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Solving a math word problem requires selecting quantities in it and performing appropriate arithmetic operations to obtain

the answer. For deep learning-based methods, it is vital to obtain good quantity representations, i.e., to selectively and

emphatically aggregate information in the context of quantities. However, existing works have not paid much attention to

this aspect. Many works simply encode quantities as ordinary tokens, or use some implicit or rule-based methods to select

information in their context. This leads to poor results when dealing with linguistic variations and confounding quantities.

This paper proposes a novel method to identify question-related distinguishing features of quantities by contrasting their

context with the question and the context of other quantities, thereby enhancing the representation of quantities. Our method

not only considers the contrastive relationship between quantities, but also considers multiple relationships jointly. Besides,

we propose two auxiliary tasks to further guide the representation learning of quantities: 1) predicting whether a quantity is

used in the question; 2) predicting the relations (operators) between quantities given the question. Experimental results show

that our method outperforms previous methods on SVAMP and ASDiv-A under similar settings, even some newly released
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strong baselines. Supplementary experiments further conirm that our method indeed improves the performance of quantity

selection by improving the representation of both quantities and questions.

CCS Concepts: · Computing methodologies→ Natural language processing.

Additional Key Words and Phrases: Math word problem solving, quantity representation, contrast, attention mechanism,

auxiliary task

1 INTRODUCTION

AMathWord Problem (MWP) is a short narrative that describes a scenario involving several quantities, followed by
a question that requires a series of mathematical operations to obtain the answer [1]. A typical example is shown in
Figure 1. Due to its complexity, most existing works [37, 42, 44] predict the mathematical expression corresponding
to the question instead of its answer directly. In recent years, solving MWP has received considerable attention,
as it can serve as a good testbed for natural language understanding and multi-step reasoning against quantities
[10, 11].

For deep learning-based methods, it is vital to obtain good quantity representations, which means associating
each quantity with its related descriptive words according to their importance. For the example in Figure 1, the
descriptive words related to ł15" are łJulia", łplayed", łtag", łwith", łkids", łon" and łMonday". Unfortunately,
existing works have not paid much attention to this aspect. Many works, especially those using a Pre-trained
Language Model (PLM, e.g., BERT [3]) as the encoder, replace each quantity with a dummy token (e.g., [NUM])
and then encode it like other ordinary tokens. We argue that it is far from enough. Li et al. [15] used multi-head
attention [34] to model the relationship between quantities and their context, quantity pairs, and quantities and

questions. However, this method is implicit because it still does not distinguish between quantity tokens (e.g., ł15ž
in Figure 1) and other ordinary tokens in the sentence (e.g., łkidsž). Moreover, it cannot consider these three
relationships jointly, which we believe is crucial for assessing the importance of descriptive words. Zhang et al.
[44] mined the descriptive words around quantities simply by a window rule and some dependency rules, then
represented their relationship as a graph structure, which is a relatively łhard" way. In addition, Patel et al. [27]
showed the vulnerability of existing models to linguistic variations and confounding terms (e.g., ł18ž), which also
revealed their inability to model quantity representations efectively.
What factors inluence the importance of descriptive words related to a quantity? We have the following

observations. First, their importance is related to the question. Answering the question correctly is the
goal of this task, and the key is to select the corresponding quantities in the narrative according to the question.
For the example in Figure 1, to make ł15" more easily to be selected by the question, it should be linked to the
words łjuliaž, łplayedž, łwithž, łkidsž, łonž and łMondayž, which also appear in or are related to the words in the
question. Second, their importance is related to other quantities in the same problem. By contrasting
these descriptive words with those of other quantities, we can identify the unique features of the quantity and
thus distinguish it from other quantities. Continuing with the previous example, we can see that łMondayž is
a unique feature of ł15ž by contrast. Unfortunately, this contrasting relationship between quantities has been
overlooked in previous studies.
To obtain better quantity representations, we propose a novel method called Question-Quantity Contrastive

Attention (QQCA), which jointly considers the above two factors to assess the importance of descriptive words
for quantities. Since quantity tokens do not contain any guiding information, the core idea of our method is to
ind words in the context of quantities by contrast that are similar to the words in the question, but dissimilar
to the words in the context of other quantities. These words are considered to be the distinguishing features
of quantities. Inspired by Liu et al. [20], our method consists of two steps. First, in the preprocessing stage, we
mine the aforementioned words from the context of quantities through some rules and a PLM. Second, in the
training/inference stage, we design an attention-based module to model the contrast process and use the results
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Problem: 

Statement: Julia played tag with 15 kids on Monday, 18 kids on Tuesday 

and 97 kids on Wednesday.

Question: How many kids did she play with on Monday and Tuesday?

