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Abstract—In the realms of computer vision and robotics, 

the concept of visual place recognition holds significant 

prominence. Its objective revolves around equipping a 

model with the capability to identify, from a provided query 

image, the most analogous images within a database, 

thereby identifying the place represented by the query 

image. Current visual place recognition models typically 

rely on triplet loss functions for training, but such loss 

functions have limitations. Traditional triplet loss functions 

only classify database samples into positive and negative 

classes, without considering the importance ranking among 

samples. Some samples may be more similar to the query 

image and contain more useful information, thus deserving 

more attention during training. In tackling this problem, 

our approach introduces a novel loss function termed the 

distance-ranking-based weighted triplet loss. This unique 

loss function assigns weightage to triplets by evaluating the 

spatial gap separating positive instances and the queried 

image, thereby intensifying the emphasis on pivotal 

samples. Within the framework of place recognition tasks 

utilizing the NetVLAD pipeline, our method achieves 

approximately a 1% improvement in both the Recall@1 

and Recall@5 compared to traditional triplet loss function. 

Keywords-visual place recognition; triplet loss; vector of 

locally aggregated descriptors (VLAD) 

I.  INTRODUCTION 

The relentless progress in deep learning and computer 
vision technologies has immensely driven the evolution 
of visual place recognition [1]-[3]. This area of study 
delves into discerning the exact locale depicted in an 
image by harnessing the visual cues embedded within it. 
Its utility permeates diverse sectors, including the realm 
of self-driving vehicles [4], virtual environments, and 
robotic localization systems [5]. 

Visual place recognition involves a matching 
challenge, where the primary objective is to identify the 
optimal pairing between a query image and images within 
a database. This matching process typically occurs within 
a feature space. The crux of this endeavor lies in 
developing sturdy feature representations for individual 
locations, ensuring their adaptability to diverse contextual 
shifts like changes in lighting, seasons, and viewing 
perspectives. 

Lately, studies within the domain of visual place 
recognition [6]-[12] have predominantly concentrated on 
the extraction, selection, and amalgamation of resilient 

features. Additionally, there has been an emphasis on 
training using triplet loss [14] to minimize the distance in 
feature space between positive samples while increasing 
the distance between negative samples. This approach has 
yielded significant advancements in improving place 
recognition performance. However, limited attention has 
been given to the limitations of the triplet loss function in 
existing research. 

 
Figure 1.  Illustration of triplet importance. 

The limitation of triplet loss lies in its insufficient 
consideration of the distance ranking information 
between different locations. This approach merely 
classifies samples as positive or negative, neglecting the 
variations in distances among positive instances and 
among negative instances. In actuality, the hierarchical 
importance of distance rankings among distinct locations 
holds differing degrees of relevance for query images, 
and this distinction often goes unnoticed. 

For example, in Fig. 1, we can observe two triplets 
connected by orange and blue lines respectively. A triplet 
is formed, including an image marked in purple as the 
query, another in green as a positive sample, and a third 
in red representing a negative sample. Examining the 
triplet connected by the orange line, it's evident that the 
positive sample image exhibits both a shorter distance 
from the query image and a greater degree of visual 
similarity. Therefore, the orange triplet carries more 
useful visual information and holds a higher importance 
ranking compared to the blue triplet. Consequently, 
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during model training, more focus on these orange triplets 
can improve location representation learning. 

To address the aforementioned issue, we propose a 
distance-ranking-based weighted triplet loss approach. 
This method fully takes into account the permutation 
order among different positive samples. For positive 
samples ranked higher in the order, we assign them higher 
weights, emphasizing their importance in representing the 
location for query images. Precisely, we allocate distinct 
weights to triplets contingent upon the spatial separation 
of the positive sample from the query image within each 
triplet, giving higher weights to triplets containing closer 
positive samples. This strategy ensures that during the 
gradient update process, positive samples that are closer 
to the query image have a greater influence. Finally, in the 
visual place recognition task based on the NetVLAD 
pipeline, our approach has shown an improvement of 
approximately 1% in both the Recall@1 and Recall@5 
compared to the traditional triplet loss function. 

