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Abstract. Recent advances in high-throughput electron microscopy (EM) have revolutionized the examination of microstruc-
tures by enabling fast EM image generation. However, accurately segmenting EM images remains challenging due to inherent
characteristics, including low contrast and subtle grayscale variations. Moreover, as manually annotated EM images are lim-
ited, it is usually impractical to utilize deep learning techniques for EM image segmentation. To address these challenges, the
pyramid multiscale channel attention network (PmcaNet) is specifically designed. PmcaNet employs a convolutional neural
network-based architecture and a multiscale feature pyramid to effectively capture global context information, enhancing its
ability to comprehend the intricate structures within EM images. To enable the rapid extraction of channel-wise dependencies,
a novel attention module is introduced to enhance the representation of intricate nonlinear features within the images. The
performance of PmcaNet is evaluated on two general EM image segmentation datasets as well as a homemade dataset of
superalloy materials, regarding pixel-wise accuracy and mean intersection over union (mIoU) as evaluation metrics. Extensive
experiments demonstrate that PmcaNet outperforms other models on the ISBI 2012 dataset, achieving 87.85% pixel-wise
accuracy and 73.11% mean intersection over union (mIoU), while also advancing results on the Kathuri and SEM-material
datasets.
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1. Introduction

The preliminary material property evaluation
phase entails a comprehensive analysis of the surface
of materials. Optical microscopes have tradition-
ally been the primary instruments used for visually

∗Corresponding author. Guoqing Li, State Key Laboratory of
Multimodal Artificial Intelligence Systems, Institute of Automa-
tion, Chinese Academy of Sciences, Beijing, China. E-mail:
guoqing.li@ia.ac.cn.

examining microscopic objects. In contrast, Electron
microscopy (EM) provides superior resolution com-
pared to light-based imaging, as it uses an electron
beam to capture high-resolution images, allowing
observation of objects with wavelengths smaller than
light. It is achieved by leveraging an electron beam
to irradiate a solid substance and detecting scattered
electrons to generate high-resolution EM images
[1]. To bridge the gap between the microscopic and
macroscopic scales, image segmentation algorithms
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Fig. 1. An illustration of the EM image segmentation challenges, which shows the original image from our homemade SEM-material dataset
(A) and the ground truth (B). The region of interest is annotated using a yellow dash box. The absence of color information and the presence
of class imbalance are challenging issues.

are employed to analyze EM images and extract
information about the material’s surface or near-
surface structure. This research paradigm has found
widespread application in various fields, including
medicine [2], biology [3], and other relevant domains.
It plays a crucial role in advancing fundamental dis-
ciplines.

With advancements in electron microscopy imag-
ing technology, these techniques now generate
high-resolution EM images with data volumes rang-
ing from gigabytes to terabytes [4]. Figure 1 depicts
our homemade SEM-material dataset alongside the
corresponding ground truth, which was derived from
an EM scanning result of a high-temperature alloy
material. There is a significant difference in pixel dis-
tribution between EM images and natural images. EM
images, in contrast to natural images, exhibit min-
imal color information, significant scale variations,
and a pronounced class imbalance [5]. This observa-
tion implies that methods of segmentation designed
primarily for natural images may struggle to produce
promissing results when applied to EM images. Con-
sequently, segmenting EM images with volumes up to
terabytes presents a formidable challenge. Recently,
several machine learning techniques, such as ilastik
[6], TrakEM2 [7] and Microscopy Image Browser
[8], have been proposed as potential solutions to this
issue. While these methods have demonstrated satis-
factory inference metrics, deep learning models offer
further advancements through their enhanced feature

extraction capabilities, enabling them to better fit the
data.

Recently, various deep learning models have suc-
cessfully been applied to segment EM images. An
illustrative example is U-net [9], which enhances the
architecture of fully convolutional networks (FCNs)
[10] by incorporating upsampling in a reverse expan-
sive path along with skip connections. This module
facilitates improved mask output and fosters a com-
prehensive learning framework. Moreover, EM-net
[11], a scalable deep convolutional neural network
that extends the U-net [9] architecture, was specif-
ically developed for segmenting EM images. This
study demonstrates the ability to achieve effective
learning outcomes with a limited set of ground truth
samples in the context of 2D EM image segmentation
tasks.