Answer: 33Expression: 15 + 18

dissimilarsimilar

Fig. 1. A math word problem from SVAMP. The dashed boxes of diferent colors are the candidate windows corresponding to
each quantity, and the highlighted parts are the unique features within the windows.

of the irst step as prior knowledge to guide its training process. Moreover, we apply a similar method to identify
selective features in the question to further improve the selection of quantities. In addition, to further guide
the representation learning of quantities, we propose two auxiliary tasks: 1) Quantity Usage Prediction

predicting whether a quantity is used in the question; 2) Quantity-pair Relation Prediction predicting

the relations (operators) between quantities given the question. We conduct experiments on three widely
used datasets: SVAMP [27], ASDiv-A [23], and MAWPS [10]. Experimental results show that our method achieves
performance superior to all baselines (on SVAMP and ASDiv-A) or approximately equal to the state-of-the-art
baseline (on MAWPS) under similar settings, even some newly released strong baselines [29, 36]. Furthermore,
we validate the superiority of our method in selecting quantities according to the question by some additional
experiments, which indicates to some extent that our method does indeed increase the variability of quantity
representations and the selectivity of question representations.

Our contributions can be summarized in the following three points:

• We propose a novel method called Question-Quantity Contrastive Attention to identify distinguishing
features in the context of quantities by contrast. To the best of our knowledge, our method is the irst to
consider the contrastive relationship between quantities, and the irst to consider multiple relationships
jointly.

• To further guide the representation learning of quantities, we propose two auxiliary tasks: 1) predicting
whether a quantity is used in the question; 2) predicting the relations (operators) between quantities given
the question.

• Our method outperforms previous methods on the SVAMP and ASDIV-A datasets under similar settings,
even some newly released strong baselines.

2 RELATED WORK

2.1 Math Word Problem Solving

The research on solving math word problems has a long history, which can be traced back to the 1960s [1]. Early
works mostly used hand-crafted rules or templates [1, 2]. Later works can be broadly divided into two categories:
1) statistical machine learning-based methods, which match problems with equation templates [6, 12, 24]; 2)
semantic parsing-based methods, which parse natural language text into corresponding structured representations
[28, 32, 47].
In recent years, deep learning-based methods have achieved considerable performance improvements and

become dominant in this task. Wang et al. [37] made the irst attempt by applying a vanilla sequence-to-sequence
(seq2seq) model. Xie and Sun [42] proposed a tree-structured decoder to better utilize the structural properties of

ACM Trans. Asian Low-Resour. Lang. Inf. Process.
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expressions. Furthermore, Zhang et al. [44] proposed a graph encoder to inject knowledge through the graph
structure. Since then, a series of works have been proposed to improve the encoder [19, 41] or introduce more
knowledge [30, 39, 40]. Subsequently, due to the powerful capabilities of pre-trained language models, many
works applied them to the encoding process and achieved impressive performance [33, 43]. Moreover, Liang et
al. [16] proposed a series of task-speciic self-supervised tasks and ine-tuned BERT [3] on this task for further
usage. On the other hand, this has also led researchers to shift their focus toward improving the decoding process
[7, 29, 35]. It is worth noting that some new research trends have emerged recently, such as using contrastive
learning [18, 31, 45] and considering the diversity of arithmetic expressions [17, 25].

Our work builds on the idea of contrast, focusing on improving the encoding process to enhance the represen-
tation of quantities. A closely related work is Li et al. [15], which used multi-head attention to implicitly model
the relationship between quantities and their context, quantity pairs, and quantities and questions. However,
our work is quite diferent from theirs. First, our model focuses on quantities rather than treating them equally
with ordinary tokens. Second, our model jointly considers the relationship between quantities and questions
and the relationship between quantities and other quantities. Third, we designed two auxiliary tasks to guide
representation learning. We hope our work could shed some light on obtaining better quantity representations.

3 PRELIMINARIES

3.1 Problem Definition

Formally, a Math Word Problem � is a sequence of � tokens (�1,�2, ...,��), where each token�� can be either
a word from a natural language or a numerical value representing a quantity. Furthermore, it can be broken
down into a statement � = (�1,�2, ...,�� ) and a question � = (��+1,��+2, ...,��). Our goal is to generate a valid
arithmetic expression �� , which means that it logically its the problem and its calculation result equals the
answer. The vocabulary of �� consists of three parts: the set of mathematical operators ��� = {+,−, ∗, /}, the set
of numbers from the problem ���� , and the set of constants ���� (e.g., � ). It should be noted that ���� varies
with the problem.

3.2 Backbone Solver

We select Graph2Tree [44] enhanced with RoBERTa-base [21] as the backbone solver, which is a strong baseline
widely adopted in previous works. It should be noted that our method is model-agnostic and thus can be
transferred to any model. We leave it to future work.

Input Normalization and Encoder. First, as in previous works, we replace each number in the problem with a
placeholder [NUM] to enhance the model’s generalization ability. Patel et al. [27] pointed out that existing models
can achieve reasonably high accuracy on MWPs when the question part is removed, indicating that they rely
heavily on shallow heuristics from the statement without even looking at the question. To emphasize the question
and thus alleviate this phenomenon, we break down each problem into two parts: a statement and a question,
according to the previous deinition. Then we add some special tokens and concatenate these two parts together
as RoBERTa requires. The format of the input sequence is as follows:

� = <s>, �, </s>, </s>, �, </s>

� is encoded with RoBERTa, followed by a bidirectional LSTM (bi-LSTM). Then we feed the question part
to another bi-LSTM to get its sentence representation �� , which we use to initialize the decoder. Subsequently,
following Zhang et al. [44], we use GraphNeural Networks to encode two graphs: aQuantity Cell Graph connecting
descriptive words with quantities, and a Quantity Comparison Graph representing the relative size relationship
between quantities in numerical values. We take the encoding results as the inal hidden representations and
denote them as �� . Please refer to Zhang et al. [44] for more details.

