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A B S T R A C T

Open-set recognition (OSR) aims to simultaneously detect unknown-class samples and classify known-class
samples. Most of the existing OSR methods are inductive methods, which generally suffer from the domain
shift problem that the learned model from the known-class domain might be unsuitable for the unknown-
class domain. Addressing this problem, inspired by the success of transductive learning for alleviating the
domain shift problem in many other visual tasks, we propose an Iterative Transductive OSR framework,
called IT-OSR, which implements three explored modules iteratively, including a reliability sampling module,
a feature generation module, and a baseline update module. Specifically at the initialization stage, a baseline
method, which could be an arbitrary inductive OSR method, is used for assigning pseudo labels to the
test samples. At the iteration stage, based on the consistency of the assigned pseudo labels between the
output/logit space and the latent feature space of the baseline method, a dual-space consistent sampling
approach is presented in the reliability sampling module for sampling some reliable ones from the test
samples. Then in the feature generation module, a conditional dual-adversarial generative network is designed
to generate discriminative features of both known and unknown classes. This generative network employs
two discriminators for implementing fake/real and known/unknown-class discriminations respectively. And
it is trained by jointly utilizing the test samples with their pseudo labels selected in the reliability sampling
module and the labeled training samples. Finally in the baseline update module, the above baseline method
is updated/re-trained for sample re-prediction by jointly utilizing the generated features, the selected test
samples with pseudo labels, and the training samples. Extensive experimental results on both the standard-
dataset and the cross-dataset settings demonstrate that the derived transductive methods, by introducing two
typical inductive OSR methods into the proposed IT-OSR framework, achieve better performances than 19
state-of-the-art methods in most cases.
1. Introduction

In many real-world scenarios, the deployment of image recognition
models is required under open-set conditions. This encourages more
and more researchers in the fields of pattern recognition and computer
vision to investigate the open-set recognition (OSR) problem, which
aims to correctly identify unknown-class samples and maintain the
classification accuracy for known-class samples [1–23].

Existing OSR methods can be roughly divided into two groups:
the discriminative OSR methods [1–10,16] which directly learn the
classifiers for recognizing different classes based on the discriminative
representations, and the generative OSR methods [11–13,15,17–19]
which model the distributions of the known-class samples. However,
most of these methods [1–9,11–13,15–19] employ the inductive OSR
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strategy, which uses only the labeled known-class training samples for
model learning. They have to suffer from the domain shift problem,
where their learned recognition models from the known-class domain
are not suitable for the unknown-class domain.

Different from the inductive learning strategy, the transductive
learning strategy makes use of both training and test samples for
model learning. Recently, transductive learning has demonstrated its
effectiveness for alleviating the domain shift problem in various visual
tasks [24–26]. But to our knowledge, only a pioneering work [10]
investigated transductive OSR, where a model (called S2OSC) was
trained in a transductive manner. It was implemented in the two
following steps: Firstly, it provided pseudo labels for the test samples
that were predicted as unknown classes with high confidence scores by
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a baseline method; Then, the baseline model was re-trained by jointly
utilizing the pseudo-labeled test samples, the remaining unlabeled test
samples, and the labeled known-class samples from the original training
set. However, the following two open problems still remain for the
transductive OSR task:

Q1: The pseudo-labeled data selection problem: In general, some test
samples are inevitably misclassified during the transductive pro-
cess at the training stage, resulting in a poor classification model
by utilizing them for training. This issue raises the problem: ‘‘How
to select a relatively reliable subset from the whole set of the
pseudo-labeled test samples for model training?’’

Q2: The sample imbalance problem: The number of the pseudo-
labeled unknown-class test samples at the training stage is gener-
ally much smaller than that of the known-class training samples,
so that it is prone to train a poor classification model by jointly
utilizing these imbalanced samples. This issue raises the problem:
‘‘How to automatically obtain a larger and balanced number of
data from the given imbalanced samples for model training?’’

Addressing the aforementioned domain shift problem as well as
roblems Q1 and Q2, we propose an Iterative Transductive OSR frame-
ork, called IT-OSR, consisting of a reliability sampling module, a

eature generation module, and a baseline update module. Under the
roposed IT-OSR framework, the three modules are implemented in an
terative manner. At the initialization stage, we introduce a baseline
nductive OSR method for assigning pseudo labels to the test samples
in fact, an arbitrary inductive OSR method in literature could be also
sed as the baseline method here). At the iterative training stage,
ddressing Problem Q1, a dual-space consistent sampling approach is
irstly explored to select a relatively more reliable subset of samples
rom the test dataset in the reliability sampling module. It is noted that
he traditional sampling strategy generally identifies samples with high
ogit values as reliable ones. Unlike the traditional sampling strategy,
he dual-space consistent sampling approach identifies reliable samples
hose pseudo labels assigned in the output space are consistent with

hose of most of their neighbors in the latent feature space of the
aseline methods. Then addressing Problem Q2, a conditional dual-
dversarial generative network is designed to synthesize features of
oth known and unknown classes in the feature generation module,
hich is trained on both the training and selected test samples. Unlike

onventional adversarial generative networks, the designed network
ontains a feature generator but two discriminators, one for discrim-
nating fake features from real ones while the other for discriminating
nown-class features from unknown-class ones. Finally, the baseline
ethod is updated and the labels of the test samples are re-predicted

or the next iteration in the baseline update module.
In sum, the main contributions of this paper are three-fold:

- We explore the dual-space consistent sampling approach for
handling the aforementioned Problem Q1. Since this approach
makes use of the consistency of the assigned pseudo labels
between two different spaces as described above, it could im-
prove the sampling performance in comparison to traditional
sampling strategy as demonstrated by the experimental results
in Section 4.7.

- We design the conditional dual-adversarial generative network
for feature generation. Due to its special architecture that con-
tains a feature generator, a fake/real discriminator, and a
known/unknown-class discriminator, it could not only enlarge
the number of both known-class and unknown-class features for
alleviating the aforementioned Problem Q2, but also increase the
variety of unknown-class features, as demonstrated by the results
in Section 4.7.

- We propose the IT-OSR framework, based on the explored dual-
space consistent sampling approach and the designed condi-
tional dual-adversarial generative network. The proposed IT-
2

OSR framework could accommodate an arbitrary inductive OSR
method as its baseline method, and its effectiveness is demon-
strated by the experimental results in Section 4.

The remainder of this paper is organized as follows. Some exist-
ing inductive OSR methods are reviewed in Section 2. The proposed
framework is described in detail in Section 3. Experimental results are
reported in Section 4. Section 5 concludes the paper.

2. Related works

In this section, we firstly review existing OSR methods, then we
review some open-set approaches that train on synthetic data in other
tasks.

2.1. OSR methods

As discussed above, to our knowledge, only a pioneering trans-
ductive OSR method [10] has been proposed in literature. Since a
transductive method generally needs to use an inductive method as its
baseline method, here, we give a detailed review on the existing works
for inductive OSR from the following two aspects.