However, due to the high resolution of EM images,
it is necessary to divide them into smaller patches
during model training. Unfortunately, this partition-
ing inevitably results in a reduction in available
contextual information [12]. Additionally, the lim-
ited spatial range of convolutional filters restricts the
incorporation of comprehensive global information
from the image. This limitation is particularly sig-
nificant for image segmentation tasks that heavily
rely on the utilization of global context. Furthermore,
the process of providing ground truth samples for
electron microscopy datasets presents considerable
challenges due to the low contrast exhibited by these
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samples. According to a study [13], manual data seg-
mentation or annotation costs an average of $10 per
� m3, which might amount to thousands of dollars
for a relatively large data volume. The absence of
annotated data poses a significant obstacle for EM
image segmentation tasks.

To address these limitations, a pyramid multiscale
channel attention network (PmcaNet) is proposed
for enhancing EM image segmentation. In contrast
to other methods, PmcaNet distinguishes itself by
leveraging pyramid multiscale feature extraction and
attention mechanisms to capture contextual relation-
ships spanning various feature scales. This approach
enables effective learning from a limited number of
ground truth samples and concurrently enhances the
accuracy of 2D EM image segmentation. Further-
more, the paper introduces the lightweight adaptive
channel attention (LACA) module to reduce com-
putational complexity while ensuring performance.
By extracting attention vector of each channel, the
LACA module captures intricate nonlinear structures
present in EM images with fewer computations. The
incorporation of multiscale contextual information in
PmcaNet, achieved by harnessing multiscale atten-
tion information to enhance features, contributes to
an improved accuracy in segmenting larger objects
within EM images.

In summary, the following four contributions are
offered by this work: (i) A novel EM dataset named
SEM-material is proposed, focusing specifically on
superalloy materials. (ii) A new architecture named
PmcaNet is specifically developed to enhance the
utilization of multiscale attention value and con-
text information. (iii) A lightweight adaptive channel
attention (LACA) module is designed to improve the
understanding of the complex structures present in
EM images and reduce computational complexity
while ensuring efficient learning. (iv) The effective-
ness of PmcaNet is extensively evaluated on our
homemade SEM-material dataset as well as two gen-
eral EM datasets, ISBI 2012 [14] and Kathuri [15].
Extensive experiments reveal that PmcaNet achieves
competitive results in EM image segmentation.

The subsequent sections are organized as follows.
In Section 2, related work concerning natural image
segmentation and electron microscopy image seg-
mentation is explored. Section 3, describes each
module of our approach. The experiments and anal-
ysis are presented in Section 4. Section 5 introduces
the examination of the individual roles of each mod-
ule and an assessment of the model’s convergence.
Finally, Section 6 concludes this paper.

2. Related works

2.1. Natural image segmentation

Computer vision researchers have predominantly
focused on natural images, which capture ordi-
nary scenes from the natural environment and
exhibit abundant and high-quality content. In this
domain, deep learning models based on encoder-
decoder architectures have emerged as the prevailing
approach, with particular prominence given to
fully convolutional networks (FCNs) [10]. Several
methods have been proposed to enhance the recep-
tive field of convolutional networks, including the
use of dilated or atrous convolutions [16]. Initial
approaches [17–20] involved a sequence of consec-
utive convolutions followed by spatial pooling to
generate dense predictions. For instance, PSPNet
[21] employed spatial pyramid pooling to capture
contextual information at multiple scales, while
DeepLabv3+ [22] integrated atrous spatial pyramid
pooling to achieve an efficient encoder-decoder archi-
tecture. OneFormer [23] employs a backbone and
pixel decoder to extract multi-scale features from
the input image, yielding a more densely packed
feature representation. Recently, many studies have
explored the integration of attention mechanisms
into encoder feature maps to replace coarse pool-
ing. Sophisticated techniques have been proposed
to enhance channel-wise dependencies [24–26], and
spatial attention mechanisms [27–29] have been inte-
grated with other techniques to improve long-range
dependency acquisition. SegViT [30] introduces an
Attention-to-Mask (ATM) decoder module, which
harnesses the spatial information within the atten-
tion map to generate mask predictions for each
category. However, due to the substantial dispari-
ties in grayscale distribution and other characteristics
between electron microscopy images and natural
images, achieving satisfactory results on EM images
through the application of natural image segmenta-
tion methods is challenging.