II. RELATED WORK 

A. Traditional visual place recognition methods 

Traditional visual place recognition methods 
primarily use manually designed features to represent 
images and then employ matching algorithms to compare 
image similarity. For example, the Scale-Invariant 
Feature Transform (SIFT) [15] method captures keypoint 
features that remain invariant despite changes in scale and 
rotation. This is achieved through a series of procedures, 
including the detection of extrema in scale-space, 
pinpointing keypoints, determining orientation, and 
generating descriptors. The Bag-of-words [16] approach 
extracts and quantizes local features in images into visual 
words and constructs image feature vectors by 
statistically analyzing the distribution of these words. 
Fisher vectors [17] generate high-dimensional vectors for 
image representation by computing the gradients of 
image features with respect to their Gaussian mixture 
models. 

These features are often based on human visual 
perception and understanding of images, making them 
interpretable. However, they require manual feature 
design and parameter tuning, and their performance is 
limited by human expertise and knowledge, unable to 
fully exploit image information.  

B. Deep learning-based visual place recognition 

methods 

In recent times, there has been remarkable progress in 
the realm of visual place recognition, primarily attributed 
to the advancements in deep learning techniques. These 
methods, trained end-to-end, can automatically learn 
abstract and efficient feature representations and have 
found wide applications in visual place recognition and 
other fields. 

Initially, methods using deep learning features 
primarily flattened the feature maps of Convolutional 
Neural Network (CNN) into feature vectors [18]-[20], 
which resulted in issues of high dimensionality and 
insufficient generalization. Subsequently, a series of new 
image representation methods emerged, involving 
operations such as aggregation and encoding of CNN 

feature maps to extract more distinctive and compact 
global feature representations. For instance, the 
Generalized Mean Pooling (GeM) method [21] uses 
generalized mean to aggregate feature maps from 
convolutional layers. The NetVLAD method [12] maps 
image features to a visual vocabulary space and applies 
VLAD [23] encoding to generate fixed-length feature 
vectors. Later on, visual place recognition further 
improved its performance by introducing image pyramids 
and attention mechanisms to more effectively utilize 
multi-layer CNN features and capture discriminative 
visual information. For example, the Deep Embedding 
Local Features (DELF) method [8] employs an attention 
mechanism to select local features, excluding irrelevant 
parts for the task, thereby enhancing the representation of 
global features. The Spatial Pyramid Encoding Vector of 
Locally Aggregated Descriptors (SPE-VLAD) method [9] 
utilizes spatial pyramid pooling to capture feature 
information at different resolutions and introduces a 
weighted triplet loss function to constrain feature 
distribution. 

Given that these methods encode images into coarse-
grained global descriptors, they have inherent limitations 
in their representation capabilities. Recent approaches 
have introduced local descriptors to further enhance 
performance. For example, Patch-NetVLAD [13] divides 
images into multiple overlapping local regions, calculates 
local features for each region, and performs cross-
matching and geometric verification to obtain similarity 
scores, then reorders the top k results from NetVLAD. 
TransVPR [22] integrates global and local descriptors by 
incorporating attention masks at different levels of a 
Transformer [24] to perform matching. It is worth noting 
that there is limited research exploring this from the 
perspective of the loss function. 

III. METHODOLOGY 

Our method relies on a seamlessly integrated deep 
convolutional neural network structure, represented in 
Fig. 2. Within this architecture, triplets are initially 
constructed, and subsequent processes involve feature 
extraction through CNN, feature aggregation utilizing 
NetVLAD, and the computation of the triplet loss 
function. Subsequently, backpropagation is performed to 
update model parameters. However, considering the 
limitations of the original triplet loss, we introduce 
distance-based ranking information to improve the loss 
function, enhancing the model's performance. In the 
upcoming sections, a comprehensive insight into our 
visual place recognition framework will be presented. 

A. Visual Place Recognition Framework 

Due to the need to make appropriate choices between 
different levels of location ranges, conducting location 
classification tasks involves the challenge of subdividing 
location ranges. If locations are divided too finely, it will 
lead to numerous categories, making effective 
classification difficult. Conversely, if location ranges are 
divided too broadly, it will reduce the number of 
categories, resulting in less accurate classification. 
Furthermore, the boundaries between different categories 
are often unclear, especially when locations are situated 
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Figure 2.  Overall network framework of our method. 

in border areas [25], making it difficult to determine 
which category they should belong to. 