Discriminative Inductive OSR Methods. The discriminative meth-
ods directly learn classification networks. They aim to boost the dis-
criminability of the network representations in training, such that the
known-class samples or the unknown-class samples can be classified or
detected correctly based on the learnt network representations in infer-
ence. Bendale and Boult [1] proposed OpenMax, where an OpenMax
layer that calculated open-set probabilities based on the distances to
each known-class center was designed. They replaced the SoftMax layer
in the traditional closed-set classification network with their designed
OpenMax layer, aiming to expand the closed-set calculation of SoftMax
to open-set distance-based calculation. Jang and Kim [16] replaced the
SoftMax layer with a set of one-vs-rest networks (OVRNs), the decisions
from which are combined for alleviating the overgeneralization of the
SoftMax layer which would cause high confidence scores for unknown-
class test samples. Miller et al. [2] proposed class anchor clustering loss,
which constrained the known-class representations in the logit space.
Zhou et al. [3] proposed to reserve placeholders for unknown classes
during model training by adding an additional output and mix upping
features. Yoshihashi et al. [4] proposed a joint training framework
where classification and reconstruction were simultaneously imple-
mented, and the model prediction vector concatenated with latent
features was used for classification. Oza and Patel [5] proposed a class
conditioned autoencoder, which detected unknown classes by training
with reconstruction errors of the mismatched-class image pairs. Perera
et al. [6] proposed to add the reconstructed images of the known classes
as additional channels of the 3-channel input images for model training.
Chen et al. [7] proposed to learn discriminative reciprocal points by
digging 1-vs-rest information among the known classes for reserving
the extra-class space as the open space, and they also proposed an
adversarial version called A-RPL in [8]. Perera and Patel [9] proposed
to train images ensembled with different transformed versions by ex-
treme geometric transformations for mining more information from the
original known-class images.

Generative Inductive OSR Methods. The generative methods uti-
lize either GANs [27] or other generative models to model the distri-
butions of the known classes. Some methods modeled the known-class
distributions either explicitly or implicitly, and then detected the un-
known classes by their inconsistency with these distributions. Sun
et al. [11] proposed to model each known class to be subject to a
Gaussian, thus the representations of the test samples deviating from
the modeled Gaussians could be regarded as unknown classes. Sim-
ilarly, Guo et al. [15] proposed to use a capsule network to better
model each known class as a Gaussian. Besides, the works in [17,18]
used a Gaussian mixture distribution to model the feature distribution

of each known class, and Sun et al. [19] proposed to use multiple
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mixtures of exponential power distributions to model the known-class
feature distributions. Zhang et al. [12] proposed to apply a flow-based
model for hybrid training of both classification and generation. This
model could output the probability of the test sample belonging to
the known classes. Kong and Ramanan [14] trained a GAN based on
the adversarial training between the known-class images/features and
the selected outlier images/features. The discriminator of the trained
GAN was used for detecting unknown classes. Besides, some methods
further generated unknown-class samples based on the modeled known-
class distributions, and then trained open-set classifiers using these
generated unknown-class samples as an additional class. Neal et al. [13]
proposed to generate counterfactual images as unknown classes which
were easily confused with the known classes in the feature space.
Chen et al. [8] also proposed an enhanced version from A-RPL, called
ARPL-CS, which generated diverse and confusing samples for data
augmentation.

2.2. Open-set approaches that train on synthetic data in other tasks

Recently, there are some open-set approaches that also train on
synthetic data in other tasks, e.g., out-of-distribution detection. Here,

e briefly review these methods.
Lee et al. [28] proposed to generate ‘boundary’ samples in the low-

ensity of the training distribution by training a GAN with a confidence
oss, and jointly trained a classifier to be less confident for the generated
amples. Grcić et al. [29] trained a normalized flow network by con-
training the distribution of the generated data to resemble that of the
raining data. Simultaneously, they jointly trained a classifier, which
onstrained the generated data to be classified with high entropy.
he two opposed losses could generate samples at the boarder of
he training distribution. Zhao et al. [30] proposed to finetune the
iscriminator by an implicit generator, where the implicit generator
as trained to generate samples with low predictive entropy, while

he discriminator was trained to maximizing the predictive entropy
f each generated sample. Du et al. [31] modeled the in-distribution
ID) features as class-conditional Gaussians and sampled virtual outliers
rom the low-likelihood region. Then, they designed an unknown-aware
raining loss for both producing a low out-of-distribution (OOD) score
n ID data and producing a high OOD score on virtual outliers.

It is noted from the above description that all the above methods
ere explored under the inductive setup, and their main difference is

hat they use different feature generation manners to generate synthetic
ata. In comparison to them, our main contributions are two-fold:

(i) We propose a new feature generation module (where a con-
itional dual-adversarial generative network is designed) under the
ransductive setup. This module is completely different from the used
eature generation manners in [28–31].

(ii) Considering that some of the predicted pseudo labels during
he iterative process of transductive learning are usually unreliable,
e propose a reliability sampling module for selecting a more reliable

est samples, which are more helpful for training the above feature
eneration module. There is no such a module with a similar function
n [28–31].

. Methodology

In this section, we propose the IT-OSR framework that iteratively
mplements three explored modules: a reliability sampling module,

feature generation module, and a baseline update module. Firstly,
he pipeline of the proposed IT-OSR is introduced. Then, the three
xplored modules are described respectively in detail. Finally, two
ovel transductive OSR methods are derived from the proposed IT-OSR
3

ramework.
Algorithm 1 The IT-OSR framework
Input: The labeled training set 𝐃𝑙, the unlabeled test dataset 𝐃𝑢, and the initial

baseline model 𝑀0
utput: The predictions 𝑃 𝑢

𝑇 on the test dataset 𝐃𝑢 made by the updated model
at the 𝑇 -th iteration

1: Initialization: Make predictions on 𝐃𝑢 by 𝑀0;
2: for 𝑡 = 1 to 𝑇 do
3: Reliability Sampling Module: Select a subset 𝐃𝑝

𝑠𝑡 of test samples from 𝐃𝑢

based on the dual-space consistent sampling approach;
4: Feature Generation Module: Train the conditional dual-adversarial gen-

erative network under a one-hot condition with 𝐃𝑙 ∪ 𝐃𝑝
𝑠𝑡 and generate the

generated set 𝐃𝑔𝑡 of features from the generator;
5: Baseline Update Module: Obtain the updated baseline model 𝑀𝑡 by re-

training the baseline model with 𝐃𝑙 ∪𝐃𝑝
𝑠𝑡 ∪𝐃𝑔𝑡 and make predictions 𝑃 𝑢

𝑡 on
𝐃𝑢 by 𝑀𝑡;

6: end for
7: return 𝑃 𝑢

𝑇 ;

3.1. Pipeline of IT-OSR

The pipeline of the proposed IT-OSR framework which consists
of a reliability sampling module, a feature generation module, and a
baseline update module, is shown in Fig. 1. As seen from this figure, at
the initialization stage, there is a baseline method 𝑀0 that consists of a
feature extractor 𝐹 and a classifier 𝐶. The features are extracted from
nput images via the feature extractor 𝐹 , and are fed into the classifier

for prediction.
Then, the three explored modules are applied in an iterative man-

er: At the 𝑡th (𝑡 = 1, 2..., 𝑇 , and 𝑇 represents a preset maximum
teration number) iteration, firstly in the reliability sampling module,

relatively reliable subset 𝐃𝑝
𝑠𝑡 of the test samples is selected from

the unlabeled test dataset 𝐃𝑢 by an explored dual-space consistent
sampling approach. Then, in the feature generation module, we design
a conditional dual-adversarial generative network to generate both
known-class and unknown-class features. This generative network is
trained with both the training set 𝐃𝑙 and the sampled test set 𝐃𝑝