ACM Trans. Asian Low-Resour. Lang. Inf. Process.
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n0 n1

+

Quantity-pair Relation 

Prediction

Quantity Usage 

Prediction

Auxiliary Tasks

Question-Quantity Contrastive Attention

kids on Monday kids on Tuesday kids on Wednesdayand on Monday TuesdayandHow

…

Context of Other Quantities QuestionContext of n
0

kids

on

Monday

n0 n1 n2

1 1 0

Problem: Julia played tag with 15 kids on Monday, 18

kids on Tuesday and 97 kids on Wednesday. How many

kids did she play with on Monday and Tuesday?

Input Sequence: <s> julia played tag with [NUM] kids on

monday , [NUM] kids on tuesday and [NUM] kids on

wednesday . </s> </s> how many kids did she play with on

monday and tuesday ? </s>

15 → n0

18 → n1

97 → n2

Question-Quantity Contrastive Attention

Encoder

Decoder

Executor

Expression: n0 + n1 → 15 + 18

Answer: 33

Fig. 2. An illustration of our method. It consists of two parts: (i) an atention-based moduleuestion-uantity Contrastive

Atention, which identifies question-related distinguishing features of quantities by contrasting their context with the
question and the context of other quantities; (ii) two auxiliary tasks: 1) uantity Usage Prediction predicting whether a
quantity is used in the question; 2) uantity-pair Relation Prediction predicting the relations (operators) between quantities
given the question.

Decoder. We use a tree-based decoder [42] to better model the structural properties of expressions, which is
also widely adopted by previous works. Speciically, we irst convert each expression into a binary tree where the
root and intermediate nodes are arithmetic operators, and the leaf nodes are quantities. Then we generate it in
the order of pre-order traversal. According to the previous deinition, at each timestep � , the decoder will take
one of the following three actions: generating an operator from ��� , generating a constant from ���� , or copying
a quantity from ���� .

4 METHOD

4.1 Overview

As shown in Figure 2, our method consists of two parts. First, we propose a module called Question-Quantity

Contrastive Attention. It identiies question-related distinguishing features of quantities by contrasting the words
in their context with the words in the question and the words in the context of other quantities. Moreover, we
apply a similar method to identify selective features in the question to further improve the selection of quantities.
Second, we design two auxiliary tasks to further guide the representation learning of quantities. The irst is
Quantity Usage Prediction, which predicts whether a quantity should be used in the question. And the second is
Quantity-pair Relation Prediction, which predicts the relations (operators) between quantities given the question.

ACM Trans. Asian Low-Resour. Lang. Inf. Process.
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4.2 uestion-uantity Contrastive Atention

In this step, we mine candidate windows around quantities that may contain descriptive words. Then we contrast
the words in them with the words in the question and the words in other candidate windows to identify those
words that help associate quantities with the question and distinguish them from other quantities. Our method
consists of two steps, which are performed in the preprocessing stage and the training/inference stage, respectively.
Next, we will introduce them in detail.
First, in the preprocessing stage, we assess the importance of candidate words through some rules and a

PLM. We start by determining candidate windows for all quantities based on punctuation and the corresponding
constituent syntax tree of the problem. Speciically, we split the problem into segments according to punctuation.
Then, based on the constituent syntax tree, we split multiple quantities located in the same segment into disjoint
segments, and select appropriate types of constituents to further shorten the length of segments containing
quantities. All these disjoint segments containing a single quantity are candidate windows corresponding to
their respective quantities. It is worth noting that multiple quantities are often presented in a parallel structure,
that is, each quantity is located in a segment with a similar structure, and multiple such segments are arranged
sequentially. Moreover, these segments depend on some shared constituents located before the irst segment. The
example in Figure 1 is a typical one, where ł15ž, ł18ž, and ł97ž are located in a parallel structure. It is easy to
see that if we determine candidate windows based only on punctuation and certain types of constituents, those
shared constituents will be assigned to the irst candidate window, causing them to be highlighted as unique
features of the irst quantity after subsequent contrasts. In this case, we can identify the irst parallel segment
based on the pattern of the subsequent parallel segments, thus excluding the shared constituents from the irst
candidate window.
After determining the candidate windows, we assess the importance of the words in these windows by

contrasting them with the words in the question and the words in other candidate windows. Speciically, we use
a PLM RoBERTa-base [21] as the encoder to leverage its powerful understanding and representation capabilities,
and use cosine distance to measure the semantic similarity between words. To strengthen the association between
quantities and the question and distinguish them from other quantities, words with a higher similarity to the
words in the question and a lower similarity to the words in other candidate windows should have higher weights.
Therefore, we design the following formulas to measure the importance of words:

���(�� ,� � ) =
�� ·� �

∥�� ∥∥� � ∥
(1)