2.2. Electron microscopy image segmentation

Electron microscopy involves collecting electrons
that reflect from the imaged specimen surface,
resulting in EM images [11]. The pixel distribu-
tion observed in EM images differs significantly
from that of natural images. In recent years, deep
learning models have made notable advancements
in addressing the challenges of semantic segmenta-
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Fig. 2. An overview of the proposed PmcaNet. The flow of information is indicated by the black arrows. Within the architecture, "GAP"
denotes a global average pooling layer, and "LACA" signifies lightweight adaptive channel attention.

tion in EM images, surpassing traditional approaches
that relied on manually engineered features [31–33].
Previous research [34, 35] on scanning electron
microscopy (SEM) images of sandstone and trans-
mission electron microscopy (TEM) images of mouse
brain slices has provided evidence supporting this
phenomenon. Oztel et al. [36] introduce a deep con-
volutional neural network that incorporates a sliding
window strategy and subsequent postprocessing steps
to enhance its performance. MitoNet [37] introduced
a generalizable model for segmenting individual
mitochondria across volume electron microscopy
datasets. Nonetheless, these methods have not effec-
tively tackled the challenges associated with the
absence of edge information and incomplete object
segmentation in EM images. We contend that the
acquisition of supplementary global contextual infor-
mation is imperative for addressing these issues.

3. Method

3.1. Overview

Figure 2 provides an overview of the proposed
model. The backbone network of PmcaNet is based
on the ResNet-50 model, which incorporates dilated
convolutions to expand the receptive field. The choice
of the ResNet-50 model as the backbone network
for PmcaNet was made to strike a balance between
model capacity and computational efficiency, which
is particularly well-suited for our segmentation task.
The final feature map from the backbone network is
then fed into the multiscale channel attention pyra-

mid module. This module captures global contextual
dependencies across different geographical dimen-
sions. Distinguished from alternative approaches,
within the multiscale channel attention pyramid
module, the lightweight adaptive channel attention
(LACA) module is utilized to compute channel atten-
tion on feature maps at multiple scales. The channel
attention vector is then produced by the multiscale
attention fusion module, which incorporates atten-
tion values from different dimensions. Finally, the
low-level features collected from the backbone net-
work are fused with the enhanced high-level features,
generating the final features used for pixel-level mask
prediction.

3.2. Multiscale channel attention pyramid

In semantic segmentation tasks with complex
scenes, integrating multiscale information has shown
significant performance improvement. Incorporating
attention mechanisms allows the model to selectively
focus on important regions, enhancing the segmenta-
tion results for objects of varying dimensions. Hence,
it is necessary to independently derive attention of
different scales and utilize it to enhance features.
This methodology optimizes the use of contextual
information from lower-level feature maps, improv-
ing segmentation performance.

The multiscale channel attention pyramid mod-
ule extracts feature maps applying the same pyramid
pooling parameters as PSPNet [21]. By performing
pooling operations with kernel sizes of 1×1, 2×2,
3×3, and 6×6, feature maps at different scales are
generated, capturing information at various scales.
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Fig. 3. The specifics of our lightweight adaptive channel attention
(LACA) module. In the diagram, "GAP" corresponds to global
average pooling, "CONV" represents 1D convolution, and "BN"
stands for batch normalization.

The lightweight adaptive channel attention (LACA)
module is then applied to collect the global priors
for each layer to gather attention values covering the
entire image and those covering half of the image
and small portions. Finally, the adaptive fusion of
attention maps yields contextual information that
encompasses a broader range of semantic details.

