some particular tasks such as
grasp stability assessment and object recognition.

Recently, Richardson et al. used unsupervised feature learning methods, specifically
K-SVD and Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP) to perform ad-
jective recognition tasks [7] . Similarly, Wu et al. proposed a multi-label classification
approach to capture potential relationships among different adjectives [10] . Compared
with the method of Chu et al. [5] , their method has stronger generalization performance.

In the preceding literature, the work of [5] and [7] is most closely related to our
research. However, they both rely on a two-stage framework that results in low inference
efficiency and limited generalization ability. In this work, we attempt to use an end-to-
end approach to learn complex haptic concepts and representations.
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Figure 1. Overall architecture of the Atten-LSTM model.

3. Methodology

Our goal is to perform adjective recognition; in other words, we expect to obtain all
the adjective properties corresponding to a given tactile sequence from the material. We
adopt the adjective set defined by Chu et al. [5] and transform the adjective perception
task into a multi-label classification problem.

Tactile data sequences typically comprise hundreds of frames and convey strong or-
der information. While LSTM [11] have shown remarkable capabilities in modeling se-
quence data and capturing order information, their effectiveness is limited when encoun-
tering long sequences. Thus, processing tactile data that may contain hundreds of frames
cannot be handled by these models alone. Conversely, the self-attention mechanism can
associate different frames within a sequence by computing correlations without regard
to their distances [8] . However, since the correlation computation is performed globally,
it cannot take advantage of the order information in the sequence. Consequently, mod-
els relying solely on the self-attention mechanism are inadequate for processing tactile
sequences.

In this scenario, we propose a novel attention-based LSTM network (Atten-LSTM)
as illustrated in figure 1. The network consists of two modules: Space Encoding Mod-
ule and Order Encoding Module. The former incorporates the multi-head self-attention
mechanism to capture long-term dependencies adequately, while the latter utilizes either
the LSTM layers to learn order information. By leveraging the complementary strengths
of these modules, we argue that the Atten-LSTM model exhibits a robust modeling ca-
pability for tactile data sequences with hundreds of frames and strong order information.
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3.1. The Space Encoding Module

Firstly, the tactile sequences are encoded by the Space Encoding Module. Following the
method of Transformer [8] , the Space Encoding Module utilizes the multi-head self-
attention mechanism to transform input sequences into abstract and high-dimensional
embedding representations. Suppose the input to the network is a sequence expressed as

X = {x1,x2, ...,xT−1,xT} ∈ R
T×d , (1)

where xt ∈ R
d is the input signal at time step t, d is the dimension of the signal, and T

is the length of the sequence. Multi-head attention allows the model to simultaneously
focus on information among different frames in multiple representation subspaces. To
conduct multi-head self-attention, X is projected h times using different linear projection
matrices to obtain queries Qi, keys Ki and values Vi for h different subspaces, or heads:

Qi = XW Q
i , Ki = XW K

i , Vi = XWV
i , (2)

where W Q
i ,W K

i ,WV
i ∈ R

d×(d/h) are linear projection matrices for the i-th head, and i =
1,2, ...,h is the index of heads. Next, we compute scaled dot-product attention for each
head:

headi = Softmax(
QiKT

i√
dk

)Vi, (3)

where 1√
dk

=
√

h
d is the scaling factor, and headi ∈R

T×(d/h) represents the output atten-

tion for the i-th head. Then, results from each head are concatenated and projected to the
initial dimensional space:

A = {a1,a2, ...,aT−1,aT}= Concat(head1, ...,headh)W O, (4)

where WO ∈ R
d×d is the linear projection matrix. Finally, we employ a residual connec-

tion [12] for the multi-head attention layer, followed by layer normalization [13] :

E = {e1,e2, ...,eT−1,eT}= LayerNorm(X +A) ∈ R
T×d . (5)

3.2. The Order Encoding Module

The Order Encoding Module utilizes the LSTM layers to model the temporal dynamics
of the encoded sequence E. Composed of a cell and several gates, the LSTM unit stores
historical information through the memory cell and implements the long-term memory
by adding or removing the cell state using different gates. In our implementation, we
employ multiple bidirectional LSTM layers to capture the context of the sequence in
both forward and backward directions. The hidden states ht generated by the final LSTM
layer are sampled every f frames and fed into a fully connected network which makes
the prediction:

H = LSTM(E) = {h1,h2, ...,hT−1,hT},
Y = FC(Sample(H)) = FC({h f i}), i ∈ N.

(6)
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Figure 2. Detailed Parameters of the Atten-LSTM model.

