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Abstract

Large-scale pre-training has shown promising results on
the vision-and-language navigation (VLN) task. However,
most existing pre-training methods employ discrete panora-
mas to learn visual-textual associations. This requires the
model to implicitly correlate incomplete, duplicate observa-
tions within the panoramas, which may impair an agent’s
spatial understanding. Thus, we propose a new map-based
pre-training paradigm that is spatial-aware for use in VLN.
Concretely, we build a local metric map to explicitly aggre-
gate incomplete observations and remove duplicates, while
modeling navigation dependency in a global topological
map. This hybrid design can balance the demand of VLN
for both short-term reasoning and long-term planning. Then,
based on the hybrid map, we devise a pre-training framework
to learn a multimodal map representation, which enhances
spatial-aware cross-modal reasoning thereby facilitating the
language-guided navigation goal. Extensive experiments
demonstrate the effectiveness of the map-based pre-training
route for VLN, and the proposed method achieves state-of-
the-art on four VLN benchmarks.

1. Introduction
Interaction with an assistant robot using natural language

is a long-standing goal. Towards this goal, vision-and-
language navigation (VLN) has been proposed and drawn
increasing research interest [1, 2, 3]. Given a natural lan-
guage instruction, a VLN agent is required to interpret and
follow the instruction to reach the desired location. En-
hancing the learning of visual-textual association is essential
for the agent to succeed. Inspired by the great success of
vision-language pre-training [4, 5, 6, 7, 8, 9], a variety of
VLN pre-training methods have been studied and achieved
promising results [10, 11, 12, 13, 14].

However, most existing VLN pre-training models resort
to discrete panoramas (Fig. 1 (a)) as visual inputs, which
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Instruction: … walk past the toilet, turn slightly right, go to the second bedroom 
opposite to the bookcase.

Figure 1: (a) Incomplete observations within a single view
and duplicates across views may confuse the agent. (b)
Projecting discrete panoramas into a unified map can solve
the problem, thus facilitating spatial reasoning.

require the model to implicitly correlate incomplete, dupli-
cate observations across views of the panoramas. This may
hamper the agent’s cross-modal spatial reasoning ability.
As shown in Fig. 1 (a), it is difficult to infer “the second
bedroom opposite to the bookcase” because there are dupli-
cate images of “bedroom” and “bookcase” across different
views, and therefore it is hard to tell they are images for
the same object or multiple instances. A potential solution
is to project these observations into a unified map, which
explicitly aggregates incomplete observations and remove
duplicate. Though this scheme has been successful in many
navigation scenarios [15, 16, 17], its combination with pre-
training remains unstudied, and this paper makes the first
exploration.

In embodied navigation, maps generally fall into met-
ric [18, 16] or topological [17, 19]. The metric map uses
dense grid features to precisely describe the environment but
has inefficiencies of scale [20]. As a result, using a large map
to capture the long-horizon navigation dependency can cause
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prohibitive computation [21], especially for the computation-
intensive pre-training. Yet, such dependency has been shown
crucial for VLN [22, 14]. On the other hand, the topo map
can efficiently capture dependency by keeping track of vis-
ited locations as a graph structure [17]. It also allows the
agent to make efficient long-term goal plans, such as back-
tracking to a previous location [23, 24]. However, each node
in the graph is typically represented by condensed feature
vectors, which lack fine-grained information for local spatial
reasoning.

In this paper, instead of using a large global metric map,
we propose a hybrid approach to balance the above two maps
(shown in Fig. 1 (b)). It contains a local metric map for short-
term spatial reasoning while conducting overall long-term
action plans on a global topo map. This scheme shares simi-
lar spirits to classical topo-metric SLAM in robotics [25, 20],
but it differs in a learnable multimodal representation. To
learn such representation, we propose BEVBert, a novel map-
based pre-training paradigm that learns better visual-textual
associations in bird’s-eye view to aid complex spatial reason-
ing of VLN agents. BEVBert first constructs offline hybrid
maps based on large-scale VLN visual paths. Then, we em-
ploy a cross-modal transformer to conduct map-instruction
interaction to obtain the multimodal map representation. To
learn such representation, in addition to language model-
ing [26] and action prediction [10], we design a map predic-
tion proxy task. This task learns to encode linguistic and
spatial priors to predict the information of unobserved re-
gions, thereby reducing the uncertainty for decision-making.
Finally, we fine-tune the model with sequential action pre-
diction and online constructed hybrid maps. Thanks to the
learned map representations, our agent learns a more robust
navigation policy and achieves state-of-the-art on four VLN
benchmarks (R2R, R2R-CE, RxR, REVERIE).