�
�,�

�
= max

�� ∈�
���(�� ,� � ) (2)

��,�
�

= max
�� ∈�

���(�� ,� � ) (3)

��� = �
�,�

�
(1 − ��,�

�
), (4)

where � are the words in other candidate windows. Formally, if�� ∈�� , then � =
⋃

�≠��� . Furthermore, we
normalize the scores of the words in each candidate window separately and consider them as a prior distribution:

��,������ =

��
��∑

�� ∈��
�
�
��

. (5)

In addition, we noticed that this task includes a crucial step of selecting quantities according to the question,
which is essentially a process of matching the question with each quantity. If we want to improve this step, it
would be wiser to improve both the quantity and the question representations so that the efect can be maximized.
Therefore, we apply a similar method to identify selective features in a question by contrasting its words with
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those in the candidate windows. We deine selective features as clue words that only support selecting a particular
quantity, and they often correspond to the unique features of that quantity. Analogous to the previous method,
these words should have a higher similarity to the words in a particular candidate window and a lower similarity
to the words in other candidate windows. From this, we get the following formulas:

�
�,��

�
= max

�� ∈��

���(�� ,�� ) (6)

�
�,� �

�
= max

�≠�
max
�� ∈��

���(�� ,�� ) (7)

��� = max
�

�
�,��

�
(1 − �

�,� �

�
) (8)

�
�,�
����� =

��
�∑

�� ∈� �
�
�

. (9)

Second, in the training/inference stage, we propose an attention-based module to model the mechanism of the
above contrast process. Again, we start with the quantities. We denote the hidden representations of the words
in the �-th candidate window as ���

, so the representations of the words in the other candidate windows are
���

=
⋃

�≠� ���
. Then we contrast ���

with �� and ���
separately through the attention mechanism:

���→� = Atention(���
,�� ,�� ) (10)

���→��
= Atention(���

,���
,���

), (11)

where �� are the representations of the words in the question. Subsequently, we concatenate the obtained results
with the original representations of these words ���

and use a Multi-Layer Perceptron (MLP) to predict their
importance scores:

�
�
��

= MLP( [�
�
��
;�

�
��→�

;�
�
��→��

]). (12)

Finally, we normalize these importance scores and use them as weights to aggregate the representations of the
words in this candidate window:

���
= sotmax(���

) (13)

��� =

︁
�� ∈��

�
�
��
�
�
��

. (14)

The obtained result ��� is the question-related distinguishing feature of the �-th quantity. It is easy to see that
we have essentially performed a "soft" selection of words in the candidate window using importance scores. To
further guide the module to model the aforementioned bias, we use the normalized scores ������� obtained in the

preprocessing stage as the prior distribution and the KL divergence as its training objective:

L���� = KL(���
| |������� ) =

︁
�� ∈��

�
�
��

log

(
�
�
��

�
�, �
�����

)
. (15)

For the question, we apply a similar method to model its contrast process. We irst contrast the words in the
question �� with the words in all candidate windows �� =

⋃
� ���

through the attention mechanism:

��→� = Atention(�� ,�� ,�� ). (16)
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Then we predict the importance scores of the words in the question and use them as weights to aggregate these
words into a single selective feature:

��� = MLP( [��� ;�
�
�→� ]) (17)

�� = sotmax(�� ) (18)

��� =

︁
�� ∈�

����
�
� . (19)

Finally, we deine its training objective as the KL divergence from the prior distribution:

L���� = KL(�� | |�
�
����� ) =

︁
�� ∈�

��� log
©«

��
�

�
�,�
�����

ª®¬
. (20)

As for fusing the above results with the original features, we follow Lu et al. [22] and adopt a gating mechanism
to achieve it adaptively. We apply the same method to quantities and questions. Here we take the �-th quantity as

an example. Speciically, we irst project its original feature ��� and its distinguishing feature ��� into a universal
space:

�′
�
� = �����→� (��� ) (21)

�′
�
� = �����→� (��� ), (22)

where �����→� (·) and �����→� (·) are linear layers with a nonlinear activation function. Then we predict their
corresponding gate scores:

�̃
�
� = ��→� (�

′ �
� ), � ∈ {�, �} (23)

�
�
� =

exp (�̃
�
� )∑

� exp (�̃
�
� )
, (24)

where ��→� (·) is a linear layer with a nonlinear activation function, and �̃
�
� and �

�
� have the same dimensions as

�′
�
� . Finally, we combine all the above results to obtain the inal representation:

�� = ��� ⊙ �′
�
� + ��� ⊙ �′

�
� , (25)

where ⊙ is element-wise multiplication.

4.3 The Design of Auxiliary Tasks

To further guide the representation learning of quantities, we design two auxiliary tasks by mining and decom-
posing the generation target.