𝑠𝑡 with
pseudo labels. After training the generative network, we generate both
known-class and unknown-class features, the synthesized set is denoted
as 𝐃𝑔𝑡 . Finally in the baseline update module, the baseline model is
updated (re-trained) according to the union set 𝐃𝑙∪𝐃𝑝

𝑠𝑡 ∪𝐃𝑔𝑡 for making
predictions 𝑃 𝑢

𝑡 on the test dataset 𝐃𝑢. The iterative process would not
be terminated until the iteration number 𝑡 reaches a preset maximum
𝑇 , and the assigned labels to all the test samples by the re-trained
baseline method at the final iteration are used as the final predictions.
The whole above process of IT-OSR is also outlined in Algorithm 1.
In the following parts, the three explored modules at each iteration
in Fig. 1 (i.e., the three key Steps 3–5 in Algorithm 1) are introduced
respectively.

3.2. Reliability sampling module

In this module, a dual-space consistent sampling approach is ex-
plored for selecting a relatively reliable subset from the test dataset,
given the predictions of the baseline model at the previous iteration.
This module aims to alleviate the referred pseudo-labeled data selection
problem in Section 1 to some extent. Here, only such test samples
that have consistent predictions between the output space based on
confidence scores and the feature space based on feature distances, are
considered as relatively ‘reliable’ samples by the explored dual-space
consistent sampling approach according to the following criterion:

Criterion. A test sample, whose pseudo label assigned by the confidence
scores in the output space is consistent with those of more than half of its
spatial neighbors in the feature space, is identified as a relatively reliable
sample.

According to this criterion, the dual-space consistent sampling ap-

proach is implemented in the following two steps:
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Fig. 1. Pipeline of the proposed IT-OSR framework which implements the reliability sampling module, the feature generation module, and the baseline update module iteratively.
Fig. 2. The architecture of the conditional dual-adversarial generative network.
S1: Given the pseudo labels and confidence scores 𝑠 calculated in
the output space by the updated baseline model at the previous
iteration, the test samples are divided into three groups: known
class, unknown class, and undetermined class. Such division is based
on a predefined threshold, which is statistically calculated from
the confidence scores of the training set 𝐃𝑙. The three groups are
denoted as 𝐃𝑝

𝑘, 𝐃𝑝
𝑢𝑛𝑘, and 𝐃𝑝

𝑢𝑛𝑑 respectively. The above grouping
process can be formulated as:

⎧

⎪

⎨

⎪

⎩

𝐃𝑝
𝑘, if 𝑠 > 𝜇 + 𝛼𝛿

𝐃𝑝
𝑢𝑛𝑘, if 𝑠 < 𝜇 − 𝛼𝛿

𝐃𝑝
𝑢𝑛𝑑 , if 𝜇 − 𝛼𝛿 ≤ 𝑠 ≤ 𝜇 + 𝛼𝛿

(1)

where 𝜇 and 𝛿 are the mean and standard deviation of the
confidence scores calculated from the training set 𝐃𝑙 respectively,
and 𝛼 is a hyper-parameter.

S2: For each sample in 𝐃𝑝
𝑘∪𝐃

𝑝
𝑢𝑛𝑘, we search for its 𝐾 nearest neighbors

from 𝐃𝑝
𝑘 ∪ 𝐃𝑝

𝑢𝑛𝑘 ∪ 𝐃𝑝
𝑢𝑛𝑑 in the feature space according to the

Euclidean distances. Then, the test samples from 𝐃𝑝
𝑘 ∪𝐃𝑝

𝑢𝑛𝑘 whose
pseudo labels are consistent with that of more than their 𝐾∕2
neighbors are retained, while those inconsistent with more than
their 𝐾∕2 neighbors are removed out of 𝐃𝑝

𝑘 ∪ 𝐃𝑝
𝑢𝑛𝑘. This selected

subset of test samples is denoted as 𝐃𝑝
𝑠𝑡 .

3.3. Feature generation module

In this module, a conditional dual-adversarial generative network is
designed to generate known-class and unknown-class sample features.
This network is trained with the features, which are extracted from
both the training samples and the selected test samples by the feature
extractor 𝐹 of the updated baseline model. The designed network
4

simply utilizes one-hot vector as the class condition, and introduces
this condition to the generative adversarial network in a similar manner
to ACGAN [32]. It contains a generator 𝐺, a feature extractor 𝐹 , two
discriminators 𝐷1 and 𝐷2, two classifiers 𝐶1 and 𝐶2. The architecture of
the conditional dual-adversarial generative network is shown in Fig. 2.

Generator 𝐆: As seen from Fig. 2, the generator 𝐺 is designed to
generate known/unknown-class sample features 𝐃𝑔𝑡 . The structure of
the generator input is a vector, which concatenates a (𝑐+1)-dimensional
one-hot condition vector and a 128-dimensional Gaussian noise vector.
Accordingly, its dimensionality is 𝑐 + 1 + 128 = 𝑐 + 129. Here, the
generator 𝐺 has a three-layer perceptron architecture. It contains 3
fully-connected layers and uses ReLU (Rectified Linear Unit) as the
nonlinear activation function, and the dimensionality of its hidden
layers is 4096.

Feature extractor 𝐅: The feature extractor 𝐹 is straightforwardly
obtained from the updated baseline model at the previous iteration,
whose weights are fixed during the training process of the generative
network.

Discriminator 𝐃𝟏: The discriminator 𝐷1 is designed to implement
true or false discrimination, whose inputs are the fake features gener-
ated by 𝐺 and the real image features outputted by the feature extractor
𝐹 , and the dimensionality of its outputs is 1. Here, the discriminator
𝐷1 has the same three-layer perceptron architecture as 𝐺 except the
dimensionalities of the inputs and the outputs.

Discriminator 𝐃𝟐: The discriminator 𝐷2 is designed to implement
known-class or unknown-class discrimination for further improving the
discriminating ability of the generated features, whose inputs contain
known/unknown-class real/generated features, and the dimensionality
of its outputs is 1. Here, the discriminator 𝐷2 has the same three-layer
perceptron architecture as 𝐷1.

Classifier 𝐂𝟏: The classifier 𝐶1 is designed to classify both the real
and the generated features into (𝑐 + 1) classes (𝑐 known classes and
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one unknown class). Similar to ACGAN [32], this classifier is used to
trengthen the feature distinguishability among different known classes
nd unknown classes. Here, the classifier 𝐶1 has the same three-layer

perceptron architecture as 𝐷1 except the dimensionality of the outputs.
The dimensionality of its outputs is (𝑐 + 1).

Classifier 𝐂𝟐: The classifier 𝐶2 is designed to identify whether an
input real/generated feature belongs to a known class or not. This is to
say, it classifies both the real and generated features into two groups
(known class and unknown class). This classifier is used to pay more
attention to the distinguishability of the unknown-class features from
the known-class features. Here, the classifier 𝐶2 has the same three-
layer perceptron architecture as 𝐶1 except the dimensionality of the
outputs. The dimensionality of its outputs is 2.