3.3. Loss Function

We adopt the multi-label weighted binary cross-entropy loss function [14] for our train-
ing. The total loss is defined as the average of the losses for each sample in a batch, and
the loss ln for each sample is defined as:

ln =− 1
C

C

∑
c=1

pcyn,c log(σ(xn,c))+(1− yn,c) log(1−σ(xn,c)), (7)

where C is the number of adjectives, yn,c is the binary label for the c-th adjective, xn,c is
the prediction for the c-th adjective, and σ(·) is the sigmoid function. Due to the imbal-
anced distribution of positive and negative samples in the dataset, we apply weight pc
to achieve a trade-off between precision and recall. The value of pc is calculated based
on the proportion of positive samples in the c-th adjective. Specifically, when consider-
ing an adjective with Np positive samples and Nn negative samples, the value of pc is
determined as:

pc =
Nn

Np
. (8)

3.4. Implementation Details

A detailed description of the model parameters for both models is presented in figure 2.
The Atten-LSTM model includes 2 multi-head attention layers, 3 Bi-LSTM layers, and
2 linear layers, with a sampling interval of f = 100.

Besides, we set the batch size as 16 and employ Adam optimizer [15] during our
training process. The learning rate is initially set as 5e-4 and decays to 5e-5 halfway
through training. The model is implemented on the PyTorch platform and trained on an
Nvidia Tesla V100 GPU.

4. Experiments and Results

Our research is closely related to the studies conducted by Chu et al. [5] and Richard-
son et al. [7] , where they employ the PHAC-2 Dataset to assess the performance of
their methods. The PHAC-2 Dataset is collected using a robot that is equipped with two
BioTac tactile finger sensors capable of measuring vibration, pressure, temperature, and
fingertip deformation. During the data collection process, the robot executed four Ex-
ploratory Procedures (EPs) of Squeeze, Hold, Slow Slide, and Fast Slide.

Hence, we validated the performance of our Atten-LSTM model on the PHAC-2
dataset. We used the same training and testing sets as Chu et al. and Richardson et al.
so that we could directly compare our results. Specifically, we used different training
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Table 1. F1 Scores across Adjectives and EPs Using the Atten-LSTM Model.
� and > represent relative increases in performance from Richardson et al. [7] of more than 0.10 and 0.03,
respectively. ≈ represents a difference of no more than 0.03. � and < represent relative decreases of more
than 0.10 and 0.03, respectively. Darker shadings indicate higher performance.

Squeeze Hold Slow Slide Fast Slide PE*

smooth 0.818� 0.511 < 0.600 ≈ 0.600 ≈ 25

solid 1.000 ≈ 1.000 ≈ 1.000 ≈ 1.000 ≈ 22

squishy 1.000 > 0.968 > 0.906 > 0.867 > 21

compressible 1.000 > 1.000 ≈ 1.000 > 0.967 > 20

hard 0.983 ≈ 1.000 ≈ 0.984 ≈ 0.967 < 20

textured 0.444� 0.778� 0.667 > 0.667� 16

soft 0.930� 0.976 > 0.857 > 0.792 > 13

absorbent 0.952 > 0.976� 0.930� 0.927 > 9

rough 0.870� 0.800� 0.571 > 0.750 > 9

thick 0.457� 0.615 > 0.541 ≈ 0.553� 9

cool 0.800� 0.900� 0.750 > 0.783� 8

slippery 0.778 < 0.889 > 0.462� 0.588 < 8

fuzzy 0.444� 0.254 ≈ 0.625� 0.154� 6

porous 1.000 ≈ 0.690 ≈ 0.952� 0.778� 6

springy 0.741� 0.432 ≈ 0.667� 0.824� 6

scratchy 0.889� 0.696� 0.040� 0.483� 5

hairy 0.316 < 1.000� 0.609� 0.571� 4

bumpy 0.625� 0.952� 0.267� 0.818� 2

metallic 1.000� 1.000� 0.800� 0.857� 2

*PE indicates the number of positive examples in the training set.

and test splits for each adjective, selecting 10% of both positively and negatively labeled
materials to form the testing set for each adjective classifier, while the remaining ma-
terials were used for training. To avoid the classifier from mistakenly learning to clas-
sify materials instead of adjectives, all explorations for each material were placed in the
same set. In addition, following the approach of Richardson et al., we excluded adjec-
tives with fewer than three positively labeled materials, analyzing 19 out of the original
24 adjectives used by Chu et al.

The F1 scores obtained from the Atten-LSTM are presented in table 1, with adjec-
tives ordered by the number of positively labeled materials in the training set. We com-
pared our results directly with those reported by Richardson et al., as their findings have
been proved to significantly outperform those of Chu et al.

The results demonstrate the superior performance of our proposed models compared
to the studies conducted by Chu et al. and Richardson et al. Specifically, table 1 depict
that our results outperform those reported by Richardson et al. for most adjectives dur-
ing different EPs. Moreover, the mean of all individual F1 scores by Richardson et al.
is 0.673, whereas the mean of the best F1 scores across static and dynamic feature clas-
sifiers by Chu et al. is 0.371. In contrast, our proposed models achieved an average F1
score of 0.759 for the Atten-LSTM, which exceed the F1 scores reported by Richardson
et al. and Chu et al.
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5. Conclusion and Future Work

In this paper, an end-to-end framework named Atten-LSTM is proposed to evaluate the
haptic adjective attributes of various materials. The network leverages a combination of
the self-attention mechanism and LSTM to extract the essential features of materials.
The experimental results demonstrate the effectiveness of the proposed network.
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