Therefore, in visual place recognition tasks at the city 
level, a common approach is to treat it as a matching task. 
The core of this task is to construct an image database 
containing city images, with each image accompanied by 
location information such as latitude and longitude or 
UTM coordinates. Additionally, each location typically 
has multiple images covering different angles and 
perspectives to ensure comprehensive coverage of 
information. Once such a database is constructed, when 
there is a query image, the most similar image can be 
found by matching it with all the images in the database. 
Subsequently, the data corresponding to the image with 
the closest match can be harnessed to symbolize the 
location depicted in the query image. This methodology 
accomplishes the task of visual place recognition. 

During image matching assignments, features from 
images are commonly derived utilizing neural network 
methodologies, followed by similarity calculations in the 
feature space to find the most matching image. This 
process requires overcoming some challenges, especially 
for images from the same location but with variations in 
perspective, lighting, and other factors. Ensuring the 
stability of extracted features against alterations in 
appearance is imperative, preventing them from being 
affected by surface modifications. Additionally, it is 
essential to ensure that images from different locations 
have sufficient separation in the feature space to 
effectively distinguish them. To impart this capability to 
neural networks, researchers have employed various 
techniques such as contrastive learning [26] and 
embedding learning [27]. 

At the heart of triplet loss lies the concept of forming 
numerous image triplets. Each triplet comprises a queried 
image, a positively selected sample image, and a 
negatively chosen sample image. Within these triplets, 
the positive sample image originates from an identical 

location, contrasting with the negative sample image 
sourced from a distinct locale. Throughout training, the 
primary goal is to diminish the disparity between the 
feature representations of the query image and the 
positive sample, simultaneously amplifying the gap 
between the feature representations of the query image 
and the negative sample. 

After the neural network undergoes training with the 
triplet loss, the necessity for constructing triplets is 
eliminated during the inference stage. During this phase, 
inputting both the query image and the database images 
directly into the trained neural network generates their 
unique feature representations. Evaluating the 
resemblances between these features enables the 
identification of the most relevant image, pinpointing the 
location represented by the query image. 

B. Original Triplet Loss 

The central goal in visual place recognition is to 
derive distinct and resilient features from location images, 
intending to refine the precision in pairing query images 
with those stored in a database. Triplet loss is a highly 
effective method for achieving this [28]-[29]. The 
mechanism of this loss function brings locations with 
similar features in the embedding space closer together 
while pushing dissimilar locations farther apart, 
significantly improving the model's ability to learn 
representations of locations. Consequently, the triplet loss 
function has been extensively utilized in the domain 
concerning recognition of visual locations. 

Within the scope of tasks related to visual place 
recognition, we commonly encounter a collection of 
query images {q� , i ∈ [1, n]}  ( n  indicates the count of 
query images) and an image database Db . For 
constructing meaningful training triplets, it's vital to 
guarantee the presence of a query image, denoted as q�, 
along with a corresponding positive sample image, p� , 
and a negative sample image, n� . These positive and 
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negative samples, sourced from the database Db, need to 
meet the following criteria: for each triplet {q�, p�, n�}, the 
corresponding location information satisfies 

|�� − ��| < |�� − ��|                          (1) 

here y�, y�, and y� denote the actual location coordinates 

of the query image  q� , positive sample image p� , and 
negative sample image n� , correspondingly. Therefore, 
the triplet set we ultimately construct can be represented 
as  

 � = ��� , ! , " #$|�� − ��| < |�� − ��|%        (2) 

During the subsequent model training, we input the 
images from the triplets into the model and extract 
corresponding feature representations, denoted as f�, f�, 

f� . We then employ the following form of triplet loss 
function [14] for training: 

 ' = ∑ )*+�0, -� .� , .�# − -�.� , .�# + )#      (3) 

Here, m  is a pre-defined constant representing the 
margin of the loss. The function d�a, b#  signifies the 
Euclidean distance calculated between a and b. 