Similar to WGAN [33], the adversarial game between the generator
𝐺 and the discriminator 𝐷1 is defined as:

min
𝐺

max
𝐷1

𝑉 (𝐺,𝐷1) = E𝑥∼𝑃𝑟

[

𝐷1(𝑥)
]

− E𝑥̃∼𝑃𝑔

[

𝐷1(𝑥̃)
]

(2)

where E is the expectation, 𝑃𝑟 and 𝑃𝑔 are the data distribution and
the generator’s distribution respectively, 𝑥 and 𝑥̃ are the extracted real
image features and the generated fake features respectively.

Similar to ACGAN [32], the classification loss for the classifier 𝐶1 is
defined as:

𝐶1
= −E𝑥∼𝑃𝑟

[

log𝑃 (𝑦𝑐1 = 𝑦𝑙1 |𝑥)
]

− E𝑥̃∼𝑃𝑔

[

log𝑃 (𝑦𝑐1 = 𝑦𝑙1 |𝑥̃)
] (3)

where 𝑦𝑐1 are the predicted labels predicted by 𝐶1, 𝑦𝑙1 are the ground
truths for (𝑐 + 1)-way classification.

In addition, the adversarial game between the generator 𝐺 and the
discriminator 𝐷2 is defined as:

min
𝐺

max
𝐷2

𝑉 (𝐺,𝐷2) =

− E𝑥∼𝑃𝑟

[

𝐷2(𝑥|𝑦𝑙1 = 𝑐 + 1) −𝐷2(𝑥|𝑦𝑙1 ≠ 𝑐 + 1)
]

− E𝑥̃∼𝑃𝑔

[

𝐷2(𝑥̃|𝑦̃ = 𝑐 + 1) −𝐷2(𝑥̃|𝑦̃ ≠ 𝑐 + 1)
]

(4)

where 𝑐 is the number of the known classes, 𝑦̃ is the class conditions of
𝑥̃.

The binary classification loss for the classifier 𝐶2 is defined as:

𝐶2
= −E𝑥∼𝑃𝑟

[

log𝑃 (𝑦𝑐2 = 𝑦𝑙2 |𝑥)
]

− E𝑥̃∼𝑃𝑔

[

log𝑃 (𝑦𝑐2 = 𝑦𝑙2 |𝑥̃)
] (5)

where 𝑦𝑐2 are the predicted labels predicted by 𝐶2, and 𝑦𝑙2 are the
ground truths for binary classification. Both 𝑦𝑙1 and 𝑦𝑙2 are labels (or
pseudo labels) of real samples, while 𝑦𝑙1 is the (𝑐+1)-class one-hot label
(the first 𝑐 classes correspond to 𝑐 known classes, and the (𝑐+1)-th class
represents all unknown classes) and 𝑦𝑙2 is the 2-class one-hot label (the
positive class corresponds to 𝑐 known classes, and the negative class
represents all unknown classes).

Accordingly, the dual-adversarial game is to optimize the objec-
tive function 𝑉 (𝐺,𝐷1, 𝐷2), which is the weighted sum of the afore-
mentioned two adversarial objective functions 𝑉 (𝐺,𝐷1) and 𝑉 (𝐺,𝐷2):

min
𝐺

max
𝐷1

max
𝐷2

𝑉 (𝐺,𝐷1, 𝐷2) =

E𝑥∼𝑃𝑟

[

𝐷1(𝑥)
]

− E𝑥̃∼𝑃𝑔

[

𝐷1(𝑥̃)
]

+

𝜆
{

−E𝑥∼𝑃𝑟

[

𝐷2(𝑥|𝑦𝑙1 = 𝑐 + 1) −𝐷2(𝑥|𝑦𝑙1 ≠ 𝑐 + 1)
]

−E𝑥̃∼𝑃𝑔

[

𝐷2(𝑥̃|𝑦̃ = 𝑐 + 1) −𝐷2(𝑥̃|𝑦̃ ≠ 𝑐 + 1)
]

}

(6)

where 𝜆 is a hyper-parameter balancing the weights of the two adver-
sarial games.

Besides, the total classification loss is the sum of the aforementioned
two classification losses:

 =  +  (7)
5

𝑐𝑙𝑠 𝐶1 𝐶2
3.4. Baseline update module

In this module, given the training samples, the generated features,
and the selected test samples with pseudo labels at the 𝑡th itera-
tion, the baseline method is re-trained by utilizing the real/generated
unknown-class features as an additional class (the (𝑐 + 1)-th class) for
classification. Then, it predicts the pseudo labels 𝑃 𝑢

𝑡 of all the test
samples for the next iteration.

3.5. Two transductive OSR methods derived from IT-OSR

It is noted that the proposed IT-OSR framework could accommodate
not only an arbitrary existing inductive OSR method but also a new in-
ductive one, resulting in a transductive OSR method. For evaluating the
proposed IT-OSR framework, we explore the following two transductive
methods:

(1) IT-OSR-ARPL. This transductive method is derived from the IT-
OSR framework by simply utilizing the existing inductive method
A-RPL [8] as the baseline method.

(2) IT-OSR-TransP. We firstly design a new inductive OSR network
by simply concatenating the Swin Transformer [34] (used as the
feature extractor 𝐹 ) and a three-layer perceptron (used as the
classifier 𝐶 that has the similar architecture to the aforemen-
tioned classifier 𝐶1), called TransP. This network is trained with
the traditional cross-entropy classification loss. Then, the trans-
ductive method IT-OSR-TransP is derived from the proposed IT-
OSR framework by utilizing the designed TransP as the baseline
method.

4. Experiments

In this section, firstly, we give a brief introduction on the dataset set-
tings and the evaluation metrics as well as the implementation details.
Next, we evaluate the proposed IT-OSR framework on coarse-grained
datasets under both dataset settings and on fine-grained semantic-shift
datasets. Then, we analyze the influence of the maximum iteration
number 𝑇 . Next, we conduct several ablation studies for further evalu-
ating the effect of IT-OSR. Finally, we provide the visualization results
of the learned features.

4.1. Dataset settings and evaluation metrics

4.1.1. Dataset settings
To assess open-set recognition performance under different degrees

of domain shift, we conduct experiments under two dataset settings.
One is the standard-dataset setting, where both the known-class and
unknown-class samples are obtained from a same dataset. The other
is the cross-dataset setting, where the known-class and unknown-class
samples are obtained from two different datasets respectively.

Under the standard-dataset setting, the following six standard
datasets are used for evaluation as done in [1–13,15,19]:

- MNIST [35]: MNIST is a traditional benchmark dataset for clas-
sification containing 10 categories of handwritten digit images,
in which 6 categories are randomly chosen as the known classes,
while the rest 4 categories as the unknown classes.

- SVHN [36]: Similar to MNIST, SVHN also contains 10 categories
of digit images but from street view house numbers. It is likewise
divided into 6 known classes and 4 unknown classes.

- CIFAR10 [37]: CIFAR10 is made up of 10 categories of natural
images, 6 of which act as the known classes, while the rest 4 act
as the unknown classes.