Quantity Usage Prediction. It predicts whether a quantity should be used in the question. In fact, quantities
with similar meanings may have diferent usage statuses. For the example in Figure 1, ł18ž and ł97ž are two
quantities with similar meanings (they both represent the number of kids with whom Julia played tag), but the
former is used in the question while the latter is not. It is easy to see that this task essentially helps guide the
model to capture the diferences between quantities (ł18ž and ł97ž correspond to łTuesdayž and łWednesdayž,
respectively) and their associations with the question (łTuesdayž is also mentioned in the question).
Next, we present the implementation details. For each quantity, we concatenate its hidden representation ��

with the question representation �� as input, then use an MLP to predict its probability of being used:

����� = � (MLP( [�� ;�� ])), (26)

ACM Trans. Asian Low-Resour. Lang. Inf. Process.
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where � is the sigmoid function. The training objective is the binary cross-entropy loss, which has the following
form:

L��� = −
1

�

�︁

�=1

����� log(�
�
��� ) + (1 − ����� ) log(1 − ����� ), (27)

where ����� is the label indicating whether the �-th quantity is used (1 means it is used and 0 otherwise), and� is
the total number of quantities in the dataset.

Quantity-pair Relation Prediction. It predicts the relations (operators) between quantities given the question,
which is essentially a one-step decomposition of the generation target. By directly using the encoded representa-
tions to predict this task, we can guide the model to capture the associations between quantities in the encoding
stage, such as associating an item’s unit value and quantity to obtain its total value (via multiplication). Moreover,
this task ignores the decoding order, which helps the model to improve its compositional generalization ability,
that is, generating more complex structures by composing substructures [13]. It is worth noting that, for the
sake of simpliication, we only consider the case where two quantities are directly associated by an operator and
ignore cases involving parentheses. This is because the association between a quantity and a parenthesis may
not be decomposed into associations between the quantity and each quantity in the parenthesis. Consider the
following example:

Problem: After resting they decided to go for a swim. If the depth of the 

water is 10 times Dean's height and he stands at 9 feet, how much deeper is 

the water than Dean's height?

Expression: (10 * 9) - 9

Fig. 3. A MWP example whose corresponding expression contains parentheses. We cannot remove the parentheses in this
example because the ł9ž ater the minus sign is associated with the entire expression inside the parentheses before the minus
sign, but it has no direct association with each individual quantity inside the parentheses.

Although there is indeed an association (subtraction) between ł10 * 9ž and ł9ž, it is hard to say that there are
meaningful associations between ł10ž and ł9ž and between ł9ž and ł9ž, respectively.
As for the implementation details, similarly, we concatenate the representations of each pair of quantities ��

and � � with the question representation �� as input, then use an MLP to predict the probabilities of relations:

�
�, �
�

= sotmax(MLP( [�� ;� � ;�� ]])), (28)

where � is the set of relations. In particular, for each pair of quantities � and � , we predict the relations between
(�, �) and ( �, �) considering the efect of the input (operand) order. Speciically, these two relations are exactly the
same for operators satisfying the commutative law, and diferent otherwise. The training objective is deined as
follows, which is a standard cross-entropy loss:

L��� = −
1

2�

︁
(�, � )

︁
� ∈�

�
�, �
� log(�

�, �
� ) + �

�,�
� log(�

�,�
� ), (29)

where �
�, �
� is the label indicating whether the relation between (�, �) is � (1 means yes and 0 otherwise), and � is

the total number of quantity pairs having a direct relation.
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Dataset Size Avg Prob Len #Avg Quan in Prob CLD #Eq Templates #Avg Ops

SVAMP 1000 34.69 2.82 0.22 26 1.24
ASDiv-A 1218 32.29 2.36 0.50 19 1.23
MAWPS 1987 30.32 2.48 0.26 39 1.78

Table 1. Dataset Statistics. łAvg Prob Lenž means the average problem length. ł#Avg uan in Probž means the average
number of quantities in a problem. łCLDž means Corpus Lexicon Diversity [23]. ł#Eq Templatesž means the number of
equation templates. ł#Avg Opsž means the average number of operators in an expression.

4.4 Training Objective

To sum up, the training objective of the model is:

L = L��� + �1L���� + �2L���� + �3L��� + �4L��� , (30)

where �1, �2, �3 and �4 are hyperparameters, and L��� is the negative log-likelihood loss used to train autore-
gressive generation. The form of L��� is as follows:

L��� = −
1

�

�︁

�=1

�︁

�=1

log� (�� |�<� , �), (31)

where � is the total number of examples of the dataset, and � is the length of the gold expression.

5 EXPERIMENTS

5.1 Experimental Setup

Datasets. We conduct experiments on three widely used datasets: SVAMP [27], ASDiv-A [23], and MAWPS
[10]. Their detailed statistics are shown in Table 1. For SVAMP, we combine MAWPS and ASDiv-A as the training
set following Patel et al. [27] and average the performance over four random seeds. For ASDiv-A and MAWPS, we
evaluate the performance through 5-fold cross-validation following previous works. We use Value Accuracy (Val

Acc.) as the evaluation metric, which checks whether the calculation result of the predicted expression is equal to
the answer. Rather than directly comparing to the annotated expression, it has the advantage that expressions
that are formally diferent but essentially the same as the annotated expression will not be judged as wrong.
Therefore, it is widely adopted by previous works.