The triplet loss function excels in learning location 
representations, but it is important to note that it primarily 
divides samples into positive and negative samples 
without sufficiently considering ranking or relative 
importance information within samples. In reality, some 
positive samples may be more similar to the query image 
or closer to it in real space, and these positive sample 
images contain more relevant information for the query 
image. This is crucial for effective learning of location 
representations and should, therefore, receive greater 
attention. However, the triplet loss does not explicitly 
consider this relative ranking information. Consequently, 
this limitation to some extent constrains the further 
development of visual place recognition technology. 

C. Distance-Ranking-Based Weighted Triplet Loss 

Triplet loss typically relies on a fixed margin value to 
increase the difference between positive and negative 
samples concerning the query image. However, it lacks a 
mechanism to consider that triplets selected during 
training may have varying levels of importance for 
feature learning. In practical training, the chosen triplets 
may contribute differently to feature learning. 
Nevertheless, when using traditional triplet loss, it is 
challenging to effectively adjust for these varying 
contributions. 

To tackle this concern, we propose a non-uniform 

weighting function, denoted as w4f�, f�, f�5, to measure 

the importance of each triplet. This weighting function 
can be defined as follows: 

64.� , .�, .�5 = 789
$:;<:=$

> 89
− 1                   (4) 

where ϵ is a minute constant employed to avoid errors 
resulting from division by zero. �� and �� represent the 

positional coordinates of the query image and the positive 
sample image, |·| denotes the Euclidean distance, and @ 
is the normalization parameter for the Euclidean distance. 

By introducing this non-uniform weighting function, 
we can better assess the importance of each triplet, 
ensuring that samples with varying contributions are 
appropriately updated during training. This approach 
allows for a finer-grained control of the impact of triplets, 
improving the effectiveness of feature learning to better 
match real-world scenarios.  

When attempting to directly apply weights to the 
triplet loss, we observed that the convergence process was 
not sufficiently stable. We suspected that this might be 
related to the chosen margin value, as the setting of the 
margin affects the severity of the loss. Furthermore, this 
margin-based approach also weakens the ordering 
information among triplets. Hence, we contemplated 
simplifying the loss function by excluding the margin 
parameter and concentrating on diminishing the distance, 
denoted as d� f�, f�#, between the query image and the 

positive sample image. Simultaneously, we aimed to 
expand the distance, represented as d�f�, f�#, between the 

query image and the negative sample image. 
To measure these two distances, we introduced a 

softmax function [30] to normalize them into d� and d�.  

-� = AB�CD4E;,E=5F
AB�CD4E;,E=5F8AB�CD4E;,EG5F

                (5) 

-� = AB�CD4E; ,EG5F
AB�CD4E; ,E=5F8AB�CD4E; ,EG5F

                   (6) 

Our objective is to narrow down the distance d� , 

making it nearly 0 post-softmax transformation. 
Simultaneously, we aim to widen the distance d�, moving 
it closer to 1. To achieve this goal, we employed a loss 
function in the form of cross-entropy (CE): 

 'HI = −J� log4-�5 − J� log�-�#                  (7) 

since J� and J� are respectively 0 and 1, this loss function 

can be simplified to: 

      'HI = − log�-�#                                        (8) 

Finally, we multiply the obtained loss function by the 

weighting function w4f�, f�, f�5  to obtain the final loss 

function: 

 ' = ∑ −64.� , .�, .�5 · log�-�#                  (9) 

Crucially, even with the utilization of cross-entropy 
loss, the presence of the query image, positive sample, 
and negative sample within the loss function persists, 
retaining its triplet loss nature. This enhanced structure of 
the loss function meticulously considers the intricate 
interconnections between the query image and both the 
positive and negative samples. 
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IV. EXPERIMENTAL RESULTS 

In this chapter, we will examine experimental details, 
including the specific implementation, dataset 
description, evaluation metric explanations, and conduct 
a comprehensive analysis of experimental results, both 
quantitatively and qualitatively. By exploring these 
perspectives, our aim is to comprehend and evaluate the 
effectiveness of our approach in tasks related to 
recognizing visual locations. These analyses and results 
will shed light on the superiority and efficacy of our 
method. 