- CIFAR+10/+50: CIFAR+10/+50 contains two datasets based on
different combinations of CIFAR10 and CIFAR100 [38]. They
both randomly select 4 vehicle categories in CIFAR10 as the
known classes, and 10/50 random categories in CIFAR100 act as
the unknown classes in CIFAR+10/+50.
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Table 1
Evaluation on anomaly detection (AUROC) under the standard-dataset setting. The reported results are averaged over the same five trials as
[6,9,12,13].
Method Inductive Transductive MNIST SVHN CIFAR10 CIFAR+10/+50 TinyImageNet

SoftMax
√

× 0.978 0.886 0.677 0.816/0.805 0.577
OpenMax [1]

√

× 0.981 0.894 0.695 0.817/0.796 0.576
OSRCI [13]

√

× 0.988 0.910 0.699 0.838/0.827 0.586
CROSR [4]

√

× 0.991 0.899 0.883 0.912/0.905 0.589
C2AE [5]

√

× 0.989 0.922 0.895 0.955/0.937 0.748
CGDL [11]

√

× 0.994 0.935 0.903 0.959/0.950 0.762
GCPL [17]

√

× 0.992 0.942 0.883 0.951/0.946 0.759
GMVAE [18]

√

× 0.989 0.941 0.896 0.952/0.947 0.782
MoEP-AE [19]

√

× 0.992 0.965 0.904 0.961/0.962 0.805
GDFR [6]

√

× – 0.955 0.831 0.915/0.913 0.647
CAC [2]

√

× 0.985 0.938 0.803 0.863/0.872 0.772
OVRNs [16]

√

× 0.989 0.941 0.903 0.907/0.902 0.730
RPL [7]

√

× 0.996 0.968 0.901 0.976/0.968 0.809
A-RPL-CS [8]

√

× 0.997 0.967 0.910 0.971/0.951 0.782
Hybrid [12]

√

× 0.995 0.947 0.950 0.962/0.955 0.793
PROSER [3]

√

× – 0.943 0.891 0.960/0.953 0.693
EGT [9]

√

× – 0.958 0.821 0.937/0.930 0.709
Capsule [15]

√

× 0.992 0.956 0.835 0.888/0.889 0.715
S2OSC † [10] ×

√

0.995 0.936 0.855 0.910/0.809 0.714

A-RPL [8]
√

× 0.996 0.963 0.901 0.965/0.943 0.762
IT-OSR-ARPL ×

√

0.999 0.982 0.952 0.990/0.991 0.849

TransP
√

× 0.984 0.948 0.913 0.950/0.962 0.910
IT-OSR-TransP ×

√

0.999 0.983 0.965 0.991/0.993 0.943
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- TinyImageNet [39]: TinyImageNet is a more complex dataset
that contains 200 categories of ImageNet [40], 20 of which
are randomly chosen as the known classes, while the rest 180
categories act as the unknown classes.

or a fair comparison, we use the same data splits as done in [6,9,12,
3,19]. The details are presented in the supplementary material.

Under the cross-dataset setting, the whole 10 categories in the
IFAR10 dataset act as the known classes, while two datasets, Tiny-

mageNet and LSUN [41], are either cropped or resized for acting as
he unknown classes respectively, as done in [1,3–6,11,13,15,19].

.1.2. Evaluation metrics
Under the standard-dataset setting, the AUROC and ACC are utilized

s the evaluation metrics for evaluating the performance on detecting
nknown classes and classifying known classes respectively as done
n [1–9,11,13,15,19]:

- AUROC: The Receiver Operating Characteristic (ROC) Curve is
depicted by the False Positive Rate (FPR) as abscissa and the True
Positive Rate (TPR) as vertical coordinate. TPR is the ratio of
known-class samples that are correctly predicted as known classes
to all known-class samples, while FPR is the ratio of unknown-
class samples that are erroneously predicted as known classes
to all unknown-class samples. And the area under ROC curve
(AUROC) is a typical evaluation metric for anomaly detection,
which is not affected by the threshold chosen for separating
between the two classes.

- ACC: The top-1 accuracy (ACC) is a typical evaluation metric in
closed-set classification.

Under the cross-dataset setting, the macro-F1 score is utilized as the
valuation metric for evaluating the performance on classifying both
nown classes and unknown classes simultaneously as done in [1,3–6,
1,13,15,19]:

- macro-F1 score: The macro-F1 score measures the (𝑐 + 1)-way
classification performance, which is not influenced by data im-
balance.
6

4.2. Implementation details

In all of our experiments, we use the feature extractor in Swin-
B [34] pretrained by ImageNet-22K [40] at 𝑡 = 1, and use the feature
extractor of 𝑀𝑡 at 𝑡 > 1 for the feature space. The 𝛼 in Eq. (1) is set
to 2.5, the number of nearest neighbors in Step S2 in the reliability
sampling module is set to 𝐾 = 10, the balancing weight 𝜆 in Eq. (6)
s set to 0.1, and the maximum iteration number 𝑇 is set to 𝑇 = 2.
n training, we use the SGD optimizer with the learning rate 0.002
or updating the feature extractor 𝐹 of the baseline network, and 0.02
or updating the classifier part of the baseline network and training
he generative network. The confidence score of the proposed induc-
ive method TransP is defined as the maximum logit value outputted
rom the classifier. We use the conditional dual-adversarial generative
etwork to generate a special number of features for known classes
nd unknown classes at each iteration during the training process as
ollows: (i) the number of the synthetic known-class features is equal to
hat of the real known-class features; (ii) the number of the sum of the
eal unknown-class features and the synthetic unknown-class features
s equal to the sum of the real known-class features and the synthetic
nown-class features.

.3. Evaluation under the standard-dataset setting

Aiming at both detecting unknown classes and classifying known
lasses, an effective method for open-set recognition should perform
ell on both the anomaly detection task and the closed-set classification

ask. Thus we compare the two derived transductive OSR methods with
9 open-set recognition methods on both anomaly detection and closed-
et classification under the standard-dataset setting, and the results are
eported in Tables 1 and 2 respectively. The results marked with †
re reproduced by their published codes or by ourselves because these
esults are unreported in their papers.

As seen from Tables 1 and 2, compared with the two baseline
nductive methods (A-RPL [8] and TransP), the performances of the
wo derived transductive OSR methods under the proposed IT-OSR
ramework are significantly improved on the relatively difficult datasets
e.g. TinyImageNet), indicating that the proposed transductive OSR
ramework is able to boost the performances of inductive OSR methods.
esides, the two derived transductive methods perform better than
ther 19 existing OSR methods for both anomaly detection and closed-
et classification in most cases, demonstrating the effectiveness of the
roposed framework for handling the open-set recognition task.
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Table 2
Evaluation on closed-set classification (ACC) under the standard-dataset setting. The reported results are averaged over the same five trials as
[6,9,12,13].
Method Inductive Transductive MNIST SVHN CIFAR10 CIFAR+10/+50 TinyImageNet

SoftMax/ OpenMax [1]
√

× 0.995 0.947 0.801 – –
OSRCI [13]

√

× 0.996 0.951 0.821 – –
CROSR [4]

√

× 0.992 0.945 0.930 – –
C2AE † [5]

√

× 0.992 0.936 0.910 0.919 0.430
CGDL † [11]