3.3. Lightweight adaptive channel attention
(LACA)

Channel attention mechanisms, leveraging
squeeze and activation operations, play a crucial role
in facilitating feature integration and recalibration.
The lightweight adaptive channel attention (LACA)
module is designed to obtain channel attention
values, enabling the capture of channel dependencies
and enhancing the feature representation capability.
Figure 3 provides an overview of the zooming
process, while the LACA module can be represented
as follows:

Atten = sigmoid (BN (Convk(GAP(F )))) , (1)

where F represents the input feature map. The
LACA module aggregates the convolutional fea-
tures by diminishing their dimensions using global
average pooling (GAP). Then, a 1D convolution oper-
ation is performed with a kernel size k. Finally, the
attention value is generated utilizing a sigmoid func-
tion following batch normalization (BN), to achieve
a steady activation value distribution throughout
training. Using 1D rapid convolution for channel cal-
ibration is suggested to minimize network parameters
and prevent dimension reduction. While the size of
the convolution kernel k can be manually determined,
this method lacks generalization and may not apply
to diverse samples.

Recently, Qilong Wang et al. [25] have proposed
a mapping relationship between the number of fea-
ture map channels C and the convolution kernel size
k to better represent the correlation between high-

dimensional and low-dimensional channels:

C = φ(k). (2)

The linear relationship is acknowledged as the
most fundamental mapping function. However,
the presence of sparse feature relationships can
pose challenges in representing the interconnections
between channels. Hence, the employment of non-
linear functions to facilitate the mapping process is
taken into consideration. Exponential functions are
particularly favored for their effectiveness in integrat-
ing information across multiple channel dimensions.
Therefore, exponential functions are used as the map-
ping function:

φ(k) = αek + β. (3)

Then, the size of the convolution kernel can be
adaptively determined by the channels C:

k =
∣∣∣∣ln(

C − β

α
)

∣∣∣∣
odd

, (4)

where |X|odd represents the closest odd number
to X. Choosing an odd number for the convolu-
tion kernel k is inspired by the prevalent approach
in the field of image processing. In this study, α

and β are consistently set to the values 2 and 1,
respectively, throughout all experiments. The non-
linear transformation can facilitate the amplification
of long-distance interactions in high-dimensional
channels, while short-distance interactions are more
prominent in low-dimensional channels.

3.4. Multiscale attention fusion (MAF)

After obtaining attention information at multiple
spatial scales, a straightforward additive fusion tech-
nique can be used to derive multiscale attention
weights. However, it is important to note that the rel-
ative importance of different hierarchical attention
modules may vary and should not be presumed to be
equal. Determining the weights experimentally can
be computationally expensive and may not guaran-
tee generalization. Weizhen Wang et al. [38] have
suggested employing an adaptive learning strategy
to determine the magnitudes of the weights. Simi-
larly, in this study, the weight vector is derived by
applying a 1×1 convolution operation to the various
hierarchical level outputs:

w = softmax(concat(C1D(Atteni))), (5)



A
U

TH
O

R
 C

O
P

Y

4900 K. Gao et al. / PmcaNet: Pyramid multiscale channel attention network for electron microscopy image segmentation

where Atteni represents attention information from
the four pyramid levels, and i can take values of 0,
1, 2, or 3. Attention weights are acquired using a
1×1 convolution operation called C1D, producing
a weight for each input. The value of the weight is
learned through the training process. After combin-
ing the channel attention information from different
levels, the softmax operation is used to generate the
weight vector w. The final multiscale attention infor-
mation, denoted as Atten, is obtained by combining
the channel attention information with the weight
vector:

Atten =
∑3

i=0
wiAtteni. (6)

Finally, the attention information is fused with the
low-level feature F as follows:

Out = Atten ⊗ F. (7)

where ⊗ represents the channel-wise multiplication
operarion between the low-level feature F and the
high-level feature Atten. The feature map Out is
then upsampled to the original image resolution using
transposed convolution. The output is further passed
through a 2D convolutional layer with a kernel size
of 1 for pixel-by-pixel classification, generating the
final segmentation mask.