A. Implementation 

In our experimental setup, our model predominantly 
comprises three core elements: feature extraction, feature 
amalgamation, and a separate stage that pertains to the 
loss function. In the context of the feature extraction 
phase, we utilized VGG16 [31] as the backbone network. 
For feature aggregation, we explored three different 
aggregation methods: NetVLAD [12], max [32], and 
mean [33]. For the NetVLAD aggregation method, we 
configured the number of clusters to be 64. Regarding the 
loss functions, we considered four different loss 
functions. Firstly, the original triplet loss with a margin 
parameter set to 0.1, as shown in Equation 3. The second 
one is the original triplet weighted loss, where we directly 

multiplied the weighting function w4f�, f�, f�5  (Equation 

4) with the original triplet loss (Equation 3). The third is 
the CE (cross-entropy) loss (Equation 8), and the fourth 
is our proposed distance-ranking-based weighted triplet 

loss (Equation 9). In the weighting function w4f�, f�, f�5, 

we set ϵ to 0.1 and σ to 800. 
During the training process, we configured the batch 

size as 4, meaning each batch contained 4 triplets, totaling 
12 images. Training was performed over 30 epochs, 
employing the stochastic gradient descent (SGD) 
optimizer with a learning rate set at 0.0001. Additionally, 
momentum was set to 0.9, and weight decay stood at 
0.001. A StepLR scheduler was utilized to facilitate the 
model's convergence throughout the training process, 
where the learning rate was diminished by a factor of 0.5 
after every 5 epochs. Additionally, we utilized 8 threads 
for training. We also set the random seed to 123 to ensure 
the reproducibility of the experiments. In the testing 
phase, we opted for the model parameters exhibiting 
superior performance on the validation set. These 
parameters were then utilized to assess the model's 
capabilities on the test set. 

B. Dataset 

Our research draws upon data from the Pittsburgh30k 
dataset [12], which is a large dataset widely used in visual 
localization and navigation research. It was created by 
researchers from Carnegie Mellon University and the 
University of Pittsburgh. This dataset comprises high-
resolution images from the downtown area of Pittsburgh, 
covering various locations within the city, including 
business districts, parks, schools, restaurants, and more. 
Each location is represented by 24 images, which capture 
12 different yaws and two pitches. 

TABLE I.  DATASET QUANTITY DISTRIBUTION TABLE 

Dataset Query Database 

Training 7416 10000 

Validation 7608 10000 

Testing 6816 10000 

 
Following the convention of the NetVLAD method 

[12], we partitioned the Pittsburgh30k dataset into three 
separate segments: a training subset, a validation subset, 
and a test subset. Each part contains a specific number of 
query images and database images, and these three parts 
do not overlap geographically. The specific data 
quantities for each set are shown in Table I. 

C. Evaluation Metric 

In line with typical practices, our chosen evaluation 
metric for the visual place recognition task is Recall@N. 
Here, Recall signifies the ratio of accurately matched 
query images to the overall count of query images. For 
each query image, if there is at least one true positive 
within the top N retrieval results, it is considered a 
successful match. Therefore, Recall@N can be used to 
measure the model's performance at different values of N, 
indicating whether the model can capture genuine 
location information within the top N results, thus 
providing a comprehensive assessment of the model's 
performance. Typically, we focus on Recall@1 and 
Recall@5. 

D. Quantitative Results 

Table II presents the experimental results for four 
different loss function settings. These four settings are 
kept identical in all aspects except for the loss function 
used. They all utilize VGG16 for feature extraction and 
employ NetVLAD for feature aggregation. Specifically, 
T-loss represents the original triplet loss, which serves as 
the baseline method. W-T-Loss denotes the weighted 
treatment of the original triplet loss based on the 
importance of triplets. CE-Loss uses the form of cross-
entropy (CE) loss to minimize the distance between the 
query image and the positive sample while maximizing 
the distance from negative samples. Finally, DW-T-Loss 
represents our proposed distance-ranking-based weighted 
triplet loss. 