√

× 0.996 0.942 0.912 0.914 0.445
GCPL [17]

√

× 0.995 0.963 0.937 0.945 0.643
GMVAE [18]

√

× 0.996 0.962 0.946 0.952 0.729
MoEP-AE [19]

√

× 0.996 0.979 0.958 0.978 0.732
GDFR [6]

√

× – 0.973 0.951 0.974 0.559
CAC [2]

√

× 0.998 0.970 0.934 0.952 0.759
OVRNs [16]

√

× 0.998 0.975 0.932 – –
RPL † [7]

√

× 0.996 0.967 0.939 0.943 0.642
A-RPL-CS † [8]

√

× 0.997 0.971 0.953 0.956 0.678
Hybrid † [12]

√

× 0.995 0.962 0.926 0.937 0.612
PROSER [3]

√

× – 0.964 0.926 – 0.521
EGT [9]

√

× – 0.977 0.943 0.959 0.656
Capsule † [15]

√

× 0.994 0.984 0.952 0.969 0.774
S2OSC † [10] ×

√

0.996 0.941 0.925 0.918 0.689

A-RPL [8]
√

× 0.996 0.971 0.952 0.955 0.679
IT-OSR-ARPL ×

√

0.996 0.972 0.953 0.955 0.785

TransP
√

× 0.997 0.980 0.988 0.987 0.937
IT-OSR-TransP ×

√

0.997 0.980 0.988 0.988 0.945
Table 3
Evaluation on open-set classification (macro-F1 score) under the cross-dataset setting.
Dataset Inductive Transductive ImageNet-crop ImageNet-resize LSUN-crop LSUN-resize

SoftMax
√

× 0.639 0.653 0.642 0.647
OpenMax [1]

√

× 0.660 0.684 0.657 0.668
OSRCI [13]

√

× 0.636 0.635 0.650 0.648
CROSR [4]

√

× 0.721 0.735 0.720 0.749
C2AE [5]

√

× 0.837 0.826 0.783 0.801
CGDL [11]

√

× 0.840 0.832 0.806 0.812
GCPL [17]

√

× 0.807 0.793 0.829 0.795
GMVAE [18]

√

× 0.833 0.815 0.837 0.829
MoEP-AE [19]

√

× 0.858 0.841 0.889 0.875
GDFR [6]

√

× 0.757 0.792 0.751 0.805
CAC † [2]

√

× 0.764 0.752 0.756 0.777
OVRNs [16]

√

× 0.835 0.825 0.846 0.839
RPL † [7]

√

× 0.811 0.810 0.846 0.820
A-RPL-CS † [8]

√

× 0.862 0.841 0.859 0.873
Hybrid † [12]

√

× 0.802 0.786 0.790 0.757
PROSER [3]

√

× 0.849 0.824 0.867 0.856
EGT † [9]

√

× 0.829 0.794 0.826 0.803
Capsule [15]

√

× 0.857 0.834 0.868 0.882
S2OSC † [10] ×

√

0.828 0.810 0.832 0.806

A-RPL † [8]
√

× 0.858 0.830 0.845 0.867
IT-OSR-ARPL ×

√

0.939 0.910 0.921 0.908

TransP
√

× 0.881 0.870 0.908 0.891
IT-OSR-TransP ×

√

0.971 0.959 0.973 0.971
4.4. Evaluation under the cross-dataset setting

Comparing with the standard-dataset setting, there is a larger do-
main shift under the cross-dataset setting because the known classes
and the unknown classes are from different datasets. We evaluate
the two derived transductive OSR methods and the 19 existing OSR
methods respectively under the cross-dataset setting, and the corre-
sponding results are reported in Table 3, where those marked with †
are reproduced.

As seen from Table 3, both of the derived IT-OSR methods perform
significantly better than their baseline inductive methods as well as
the other comparative methods. These results demonstrate that the
proposed IT-OSR framework is insensitive to the relatively larger do-
main shift and it has a better generalization ability. This is probably
because of the designed dual-space consistent sampling approach and
the proposed conditional dual-adversarial generative network.
7

Table 4
OSR results on the CUB dataset from the Semantic Shift Benchmark.

Method Inductive Transductive ACC AUROC
(Easy/Hard)

OSCR
(Easy/Hard)

ARPL
√

× 0.952 0.948/0.844 0.912/0.819
TransP

√

× 0.949 0.945/0.845 0.915/0.822

S2OSC ×
√

0.948 0.931/0.829 0.897/0.803
IT-OSR-ARPL ×

√

0.961 0.960/0.858 0.924/0.834
IT-OSR-TransP ×

√

0.956 0.960/0.863 0.931/0.847

4.5. Evaluation on fine-grained datasets

The above results have demonstrated the effectiveness of IT-OSR-
TransP on coarse-grained dataset. Here, we evaluate the following
methods on both the CUB and FGVC-Aircraft datasets from the Seman-
tic Shift Benchmark [42]:
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Table 5
OSR results on the FGVC-Aircraft dataset from the Semantic Shift Benchmark.

Method Inductive Transductive ACC AUROC
(Easy/Hard)

OSCR
(Easy/Hard)

ARPL
√

× 0.915 0.880/0.784 0.836/0.749
TransP

√

× 0.902 0.855/0.778 0.813/0.736

S2OSC ×
√

0.908 0.852/0.763 0.806/0.715
IT-OSR-ARPL ×

√

0.920 0.904/0.816 0.857/0.773
IT-OSR-TransP ×

√

0.917 0.889/0.811 0.845/0.769

Table 6
Comparison of AUROC and ACC results by IT-OSR-TransP with 𝑇 = 1, 2,… , 10 on SVHN
and CIFAR10 under the standard-dataset setting.

Dataset SVHN CIFAR10

Metric AUROC ACC AUROC ACC

baseline 0.948 0.980 0.913 0.988
T = 1 0.979 0.980 0.963 0.987
T = 2 0.983 0.979 0.965 0.987
T = 3 0.984 0.977 0.968 0.985
T = 4 0.983 0.976 0.966 0.986
T = 5 0.983 0.977 0.961 0.986
T = 6 0.982 0.977 0.961 0.986
T = 7 0.983 0.976 0.969 0.985
T = 8 0.982 0.975 0.964 0.985
T = 9 0.982 0.976 0.965 0.984
T = 10 0.981 0.975 0.964 0.984

(i) Two inductive methods: the two proposed inductive baseline
ethods (including the existing ARPL [8] and the proposed TransP);

(ii) Three transductive methods: S2OSC [10], and the two transduc-
ive methods derived from the proposed IT-OSR framework by utilizing
he above inductive methods as baseline methods (i.e., IT-OSR-ARPL

and IT-OSR-TransP).
The corresponding results are reported in Tables 4 and 5 respec-

tively. As seen from the two tables, the two derived transductive
methods outperform significantly their corresponding baseline induc-
tive methods and the transductive method S2OSC [10]. These re-
sults are consistent with those on the basic datasets (MNIST, SVHN,
CIFAR10, CIFAR+10/+50, TinyImageNet, ImageNet-crop, ImageNet-
resize, LSUN-crop, and LSUN-resize) reported in Tables 1–3, demon-
strating the effectiveness of the proposed transductive framework IT-
OSR.