3.5. Training and inference

The sample imbalance issue in EM images is con-
sidered during the model training process. To address
this bottleneck, Dice loss [39] is utilized as the loss
function. The Dice loss encourages the model to allo-
cate more attention to foreground regions that may
have sparse features, effectively addressing the chal-
lenge posed by class imbalance:

LDice = 1 − 2
∑N

i=1 pigi∑N
i=1 p2

i + ∑N
i=1 g2

i

, (8)

where N represents the number of pixels, pi denotes
the predicted probability of the i-th pixel, and gi

denotes the ground truth of the i-th pixel. The
Dice loss function is implemented to mitigate the
negative effects of the unbalanced distribution of
foreground and background samples. This technique
demonstrates high efficacy in improving segmenta-
tion results, particularly in scenarios involving small
foreground regions like EM images.

Additionally, the multiclass cross-entropy (CE)
loss [40] is employed to evaluate the pixel-wise clas-

sification error:

LCE = −
∑N

i=1
gi log pi. (9)

Consequently, PmcaNet is trained by minimizing
the overall loss objective:

L = λ1LCE + λ2LDice, (10)

where λ1 and λ2 are tradeoff parameters that control
the weights of the two losses. In this paper, λ1 and λ2
are set to 1 and 3, respectively.

4. Experiments

4.1. Datasets and metrics

Figure 4 illustrates some samples from the three
datasets ISBI 2012 [14], Kathuri [15], and SEM-
material used in the experiments, with details as
follows:
ISBI 2012. This dataset is from the 2012 ISBI EM
segmentation challenge [14]. The training dataset of
this competition consists of 30 stacked EM images
of successive sections of the ventral nerve cord of a
Drosophila larva in its first instar, with binary labels
representing cell membranes and neuronal cell bod-
ies. The test dataset has the same dimensions as the
training dataset, comprising 30 images with a resolu-
tion of 512×512.
Kathuri. It consists of scanning electron microscopy
(SEM) data of the left ventricular myocytes of three
mice [15]. The dataset consists of two classes: car-
diac muscle mitochondria and the background. Each
image in this dataset has a resolution of 1334×1334.
The training set includes 96 images, the validation
set has 32 images, and the testing set consists of 32
images.
SEM-material. The homemade SEM-material
dataset contains 130 images generated through
scanning electron microscopy (SEM) at a resolution
of 8192×8192. The data were collected using a
single-beam high-throughput SEM, Navigator-100
(Focus e-Beam Technology, Beijing), equipped with
a direct electron detector and a finely tuned deflec-
tion system. It allows the capture of SE (secondary
electron) and BSE (backscattered electron) images
simultaneously at a speed of up to 2×100 megapix-
els/second [4]. The SEM-material dataset consists
of two distinct types of superalloy carbides used for
segmentation: primary Ta/Hf-rich MC carbides and
secondary Cr/Re-rich M23C6 carbides. Due to GPU
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Fig. 4. Some examples of ISBI 2012, Kathuri, and SEM-material datasets. ‘Source’ indicates the original images, while ‘GT’ represents the
corresponding ground truth.

memory limitations, the images were divided into
patches of size 2048×2048 before training. After
the division process, the dataset was divided into
training, validation, and test sets containing 1248,
416, and 416 images, respectively.
Metrics. For evaluation, the mean intersection over
union (mIoU) and pixel-wise accuracy (pixel acc.)
were adopted to measure the similarity between the
predicted results, the ground truth, and the proportion
of correctly classified pixels to all pixels.

4.2. Implementation details

The backbone network used for PmcaNet is
ResNet-50, pre-trained on the ImageNet-1k dataset.
During training, the data augmentation pipeline from
the MMSegmentation [41] library is applied. This
pipeline includes random horizontal flipping, ran-
dom cropping, and random resizing with a scale
between 0.5 and 2.0. Stochastic gradient descent
(SGD) [42] is employed for training the models with
a fixed momentum of 0.9. Additionally, the ’poly’
learning rate schedule is utilized, defined as γ =
γ0

(
1 − Niter

Ntotal

)0.9
, where Niter represents the current

iteration number, and Ntotal represents the total num-
ber of iterations. In our study, a standard holdout
validation methodology is employed. The hyperpa-

rameters are set up as follows for transfer learning
and fine-tuning on different datasets:

a) ISBI 2012: By default, the initial learning rate
is set to 0.01, the weight decay is set to 0.9, the crop
size is set to 128×128, and the batch size is set to 16.
If not supplied, the training iterations default at 40K.

b) Kathuri: By default, the initial learning rate is
set to 0.005, the weight decay is set to 0.9, the crop
size is set to 512×512, and the batch size is set to 8.
If not supplied, the training iterations default at 20K.

c) SEM-material: By default, the initial learning
rate is set to 0.005, the weight decay is set to 0.9, the
crop size is set to 512×512, and the batch size is set
to 8. If not supplied, the training iterations default at
40K.