Comparing T-loss and W-T-Loss results reveals a 
slight performance drop when directly weighting the 
original triplets. This phenomenon may be attributed to 
the constraint imposed by the margin parameter during 
the weighting process, causing the loss of some triplets to 
be directly set to zero and limiting the effectiveness of 
weighting. Consequently, we decided to eliminate the 
margin parameter to remove this limitation and adopted 
the cross-entropy (CE) loss to supervise model training. 
In doing so, we aimed to bring the query image as close 
as possible to the positive sample while pushing it further 
away from the negative samples. However, compared to 
T-Loss, the adoption of CE-Loss clearly resulted in a 
performance drop. This is because CE loss treats all 
triplets equally, and when we attempt to push the negative 
sample distance infinitely, it negatively impacts other 
triplets. To address this issue, we introduced a weighting 
strategy on top of the CE loss to better control the update 
magnitude of each triplet. Through this approach, we 
reduced the influence of each triplet on others, giving 

98

Authorized licensed use limited to: ShanghaiTech University. Downloaded on May 28,2024 at 03:42:23 UTC from IEEE Xplore.  Restrictions apply. 



more weight to important triplets and less to unimportant 
ones. This improvement achieved approximately 1% 
improvement in both Recall@1 and Recall@5 
performance metrics, indicating the effectiveness of the 
DW-T-Loss loss function. 

TABLE II.  THE RECALL RESULTS FOR VARIOUS LOSS SETTINGS 

Loss 
Recall@

1 
Recall@5 Recall@10 Recall@20 

T-Loss 0.8121 0.9098 0.9359 0.9555 

W-T-Loss 0.8110 0.9074 0.9331 0.9550 

CE-Loss 0.7974 0.9026 0.9312 0.9523 

DW-T-Loss 0.8264 0.9139 0.9372 0.9575 

TABLE III.  THE MAXIMUM AND AVERAGE AGGREGATION 

RESULTS FOR ORIGINAL TRIPLET LOSS AND DISTANCE-RANKING-
BASED WEIGHTED TRIPLET LOSS 

Method 
Recall@

1 

Recall@

5 

Recall@1

0 

Recall@2

0 

Max 0.6381 0.8159 0.8697 0.9124 

Max-W 0.6696 0.8283 0.8801 0.9181 

Mean 0.5979 0.8049 0.8705 0.9178 

Mean-W 0.5816 0.7861 0.8526 0.9042 

To validate the effectiveness of our proposed 
distance-ranking-based weighted triplet loss for different 
feature aggregation methods, additional experiments 
were carried out utilizing both max aggregation and mean 
aggregation techniques. The outcomes of these 
experiments can be found in Table III. In this tabulated 
data, Max-W and Mean-W represent the test results 
obtained after training with the distance-ranking-based 
weighted triplet loss. For the Max aggregation method, 
using our proposed loss function resulted in an 
improvement of approximately 3% in Recall@1 and 
approximately 1% in Recall@5, demonstrating 
significant effectiveness in this scenario. However, for the 
Mean aggregation method, the performance declined. We 
speculate that this phenomenon may be due to the nature 
of global average aggregation itself. Many interference 
elements exist in images, and we are more concerned with 
the primary features rather than all features. Therefore, 
averaging all features may weaken the effectiveness of 
image representation, and adopting a weighting strategy 
may not only improve performance but also potentially 
lead to a performance decline. 

E. Qualitative Results 

We illustrated the outcomes from our proposed 
technique and the initial approach to image matching, 
depicted in Fig. 3. In this visual representation, the initial 
column exhibits the query images, the second column 
illustrates the top-1 matches generated by the model 
trained using the distance-ranking-based weighted triplet 
loss, and the third column showcases the top-1 matches 
produced by the model trained with the original triplet 
loss. Correct matches are denoted by green boxes, 
whereas incorrect matches are marked with red boxes. 

Examining the outcomes from the initial row, it 
becomes apparent that our innovative approach 
empowers the model to concentrate more efficiently on 
essential discriminative details within the images (such as 

buildings), while disregarding extraneous and irrelevant 
elements (such as roads and bridges). In the second row, 
our method demonstrates adaptability to certain 
variations in appearance, such as changes in storefront 
design. The results in the third row illustrate our method's 
ability to handle variations in lighting, successfully 
matching images of locations with different color tones. 
These visuals demonstrate our approach's effectiveness. 

 

Figure 3.  Qualitative results figure. 