4.6. Analysis of the maximum iteration number 𝑇

In fact, the maximum number of iterations 𝑇 depends on the number
f the selected test samples at each iteration. Under the used selection
trategy of test samples with replacement as described in Section 3, we
ind that the number of the selected test samples is generally close to
r even more than 1∕2 of the whole test set at each iteration. Hence,
fter a few iterations, the model discriminability tends to converge,
nd most of the reliable test samples have been selected one time or
ore times, but some difficult test samples have never be selected at all

imes. Furthermore, we evaluate IT-OSR-TransP with 𝑇 = 1, 2,… , 10 on
two datasets (SVHN and CIFAR10) under the standard-dataset setting.
The corresponding results are reported in Table 6. As seen from this
table, the results with 𝑇 = 2 achieve a trade-off between accuracy and
efficiency. Hence, we set 𝑇 = 2 in all our experiments.

4.7. Ablation study

Ablation study on the orthogonal condition. In the proposed
feature generation module, the known-class and unknown-class syn-
thetic features are generated based on the (𝐶 + 1)-dimensional one-hot
vectors, where the unknown-class condition is orthogonal to known-
8

class conditions. Here, to better analyze the effect of such an orthogonal i
Table 7
Comparison of OSR results for ablation study on the orthogonal condition under both
standard-dataset setting (TinyImageNet) and cross-dataset setting (ImageNet-crop).

Method Standard-dataset setting Cross-dataset setting

AUROC ACC macro-F1

IT-OSR-TransP-HPE 0.932 0.941 0.958
IT-OSR-TransP 0.943 0.945 0.971

Table 8
Comparison of macro-F1 score for ablation study on DSCS and DGAN.
Method macro-F1

TransP 0.881

IT-OSR-TransP w/o DSCS nor DGAN 0.949
IT-OSR-TransP w/o DGAN 0.964
IT-OSR-TransP w/o DSCS 0.962
IT-OSR-TransP with S2OSC-sampling 0.965

IT-OSR-TransP w/o feature space 0.967
IT-OSR-TransP w/o output space 0.966

IT-OSR-TransP 0.971

condition on the feature generation, we replace the proposed condi-
tional generation setup from Fig. 2 with a setup with 𝑐 classes, where
synthetic negative examples are trained to produce high predictive
entropy (similar to [28–30]) (called IT-OSR-TransP-HPE) in the trans-
ductive setup. The corresponding OSR results on TinyImageNet and on
ImageNet-crop are reported in Table 7. As seen from this table, IT-
OSR-TransP performs better than IT-OSR-TransP-HPE, demonstrating
the effectiveness of the orthogonal condition.

Ablation study on the proposed sampling approach and gener-
ative network. Then, to better analyze the effect of the explored dual-
space consistent sampling approach (denoted DSCS) and the proposed
conditional dual-adversarial generative network (denoted DGAN), we
conduct an ablation study on DSCS and DGAN. The experiment is im-
plemented in the IT-OSR-TransP method on the ImageNet-crop dataset
under the cross-dataset setting, where we compare the methods not
only with or without (denoted w/o) DSCS and DGAN but also with the
sampling approach in S2OSC [10] (denoted S2OSC-sampling) instead
of DSCS, and the results are reported in Table 8. Note that the methods
w/o DSCS sample from the test set only by a scoring approach (i.e., the
Step S1 in the reliability sampling module), the methods w/o DGAN
train a typical conditional GAN (i.e., 𝐺+𝐹 +𝐷1+𝐶1) instead in the fea-
ure generation module. As seen from Table 8, the comparison between
T-OSR-TransP w/o DGAN and IT-OSR-TransP demonstrates the effect
f the proposed DGAN, and the comparisons of IT-OSR-TransP to both
T-OSR-TransP w/o DSCS and IT-OSR-TransP with S2OSC-sampling
emonstrate that the explored DSCS is effective. It is noted that the
ample imbalance problem is a common problem in the OSR task and
any other visual tasks. Since the proposed model could generate

ynthetic features, it could alleviate the sample imbalance problem
or improving the accuracy of open-set recognition. Moreover, due to
he fact that the proposed module could generate various features by
tilizing different noises, the variety of synthetic negative features may
e also helpful for improving the accuracy of open-set recognition to
ome extent.
Ablation study on the two spaces in the proposed sampling ap-

roach. Here, we evaluate the separate influence of the two spaces in
he proposed pseudo-labeling selection criterion (i.e., the output space
or obtaining confidence scores and the feature space for obtaining
eature distances) in the reliability sampling module. Specifically, we
odify IT-OSR-TransP into the following two methods for comparison:

(i) IT-OSR-TransP w/o feature space: Here, we remove the sampling
rocess in the feature space from the proposed sampling approach, such
hat the test samples are sampled only based on their confidence scores
n the output space.
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(ii) IT-OSR-TransP w/o output space: Here, we remove the process
of assigning pseudo labels in the output space from the proposed
sampling approach, such that the test samples are sampled only based
on the feature distances in the feature space (the minimum distance
between a test feature to each known-class feature center).

The OSR results under the cross-dataset setting (ImageNet-crop)
are reported in Table 8. As seen from this table, both IT-OSR-TransP
w/o feature space and IT-OSR-TransP w/o output space perform better
than TransP, indicating that both single-space sampling approaches
could sample reliable test samples to different extents. In fact, IT-
OSR-TransP w/o feature space adopts a traditional sampling approach,
which selects samples with large logit values by the corresponding
updated model at each iteration. However, due to the limitation of
the model discriminability, the pseudo labels of some test samples
selected by the traditional sampling approach are inevitably wrong.
Addressing this problem, the proposed dual-space consistent sampling
approach further selects test samples whose pseudo labels are consistent
with those of most their neighbors in the feature space. Hence, the
reliability sampling module is able to improve the sample selection
so that the accuracy of open-set recognition is improved. Moreover,
we have compared the sampling accuracy of the traditional sampling
strategy with that of the proposed sampling approach, finding that the
sampling accuracy of the proposed sampling approach (about 90%)
is higher than that of the traditional sampling strategy (about 70%).
Besides, IT-OSR-TransP further improves the performance of both IT-
OSR-TransP w/o feature space and IT-OSR-TransP w/o output space,
demonstrating the effectiveness of the proposed dual-space consistent
sampling approach.

Reduced Sample Imbalance vs. Variety of Negative Data. The
bove results have demonstrated the effectiveness of the proposed
eature generation approach. Here, we conduct experiments on Tiny-
mageNet to analyze the effects of both the sample imbalance and the
ariety of the negative samples on the experimental advantage of the
roposed approach as follows:

We use the 8000 training samples from TinyImageNet as positive
amples, and design the following three settings on different ratios 𝑅𝑝𝑛
f positive samples to negative features for evaluating the effect of the
ample imbalance:

(i) 𝑅𝑝𝑛 = 10 ∶ 1, where the number of the generated negative
eatures is 800.