Baselines. We select several classic and strong models as our baselines. GROUP-ATT [15] uses multi-head
attention to extract various types of features of MWPs. GTS [42] adopts a Goal-driven Tree-Structured decoder
to better model the structural properties of expressions. Graph2Tree [44] combines the previous tree-based
decoder with a graph-based encoder to inject quantity-related relations into the model. It is worth noting that,
as in many existing works [7, 27], we use RoBERTa-base as the encoder to enhance the performance of the
previous two models. DeductReasoner [7] generates the tree structure of expressions in a bottom-up order and
implements the reuse of substructures. BERT-TECL [31] applies Contrastive Learning to facilitate representation
learning and utilizes Textual information to Enhance the mining of hard positive/negative examples. Furthermore,
CANTOR [29] andMsAT-DeductReasoner [36] are two newly released strong baselines, which are state-of-the-
art models at the same scale on SVAMP and ASDiv-a (and MAWPS), respectively. In addition, we also select some
strong baselines on the MAWPS dataset. For example, ATHENA [8] simulates the process of human thinking
(reasoning) by enumerating and merging multiple reasoning paths (sub-expressions). Multi-View [45] enhances
the consistency of the representation space by aligning the representations of an arithmetic expression from
diferent views (traversal orders). Exp-Tree [46] employs a layer-wise parallel decoding strategy, i.e., generating
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Model SVAMP ASDiv-A MAWPS

Large language models
(text-davinci-002) (code-davinci-002) (WizardMath 70B)

63.7� 86.7� 86.2�

GROUP-ATT 21.5† 61.0† 76.1
RoBERTa-GTS 41.0 81.2 88.5
RoBERTa-Graph2Tree 43.8 82.2 88.7
DeductReasoner 45.0 - 92.0
BERT-TECL - 74.6 -
CANTOR 49.6 - -
MsAT-DeductReasoner 48.9 87.5 94.3

ATHENA 45.6 86.4 92.2
Multi-View - - 92.3
Exp-Tree - - 92.3

Base 47.5 (± 1.3) 85.0 90.8
Ours 50.4 (± 1.1) 87.8 94.2

Table 2. Performance (Val Acc.) of diferent models on SVAMP, ASDiv-A and MAWPS. The results of LLMs are from: �:
Kojima et al. [9], �: Diao et al. [4], � : Gou et al. [5]. 2: We report the reproduced results from Lan et al. [14].

multiple independent expressions in one layer of the expression tree at once. It signiicantly reduces the decoding
steps of the expression tree, thereby enhancing the capacity for generating complex expressions.

Implementation Details. We implement our model using PyTorch [26] and train it on a Linux platform with
NVIDIA RTX3090 graphics cards. We initialize RoBERTa-base with weights from HuggingFace’s Transformers
[38]. We set the hidden size to 384 (half of RoBERTa-base) and the number of layers of all LSTMs to 1. Following
Zhang et al. [44], we use a two-layer GCN to encode each graph separately. For our module (QQCA), all attentions
are single-head dot-product attention. The number of layers of all MLPs is set to 2, and their intermediate
activation function is Tanh. We set both �3 and �4 to 1 and perform grid search on �1 and �2. The value set for
both is {0.1, 0.2, 0.3, 0.5, 0.7, 1}. We choose Adam with weight decay as the optimizer, where the decay factor is
set to 1e-5. The learning rate is 1e-5 for the pre-trained word embedding and 1e-3 for the rest. We train our model
for 70 epochs with a batch size of 8.

5.2 Main Results

Table 2 compares the performance of our model with the base model and all baselines on the three datasets. It
should be noted that the base model we employed (Base in the table) is exactly the same as RoBERTa-Graph2Tree
in model structure. We mainly made the following two modiications: 1) We ixed a bug in the implementation of
Patel et al. [27] regarding the position of quantity tokens. 2) To make the model focus more on the target to be
solved, we initialize the decoder with the hidden representation of the last sentence (i.e., the question) instead of
the entire problem.
From the results, we can observe that our model not only signiicantly outperforms the base model (SVAMP

+2.9, ASDiv-A +2.8, MAWPS +3.4), but also achieves performance that is superior to all baselines (SVAMP +0.8,
ASDiv-A +0.3) or approximately equal to the state-of-the-art baseline (94.2 vs. 94.3 on MAWPS) on the three
datasets. This demonstrates the efectiveness of our method. It is worth noting that CANTOR is committed to
improving the decoding side, which uses a Directed Acyclic Graph (DAG) to consider multiple possible reasoning
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Model Val Acc. �

Ours 50.4 (± 1.1)

-QQCA 49.9 (± 1.0) -0.5
-L��� 48.0 (± 0.6) -2.4
-L��� 48.8 (± 0.9) -1.6

Table 3. Ablation results on diferent components of our method. ł-ž denotes that we remove the component.