All experiments are conducted on a workstation
equipped with 8 NVIDIA A40 48G GPU cards.

4.3. Results analysis

A comprehensive evaluation is conducted to com-
pare the performance of PmcaNet with the latest
models on three distinct datasets: ISBI 2012, Kathuri,
and SEM-material. The objective of this evaluation
is to assess the effectiveness of PmcaNet in electron
microscopy image segmentation. Table 1 presents the
results, demonstrating the efficacy of the proposed
approach in accomplishing the segmentation tasks.
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Table 1
Comparison with state-of-the-art methods. ‘pixel acc.’ refers to pixel-wise accuracy, while ‘mIoU’ stands for mean intersection over union

Method ISBI 2012 Kathuri SEM-material Param.
pixel acc. mIoU pixel acc. mIoU pixel acc. mIoU

DeepLabv3+ [22] [CVPR’2018] 70.62 41.39 98.47 75.01 99.51 42.12 43.58M
EM-net [11] [ICPR’2021] 86.30 69.69 98.30 78.91 99.61 52.46 39.06M
Segmentor [27] [ICCV’2021] 86.41 70.70 98.36 74.59 99.53 43.01 102.50M
SegViT [30] [NIPS’2022] 76.88 58.91 98.46 74.82 99.62 56.68 96.75M
PIDNet [43] [CVPR’2023] 72.18 53.83 97.92 76.14 99.64 62.73 11.65M
PmcaNet(Ours) 87.85 73.11 98.97 83.99 99.66 68.39 32.79M

Fig. 5. Visual improvements on the SEM-material dataset. PmcaNet produces more accurate and detailed results.

On the ISBI 2012 dataset, PmcaNet achieves a
pixel-wise accuracy (pixel accuracy) of 87.85% and
a mean intersection over union (mIoU) of 73.11%,
outperforming the other models. Similarly, on the
Kathuri dataset, PmcaNet performs the best with a
pixel accuracy of 98.97% and a mIoU of 83.99%.
These outcomes illustrate the comparable segmenta-

tion performance of the proposed method for electron
microscopy images.

Furthermore, when evaluated on the homemade
SEM-material dataset, which presents challenges
such as larger image sizes, cluttered backgrounds, and
sparser foreground information, PmcaNet demon-
strates exceptional performance. It achieves a pixel
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Fig. 6. Qualitative results of the proposed PmcaNet and other methods on the Kathuri dataset.

accuracy of 99.66% and a mIoU of 68.39%, surpass-
ing other models evaluated in this study. Regarding
the number of parameters, it is worth noting that
while PIDNet [43] has fewer parameters, its perfor-
mance is relatively lower. This accomplishment can
be ascribed to the integration of a multiscale attention
network within the primary decoder. This integra-
tion allows for the utilization of diverse information
at various resolutions, aiding in the capture of com-
prehensive contextual details and enhancing feature
representation.

4.4. Visualization of segmentation results

This section presents the comparative results of
PmcaNet on various datasets. The test results from
the SEM-material dataset and the Kasthuri dataset
are visualized in Figs. 5 and 6, respectively. Figure 5
shows the results of PmcaNet, which indicate
improved precision and greater object completeness
on the SEM-material dataset. Notably, segmenting
the primary phase (highlighted in red) and hole
structures inside the primary phase (highlighted in
black) indicates some improvement. In contrast,
DeepLabv3+ [22] and PIDNet [43] encounter diffi-

culties that result in gaps, causing misclassification
of pixels.