(ii) 𝑅𝑝𝑛 = 4 ∶ 1, where the number of negative features is 2000.
(iii) 𝑅𝑝𝑛 = 1 ∶ 1, where the number of negative features is 8000.
Then, under each configuration of the above ratios of positive

amples to negative features, we use different numbers 𝑁𝑛𝑜𝑖𝑠𝑒 of random
oises (here, 𝑁𝑛𝑜𝑖𝑠𝑒 = 800, 300, 100) to synthesize negative samples for
valuating the effect of the variety of the negative sample.

Under different combinations of 𝑅𝑝𝑛 and 𝑁𝑛𝑜𝑖𝑠𝑒, the proposed
ethod IT-OSR-TransP is trained respectively. Then it is evaluated
nder both standard-dataset setting (TinyImageNet) and cross-dataset
etting (ImageNet-crop), and the results are reported in Table 9. The
ollowing two points could be observed from this table:

(i) Under each configuration of the ratio 𝑅𝑝𝑛 of positive samples to
negative features, the performance of the proposed method becomes
better when the noise number 𝑁𝑛𝑜𝑖𝑠𝑒 increases (i.e., the negative sam-
ples become more various). This demonstrates that the variety of the
negative samples is one cause of the advantage of the proposed method.

(ii) Under each configuration of the noise number 𝑁𝑛𝑜𝑖𝑠𝑒, the per-
formance of the proposed method becomes better when the ratio 𝑅𝑝𝑛
of positive samples to negative features gets closer to 1 (i.e., there is a
balance between the numbers of positive and negative samples). This
demonstrates that the reduced sample imbalance is also one cause of
the advantage of the proposed method.

In sum, both the reduced sample imbalance and the variety of
the negative samples are the causes of the advantage of the proposed
method.
9
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Table 9
OSR results of IT-OSR-TransP with different sample ratios 𝑅𝑝𝑛 and different noise
umbers 𝑁𝑛𝑜𝑖𝑠𝑒 under both standard-dataset setting (TinyImageNet) and cross-dataset

setting (ImageNet-crop).
𝑅𝑝𝑛 𝑁𝑛𝑜𝑖𝑠𝑒 Standard-dataset setting Cross-dataset setting

AUROC ACC macro-F1

10:1
800 0.929 0.939 0.935
300 0.923 0.937 0.922
100 0.915 0.937 0.896

4:1
800 0.930 0.939 0.940
300 0.926 0.938 0.925
100 0.919 0.937 0.901

1:1
800 0.933 0.940 0.949
300 0.928 0.938 0.928
100 0.921 0.938 0.906

Table 10
Comparison of macro-F1 score for ablation study on
𝐷2 and 𝐶2 of the proposed DGAN.
Architecture macro-F1

𝐺 + 𝐹 +𝐷1 + 𝐶1 0.964
𝐺 + 𝐹 +𝐷1 + 𝐶1 + 𝐶2 0.966
𝐺 + 𝐹 +𝐷1 +𝐷2 + 𝐶1 0.969
IT-OSR-TransP 0.971

Ablation study on the architecture of the proposed generative
network. Although the classifier 𝐶2 and the discriminator 𝐷2 seem to
handle a same task: classifying/discriminating the features as either
known classes or unknown classes, there exists two differences. One
difference lies in the outputs. 𝐶2 outputs a 2-dimensional vector, while
𝐷2 outputs a single value. The other difference lies in the training
losses. 𝐶2 is trained with the cross-entropy classification loss, while
𝐷2 is trained with the adversarial loss. Further, to better analyze the
ffect of 𝐶2 and 𝐷2 in the proposed DGAN, we conduct an ablation
tudy on 𝐷2 and 𝐶2 (𝐺, 𝐹 , 𝐷1 and 𝐶1 are indispensable), which is
lso implemented in the IT-OSR-TransP method on the ImageNet-crop
ataset under the cross-dataset setting. The results are reported in
able 10. As seen from Table 10, the comparison between 𝐺 + 𝐹 +
1+𝐶1+𝐶2 and IT-OSR-TransP demonstrates that the discriminator 𝐷2

n the proposed DGAN is important for improving the discrimination
f the known/unknown-class features, and the comparison between
+𝐹 +𝐷1+𝐷2+𝐶1 and IT-OSR-TransP demonstrates that the classifier
2 in the proposed DGAN is also effective for better performance.

.8. Visualization

In this section, we adopt t-SNE to visualize the extracted features
rom both the real known-class and unknown-class images by IT-OSR-
ransP at three iterations 𝑡 = 0, 1, 2 (IT-OSR-TransP with 𝑡 = 0 is

ndeed the initial baseline inductive method TransP) on the CIFAR10
ataset in Fig. 3. In this figure, the real known-class features and
eal unknown-class features are denoted as blue ‘RK’ and yellow ‘RU’,
espectively.

As seen from Fig. 3(a), some extracted unknown-class features are
verlapped with extracted known-class features, indicating that the
eature collapse problem does exist in the baseline feature extractor. As
een from Fig. 3(b) and (c), the overlapped regions have been reduced
rogressively with the increase of the iteration number 𝑡, demonstrating
hat the feature collapse problem could be alleviated by the proposed
ethod.

Besides, for verifying whether the proposed method suffers from
ode collapse or not, we use t-SNE to visualize the generated features

s well as the real features on CIFAR10 by the proposed method in
ig. 4. In this figure, the generated known-class features and generated
nknown-class features are denoted as green ‘GK’ and red ‘GU’, respec-

ively. As seen from this figure, the generated features generally cover
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Fig. 3. T-SNE visualization of the known-class real features (denoted as blue ‘RK’) and unknown-class real features (denoted as yellow ‘RU’) extracted by the updated feature
extractor 𝐹 of (a) IT-OSR-TransP with 𝑡 = 0 (i.e., TransP), (b) IT-OSR-TransP with 𝑡 = 1, and (c) IT-OSR-TransP with 𝑡 = 2. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Fig. 4. T-SNE visualization of the known-class real features (denoted as blue ‘RK’)
and unknown-class real features (denoted as yellow ‘RU’) as well as the known-
class generated features (denoted as green ‘GK’) and unknown-class generated features
(denoted as red ‘GU’). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

the real distributions, demonstrating that the proposed method does
not suffer from the mode collapse problem heavily.

5. Conclusion

In this paper, we propose the Iterative Transductive OSR frame-
work, IT-OSR, which iteratively performs three explored modules: the
reliability sampling module, the feature generation module, and the
baseline update module. In the reliability sampling module, we explore
the dual-space consistent sampling approach for selecting a relatively
reliable subset from the pseudo-labeled test samples. In the feature gen-
eration module, we explore the conditional dual-adversarial generative
network for feature generation, which could balance the number of the
pseudo-labeled unknown-class test samples and that of the known-class
samples. Any inductive OSR method can be seamlessly embedded into
IT-OSR for alleviating the domain shift problem. We further derive two
novel transductive OSR methods under the explored IT-OSR framework,
and extensive experimental results demonstrate the effectiveness of
IT-OSR.

Although the proposed feature generation module has shown its
effectiveness for handling the OSR task, the orthogonal condition cur-
rently used in this model still leaves much room for improvement.
10
In fact, the orthogonal-coding strategy is tentative, and the features
of unknown-class samples are not necessarily orthogonal to those of
known-class samples in some latent feature spaces. Hence, a more
effective coding condition would be expected to boost the performance
of the feature generation module further, which would be one of our
future works.
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