V. CONCLUSION AND FUTURE WORK 

The objective of this research is to elevate the training 
methodology employed in visual place recognition tasks, 
with the aim of enhancing the overall performance of the 
model. Traditional triplet loss functions categorize 
samples into positive and negative classes during training, 
neglecting the importance and ranking information 
among samples. To overcome this limitation, we 
introduce the distance-ranking-based weighted triplet loss, 
which assigns weights to triplets by considering the 
distance between positive samples and query images, thus 
focusing more on important samples. In the visual place 
recognition task using the NetVLAD pipeline, our 
approach achieves approximately a 1% improvement in 
performance on both Recall@1 and Recall@5 metrics. 
This research provides new insights and directions for 
enhancing visual place recognition methods.  

In the future, we can further research and enhance the 
distance-ranking-based weighted triplet loss function to 
further improve the performance of visual place 
recognition models. We can explore different weighting 
strategies and loss function variants to find more effective 
training methods. Additionally, we can investigate the 
application of this method in other related fields, such as 
image retrieval and geographic information systems, to 
expand its scope of application. Furthermore, future 
research can focus on handling larger and more diverse 
location databases to meet the demands of practical 
applications. Moreover, we can consider incorporating 
multimodal information, such as textual descriptions or 
voice commands, to further improve the accuracy and 
robustness of place recognition.  

REFERENCES 

[1] S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. 
Corke, et al. (2015) "Visual place recognition: A survey." IEEE 
Transactions on Robotics, 32: 1-19. 

99

Authorized licensed use limited to: ShanghaiTech University. Downloaded on May 28,2024 at 03:42:23 UTC from IEEE Xplore.  Restrictions apply. 



[2] X. Zhang, L. Wang, and Y. Su. (2021) "Visual place recognition: 
A survey from deep learning perspective." Pattern Recognition, 
113: 107760. 

[3] C. Masone and B. Caputo. (2021) "A survey on deep visual place 
recognition." IEEE Access, 9: 19516-19547. 

[4] G. Bresson, Z. Alsayed, L. Yu and S. Glaser. (2017) 
"Simultaneous localization and mapping: A survey of current 
trends in autonomous driving." IEEE Transactions on Intelligent 
Vehicles, 2: 194-220. 

[5] E. Stumm, C. Mei, and S. Lacroix, 2013. "Probabilistic place 
recognition with covisibility maps." In: 2013 IEEE/RSJ 
International Conference on Intelligent Robots and Systems. 
Tokyo. 4158-4163. 

[6] H. Jin Kim, E. Dunn, and J.-M. Frahm, 2017. "Learned contextual 
feature reweighting for image geo-localization." In: Proceedings 
of the IEEE Conference on Computer Vision and Pattern 
Recognition. Honolulu. 2136-2145. 

[7] Y. Zhu, J. Wang, L. Xie, and L. Zheng, 2018. "Attention-based 
pyramid aggregation network for visual place recognition." In: 
Proceedings of the 26th ACM international conference on 
Multimedia. Seoul. 99-107. 

[8] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han, 2017. "Large-
scale image retrieval with attentive deep local features." In: 
Proceedings of the IEEE International Conference on Computer 
Vision. Venice. 3456-3465. 

[9] J. Yu, C. Zhu, J. Zhang, Q. Huang, and D. Tao. (2019) "Spatial 
pyramid-enhanced NetVLAD with weighted triplet loss for place 
recognition." IEEE Transactions on Neural Networks and 
Learning Systems, 31: 661-674. 

[10] G. Peng, Y. Yue, J. Zhang, Z. Wu, X. Tang, and D. Wang, 2021. 
"Semantic reinforced attention learning for visual place 
recognition." In: 2021 IEEE International Conference on 
Robotics and Automation (ICRA). Xi'an. 13415-13422. 

[11] G. Peng, J. Zhang, H. Li, and D. Wang, 2021. "Attentional 
pyramid pooling of salient visual residuals for place recognition." 
In: Proceedings of the IEEE/CVF International Conference on 
Computer Vision. Montreal. 885-894. 

[12] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, 2016. 
"NetVLAD: CNN architecture for weakly supervised place 
recognition." In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition. Las Vegas. 5297-
5307. 

[13] S. Hausler, S. Garg, M. Xu, M. Milford, and T. Fischer, 2021. 
"Patch-netvlad: Multi-scale fusion of locally-global descriptors 
for place recognition." In: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition. 
Online. 14141-14152. 