In Fig. 6, a selection of results from the Kasthuri
dataset’s test set is shown. The results obtained by
PmcaNet exhibit more complete objects and demon-
strate superior performance in terms of contours and
details, as compared to both EM-net [11] and PID-
Net [43]. This improvement can be attributed to
PmcaNet’s effective incorporation of rich contextual
information and comprehensive global information.
The utilization of such information enables PmcaNet
to effectively handle category boundaries, which is
crucial for EM image segmentation tasks that lack
color information and heavily rely on texture infor-
mation.

5. Discussion

5.1. Ablation study

To conduct a comprehensive analysis of the
methodology, a series of ablation experiments are
devised to evaluate the efficacy of the network mod-
ules.
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Table 2
Ablation study of multiscale channel attention pyramid

Method Pixel Acc. mIoU

ResNet50+MAX(w/o pyramid) 99.48 53.32
ResNet50+AVE(w/o pyramid) 99.61 55.85
ResNet50+MAX(w/ pyramid) 99.65 66.74
ResNet50+AVE(w/ pyramid) 99.66 68.31

Analysis of the multiscale channel attention pyra-
mid. Experiments are conducted using either a single
global feature or four-level feature pooling, compar-
ing maximum and average pooling. The results in
Table 2 indicate that average pooling exhibits superior
performance compared to max pooling. Addition-
ally, the incorporation of pyramid parsing for pooling
leads to enhanced performance compared to rely-
ing solely on global pooling. In the context of the
SEM-material dataset, attention pyramid and average
pooling techniques result in a model performance of
99.66% pixel acc. and 68.31% mIoU score. These
results provide evidence for the efficacy of these
pooling strategies in segmenting electron microscopy
images.
Effectiveness of the lightweight adaptive channel
attention module. The efficacy of the LACA mod-
ule is substantiated by conducting experiments that
incorporate various attention modules, such as SE
and ECA. Including attention modules in the baseline
model led to performance enhancement, as shown
in Table 3. Significantly, the LACA module exhibits
the most remarkable improvement, emphasizing its
capacity to enhance the model’s attention to detail
and overall performance. This serves as evidence of
the pivotal role played by the LACA in our network.
Effectiveness of the multiscale attention fusion
module. Experiments are carried out utilizing three
fusion methods: simple additive fusion, elementwise

multiplication (also known as the hardam prod-
uct), and a novel multiscale attention fusion (MAF)
approach. Table 4 shows the advantageous impact of
the MAF module on the PmcaNet model, resulting
in enhanced attention calibration and achieving the
highest performance with a pixel accuracy of 99.66%
and mIoU of 68.34%. This suggests that the MAF
module achieves optimal fusion weights through a
training process and acquires the ability to perform
spatial filtering on predictions at each level. Con-
sequently, the preservation of relevant information
for combination enhances the network’s accuracy in
making predictions, substantiating the MAF mod-
ule’s critical role within our network.
Effectiveness of combining two loss functions. Dur-
ing training, the model’s performance stagnates in the
early epoch when using a single loss, specifically the
cross-entropy loss. To address this issue, a weighted
combination of cross-entropy loss and Dice loss is
introduced as the overall loss Eq. (10). Different com-
binations of λ1 and λ2 are tested, and Table 5 shows
that λ1 = 1 and λ2 = 3 achieve the best performance
of 99.66% pixel-wise accuracy and 68.39% mIoU. It
is demonstrated that the integration of cross-entropy
loss and Dice loss plays a key role in our work. There-
fore, in the experiments, λ1 is set to 1, and λ2 is set
to 3.

5.2. In-depth view of PmcaNet

Moving forward, the complexity and convergence
time of different methods will be analyzed to high-
light the advantages of PmcaNet in terms of model
complexity and convergence speed.