Model Val Acc. �

Ours - QQCA 49.9 (± 1.0)

+Modules 47.4 (± 0.6) -2.5

+Modules & L���� 48.0 (± 0.9) +0.6
+Modules & L���� 48.6 (± 1.5) +1.2
+Modules & L���� & L���� (QQCA) 50.4 (± 1.1) +3.0

Table 4. Ablation results on diferent components of our QQCA module. "+Modules" refers to adding only the modules
introduced in Section 4.2 in the training/testing stage without any additional training objectives.

paths simultaneously and eliminate the restriction of a pre-deined decoding order. And MsAT-DeductReasoner
not only employs a DAG-based decoder, but also appends a continual pre-training stage before downstream
task ine-tuning to enhance the capabilities of a PLM related to solving MWPs. However, our method focuses
on improving the encoding side for better quantity representations, which is orthogonal to theirs. In fact, our
method can be combined with theirs to achieve further improvements. We leave it to future work.
In addition, we also compare the performance of our model with the zero-shot performance of some Large

Language Models (LLM) [4, 5, 9]. We report the best results among them in Table 2. Surprisingly, although these
LLMs have a clear advantage on SVAMP, they underperform our small model on ASDiv-A and MAWPS. We
speculate that this is because although LLMs demonstrate powerful natural language understanding capabilities
and robustness to language variations (on SVAMP), they do not have an advantage in problem solving (on ASDiv-
A and MAWPS), i.e., generating arithmetic expressions under zero-shot setting. Considering that generating
arithmetic expressions is essentially selecting quantities and predicting the relations (operators) between them,
it is reasonable to believe that our method (more generally, the small model-based methods) can obtain better
quantity representations than LLMs through some unique designs for the MWP solving task and ine-tuning
the model on annotated task data. Moreover, due to the cost and eiciency advantages of small models, it is still
worthwhile to conduct research on them.

5.3 Ablation Study

To validate the efectiveness of each part of our method, we conducted an ablation study on SVAMP, and the
results are shown in Table 3. Here QQCA refers to the entire Question-Quantity Contrastive Attention module
(including all modules and losses in Section 4.2). L��� and L��� refer to the two auxiliary tasks Quantity Usage

Prediction and Quantity-pair Relation Prediction, respectively.
From the results, we can observe that the model performance showed varying degrees of decline after removing

each part separately, which proves their respective efectiveness. Besides, the improvement brought by QQCA is
not as signiicant as the auxiliary tasks (0.5 compared to 2.4 and 1.6). We suspect that this may be due to the
following two reasons. First, the fusion mechanism does not learn well enough. This may cause it to assign too
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Fig. 4. Performance of the base model and our model with respect to the number of quantities in a problem. The content in
parentheses is the number of problems belonging to that group and its proportion in the test set.

much weight to the newly obtained low-quality feature, thus reducing the quality of the inal representation.
Second, there is a diference in distribution between the training and test sets of SVAMP because its test set
is obtained by manual adversarial modiication from the sampled examples. This may cause the module to
be undertrained because there are not enough examples in the training set that need to select or distinguish
quantities.

Furthermore, we conducted another ablation study for a more in-depth analysis of our QQCA module. Table 4
presents the corresponding results. Here "+Modules" refers to the case where only the modules (parameters)
are added without additional training objectives. L���� and L���� are the two training objectives based on prior
distributions for quantities and questions, respectively. From the results, we can get the following observations.
First, simply adding modules (that is, only increasing the number of parameters) did not bring any performance
improvements but resulted in a signiicant decrease. We suspect there are two possible reasons: 1) Learning the
fusion mechanism is quite tricky, which actually conirms our previous speculation to a certain extent; 2) The
dataset size is too small, so increasing the parameters may exacerbate overitting. Second, both of our training
objectives lead to performance gains, which indicates their efectiveness and the high quality of prior distributions.
Third, using both objectives simultaneously (+Modules & L���� & L���� ) is signiicantly more efective than
using only the objective for quantities (+Modules & L���� , +3.0 vs. +0.6). This conirms our conjecture that
improving both the quantity and the question representations can maximize the gains.
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Model Val Acc. �

Base + Modules 22.5 (± 4.5)

w/ the question 26.7 (± 2.2) +4.2
w/ other quantities 26.6 (± 1.2) +4.1
w/ the union (L����) 27.5 (± 2.8) +5.0

Table 5. Ablation results on diferent relationships. "w/" denotes which relationships we consider when mining features in
the context of quantities.

Model Use Acc. �

Base + Modules 27.2 (± 2.3)

+L���� 30.1 (± 2.6) +2.9
+L���� 29.0 (± 2.8) +1.8
+L���� & L���� 31.0 (± 1.7) +3.8

+L��� 31.5 (± 4.9) +4.3
+L��� & L���� & L���� 35.3 (± 3.3) +8.1

Table 6. Performance of diferent variants of our model in using quantities, which means selecting appropriate quantities to
use for expression generation. Use Acc. check whether the quantities in the predicted expression are the same as those in the
gold expression.

5.4 Supplementary Analysis

5.4.1 Analysis of the Number of uantities. We group the problems in SVAMP by the number of quantities
they contain and compare the performance of the base model and our model on each group. Figure 4 shows the
corresponding results. From this, we can make the following observations. First, the performance of both models
decreases as the number of quantities in the problem increases. It indicates that the capabilities of existing models
are still too limited to solve more complex problems. Second, our model outperforms the base model for all groups.
Furthermore, the increment of our model mainly comes from problems containing three quantities. Considering
that all operators in the dataset are binary, it suggests that our model is better at selecting and distinguishing
multiple quantities than directly predicting the relation between two quantities. This is also consistent with the
original intent of our method.