[14] F. Schroff, D. Kalenichenko, and J. Philbin, 2015. "Facenet: A 
unified embedding for face recognition and clustering." In: 
Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition. Boston. 815-823. 

[15] D. G. Lowe. (2004) "Distinctive image features from scale-
invariant keypoints." International Journal of Computer Vision, 
60:  91-110. 

[16] J. Sivic and A. Zisserman, 2003. "Video Google: A text retrieval 
approach to object matching in videos." In: Proceedings Ninth 
IEEE International Conference on Computer Vision. Nice. 1470-
1470. 

[17] F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier, 2010. "Large-
scale image retrieval with compressed fisher vectors." In: 2010 
IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition. San Francisco. 3384-3391. 

[18] Z. Chen, O. Lam, A. Jacobson, and M. Milford. (2014) 
"Convolutional neural network-based place recognition." arXiv 
preprint arXiv:1411.1509. 

[19] N. Sünderhauf, S. Shirazi, F. Dayoub, B. Upcroft, and M. 
Milford, 2015. "On the performance of convnet features for place 
recognition." In: 2015 IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS). Hamburg. 4297-4304. 

[20] T. Naseer, M. Ruhnke, C. Stachniss, L. Spinello, and W. Burgard, 
2015. "Robust visual SLAM across seasons." In: 2015 IEEE/RSJ 

International Conference on Intelligent Robots and Systems 
(IROS). Hamburg. 2529-2535. 

[21] F. Radenović, G. Tolias, and O. Chum. (2018) "Fine-tuning CNN 
image retrieval with no human annotation." IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 41: 1655-1668. 

[22] R. Wang, Y. Shen, W. Zuo, S. Zhou, and N. Zheng, 2022. 
"TransVPR: Transformer-based place recognition with multi-
level attention aggregation." In: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition. New 
Orleans. 13648-13657. 

[23] H. Jégou, M. Douze, C. Schmid, and P. Pérez, 2010. 
"Aggregating local descriptors into a compact image 
representation." In: 2010 IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition. San Francisco. 3304-
3311. 

[24] A. Kolesnikov, A. Dosovitskiy, D. Weissenborn, G. Heigold, J. 
Uszkoreit, L. Beyer, et al. (2021) "An image is worth 16x16 
words: Transformers for image recognition at scale." arXiv 
preprint arXiv:2010.11929. 

[25] G. Berton, C. Masone, and B. Caputo, 2022. "Rethinking Visual 
Geo-localization for Large-Scale Applications." In: Proceedings 
of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. New Orleans. 4878-4888. 

[26] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, 2020. "Momentum 
contrast for unsupervised visual representation learning." In: 
Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition. Seattle. 9729-9738. 

[27] H. Chen, B. Perozzi, R. Al-Rfou and S. Skiena. (2018) "A tutorial 
on network embeddings." arXiv preprint arXiv:1808.02590. 

[28] L. Wang, Y. Li, and S. Lazebnik, 2016. "Learning deep structure-
preserving image-text embeddings." In: Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition. Las 
Vegas. 5005-5013. 

[29] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, 
et al, 2014. "Learning fine-grained image similarity with deep 
ranking." In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition. Columbus. 1386-1393. 

[30] E. Simo-Serra and H. Ishikawa, 2016. "Fashion style in 128 
floats: Joint ranking and classification using weak data for feature 
extraction." In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition. Las Vegas. 298-307. 

[31] K. Simonyan and A. Zisserman. (2014) "Very deep convolutional 
networks for large-scale image recognition." arXiv preprint 
arXiv:1409.1556. 

[32] H. Azizpour, A. Sharif Razavian, J. Sullivan, A. Maki, and S. 
Carlsson, 2015. "From generic to specific deep representations 
for visual recognition." In: Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition Workshops. 
Boston. 36-45. 

[33] A. Babenko and V. Lempitsky, 2015. "Aggregating local deep 
features for image retrieval." In: Proceedings of the IEEE 
International Conference on Computer Vision. Santiago. 1269-
1277. 

100

Authorized licensed use limited to: ShanghaiTech University. Downloaded on May 28,2024 at 03:42:23 UTC from IEEE Xplore.  Restrictions apply. 