Figure 7 compares the parameter count and mIoU
performance of various methodologies used for
the SEM-material dataset analysis. Among them,

Table 3
Evaluating the effectiveness of different channel attention modules

Method SE [24] ECA [25] LACA Pixel Acc. mIoU

PmcaNet(w/o attention) × × × 99.62 65.49
PmcaNet � × × 99.64 67.83
PmcaNet × � × 99.64 67.51
PmcaNet × × � 99.66 68.38

Table 4
Ablation study with different attention fusion modules. ‘Addition’ represents that the fusion method is the form
of addition, ‘Multiplication’ stands for bitwise multiplication and ‘MAF’ represents multiscale attention fusion

Method Addition Multiplication MAF Pixel Acc. mIoU

PmcaNet � × × 99.65 68.14
PmcaNet × � × 99.65 67.94
PmcaNet × × � 99.66 68.34
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Table 5
Performance comparison with or without diversity loss. λ1 and
λ2 represent the weight of cross-entropy loss and Dice loss,

respectively

Method λ1 λ2 Pixel Acc. mIoU

PmcaNet 1 0 99.24 51.20
PmcaNet 1 1 99.60 55.68
PmcaNet 1 2 99.48 40.29
PmcaNet 1 3 99.66 68.39
PmcaNet 1 4 99.48 44.16
PmcaNet 1 5 98.14 34.95

Fig. 7. Comparison of model performance and number of param-
eters on SEM-material. PmcaNet achieves improved performance
with minimal additional parameters.

PIDNet requires the fewest parameters, while seg-
mentor [27] requires the greatest number. PmcaNet,
with 11.65 million parameters, has a slightly higher
count than PIDNet [43] but significantly fewer than
segmentor [27] and SegViT [30], which utilizes a
ViT-based encoder with 102 million parameters. Fur-

thermore, PmcaNet has a comparable number of
parameters to other convolutional neural network-
based models, such as EM-net [11] and DeepLabv3+
[22]. Despite this, it should be noted that PmcaNet
does not necessitate significantly more computational
resources during a single forward pass when com-
pared to other methods. This allows PmcaNet to
achieve superior performance without incurring a sig-
nificant increase in the parameter count.

To assess the training progress of all models, the
mean intersection over union (mIoU) and loss met-
rics on a validation set are depicted graphically in
Fig. 8. Notably, the validation results indicate that
PmcaNet exhibited the lowest validation loss and the
highest mIoU score, thus emphasizing its superior
performance and faster convergence speed. These
advantages enable PmcaNet to deliver outstanding
results in a shorter training time compared to more
complex models.

5.3. Superiority of PmcaNet compared to
existing techniques

In this paper, the problem of challenging the seg-
mentation of electron microscopy (EM) images due
to inadequate contrast and grayscale approximation
is examined. To enhance the precision of EM image
segmentation and address the issue of insufficient
data sets, a novel multi-scale channel attention pyra-
mid is employed. Diverging from other techniques,
this structure comprehensively extracts local and
global information from EM images by capturing
attention values at various scales. This approach is
pivotal for representing intricate nonlinear charac-
teristics within the images. Additionally, an electron
microscopy (EM) image data set of high-temperature

Fig. 8. An illustration of the tendency of the loss (A) and mIoU (B) for different methods during training for mitochondria segmentation on
the Kathuri dataset.
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alloy materials, known as SEM-material, is pre-
sented. The provision of more datasets is imperative
for the advancement of the field.

6. Conclusion

This paper introduces PmcaNet, a novel model
aimed at enhancing the utilization of contextual infor-
mation across multiple scales in low-contrast electron
microscopy images. The key contribution of this
research lies in the proposal of a multiscale chan-
nel attention pyramid, which effectively integrates
semantic context from various scales. Furthermore,
a lightweight adaptive channel attention module
is introduced to capture channel dependencies and
enhance the representation capacity of features.
Ablation studies were carried out to determine the
effectiveness of the proposed modules, which were
designed to address the challenge of identifying
approximate grayscale pixels under low contrast con-
ditions in electron microscopy image segmentation.
These advancements have significantly reduced the
difficulty of this task by improving the use of multi-
scale information. According to the results, it is
evident that PmcaNet produces promising results for
electron microscopy image segmentation.

Additionally, the issue of lacking available data
for electron microscopy (EM) image segmentation is
addressed in this study by introducing a novel dataset
named SEM-material, which may contribute to alle-
viating data scarcity in the EM image segmentation
domain. In the future, to achieve better performance
and further reduce computing complexity, more effi-
cient self-attention methods will be employed.
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