5.4.2 Efects of Diferent Relationships and Their Union. In Section 4.2, we jointly consider two relationships when
performing feature mining in the context of quantities: 1) the relationship between quantities and the question,
and 2) the relationship between quantities and other quantities. We conducted experiments to investigate the
efects of diferent relationships and their union. The results are shown in Table 5. It is worth noting that here we
iltered SVAMP to remove problems that simply concatenate all quantities using the same operator to focus on
evaluating the model’s ability to select and distinguish quantities.

From the results, we can observe that 1) both relationships help to select and distinguish quantities (lines 2-3).
It reveals that good quantity representations are not only related to the question but also to other quantities,
where the latter have been overlooked in previous works. 2) The union of the two relationships increases the
efect even more, proving the necessity of jointly considering both.

5.4.3 Evaluating the Usage of uantities. In Section 4.2, we mentioned that this task includes a crucial step of
selecting quantities according to the question, and we make improvements in representation from both quantities
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Problem Base Ours

A waiter had �0 customers. While �1 customers left he got �2
new customers. How many customers does he still have?

�0 − �1 − �2 �0 − �1 + �2

�0 campers went rowing and �1 campers went hiking in the
morning.�2 campers went rowing in the afternoon. Howmany
campers went rowing in all?

�0 + �1 + �2 �0 + �2

Rachel has �0 apples trees. She picked �1 apples from each of
her trees. Now the trees have a total �2 apples still on them.
How many apples did Rachel pick in all?

�0 ∗ �1 + �2 �0 ∗ �1

Table 7. Three examples from SVAMP demonstrating the superiority of our method. They respectively correspond to three
characteristics of our method: 1) the distinguishability between quantities, 2) the selectivity of the question to quantities, 3)
the indicativeness of quantities to the question.

and questions. Besides, in Section 4.3, we designed an auxiliary task that predicts whether a quantity is used
in the question to further guide the representation learning of quantities and questions. To verify that these
techniques have indeed improved this selection process, we compared the model’s accuracy in quantity usage
before and after using them. It means that all necessary quantities were used without using any noise terms.
Speciically, we ilter out examples in SVAMP where not all the quantities in the problem are used. We then
check whether the quantities in the predicted expression for these examples are the same as those in the gold
expression, ignoring the efect of operators and operation order (Use Acc.).
From the results, we can make the following observations. First, for our QQCA module (lines 2-4), our

improvements to both quantity representations (+L����) and question representations (+L���� ) have worked,
and the former is more efective. Furthermore, improving at both ends (+L���� & L���� ) yielded more signiicant
improvements, conirming our previous speculation that the selection is a process of matching each quantity
with the question. Second, the Quantity Usage Prediction auxiliary task (+L��� ) can also improve the process
of selecting quantities according to the question, which is very straightforward. It also shows that relying
solely on the end-to-end training paradigm is insuicient for the model to learn this step well. In addition,
further improvements have been achieved by combining the above two technologies (+L��� & L���� & L���� ).
We speculate that this is because our QQCA module considers the relationship between quantities and other
quantities, while the auxiliary task does not.

5.5 Case Study

To demonstrate the superiority of our method more intuitively, we present three examples from SVAMP with
the generated expressions of the base model and our model in Table 7. For the irst example, all three quantities
refer to the number of customers, but the states corresponding to these three groups of customers are diferent.
However, the base model did not distinguish between �1 and �2 and assigned negative signs to both. In contrast,
our model can ind that the distinguishing feature of �1 is łleftž and that of N2 is łnewž by contrasting their
contexts, thus assigning diferent signs to them. For the second example, all three quantities refer to the number
of campers, but the question asks for the total number of campers who went rowing. Our model successfully
excluded �1 from the generated expression, while the base model failed. We conjecture that it is because our
method contrasts the context of quantities with the question, thus highlighting the crucial information łrowingž
around �0 and �2. For the third example, the question is about the number of apples Rachel picked in all, where
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the key is łpickž rather than łin allž. Not surprisingly, the base model was tricked into generating an expression
for the total number of apples. On the contrary, our model successfully identiied łpickž as a key feature that
helps to select quantities by contrasting the question with the context of quantities (inspired by łpickedž around
�1), thus excluding the irrelevant term �2 and generating the correct expression.

To sum up, these three examples intuitively and respectively demonstrate three characteristics of our method: 1)
the distinguishability between quantities, 2) the selectivity of the question to quantities, and 3) the indicativeness
of quantities to the question.

6 CONCLUSION

In this paper, we propose a novel method called Question-Quantity Contrastive Attention (QQCA). It identiies
question-related distinguishing features of quantities by contrasting words in their context with words in the
question and words in the context of other quantities. To the best of our knowledge, our method is the irst to
consider the contrastive relationship between quantities, and the irst to consider multiple relationships jointly.
Besides, we propose two auxiliary tasks to further guide the representation learning of quantities. Experimental
results show that our method outperforms previous methods on SVAMP and ASDiv-A under similar settings.
Ablation studies and supplementary analyses further illustrate the efectiveness of our method.
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