In summary, the contributions of this work are three-fold:
• We explore topo-metric maps in VLN for the first time.

The proposed hybrid approach presents an elegant balance
between short-term reasoning and long-term planning.

• We propose a novel map-based pre-training paradigm,
and empirically demonstrate that the learned map represen-
tation can enhance spatial-aware cross-modal reasoning.

• BEVBert achieves state-of-the-art on four VLN bench-
marks (e.g., in test-unseen splits, 73 SR on R2R dataset, 59
SR on R2R-CE dataset, and 54.2 SDTW on RxR dataset).

2. Related Work
Vision-and-Language Navigation. VLN has drawn increas-
ing attention in recent years [1, 2, 27, 3, 28, 29, 30, 31].
Early VLN methods use sequence-to-sequence LSTMs to
predict low-level actions [1] or high-level actions from dis-
crete panoramas [32]. Different attention mechanisms [33,
34, 35, 36] are proposed to improve cross-modal align-
ment. Reinforcement learning is also explored to enhance

policy learning [37, 38, 39]. To improve an agent’s gen-
eralization ability to unseen environments, data augmen-
tation strategies have been studied to mimic new envi-
ronments [39, 40, 41, 42, 43, 44, 45, 46, 47]. Recently,
transformer-based models achieve good performance thanks
to their powerful ability to learn generic multi-modal rep-
resentations [10, 11, 12]. This scheme is further extended
by recurrent agent state [48, 13], episodic memory [22, 14],
or topology memory [49, 24, 50] that significantly improves
sequential action predictions. However, the widely used dis-
crete panoramas [32] require implicit spatial modeling and
may hamper the learning of generic language-environment
correspondence. To address the limitation, we not only pro-
pose a multimodal topo-metric map but also devise a map-
based pre-training framework.

Visual Representation in Vision-Language Pre-training.
Existing approaches for VLP fall into image-based, object-
based, and grid-based. Image-based methods [51] extract
an overall feature for an image, yet neglect details, thus
drawback on fine-grained language grounding. Object-based
methods [52, 5] represent an image with dozens of objects
identified by external detectors [53, 54]. The challenge is
that objects can be redundant and limited in predefined cat-
egories. Grid-based methods [55, 56] directly use image
grid features for pre-training, thus enabling multi-grained
vision-language alignments. Most VLN pre-training are
image-based [11, 12, 14], which rely on discrete panoramas.
We introduce grid-based methods into VLN through metric
maps, where the model can learn via multi-grained room
layouts.

Maps for Navigation. Works on navigation have a long tra-
dition of using SLAM [57] to construct metric maps [16, 58].
A metric map uses grid-based visual features to represent the
scene layouts precisely but has inefficiencies of scale [20].
To avoid heavy computation, standard practices restrict the
map size[21, 59], which can be inadequate for long-term
modeling or planning. Therefore, graph-based topo maps
are proposed to address the limitation [60, 61, 17, 19]. But
the drawback is short-term reasoning within the condensed
nodes [24]. In robotics, topo-metric maps are proposed to
trade off their strengths [25, 20]. However, most of them are
based on non-learning representations and focus on classical
robotic tasks. We propose learnable topo-metric maps and
explore the application to high-level VLN tasks.

3. Method

The proposed method focuses on improving VLN agents’
planning capability with map-based pre-training. For con-
ciseness, we put our technical description in the context of
VLN in discrete environments [1], where maps can be de-
rived from a predefined navigation graph. However, this
method can also generalize to the task of VLN in continuous
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Figure 2: The main architecture of the proposed hybrid-map-based pre-training framework.

environments [27] and more details are presented in § 4.2.

Problem Definition. An agent is required to follow an
instruction W to traverse on a predefined graph G∗ to reach
the target location. At each step t, the agent perceives a
discrete panorama comprised of RGB images Vt and depth
images Dt. Following [62, 23, 19, 24], we provide the agent
with pose information Pt to simplify the mapping process.
With observations Ot = {Vt,Dt,Pt}, VLN aims to learn
a policy π(at|W,Ot) to predict action at. The action is
predicted by selecting a navigable node from a candidate set
provided by the simulator. VLN datasets provide annotated
instruction-path pairs to learn the policy, i.e., a pair contains
an instruction W with L words, and an expert path Γ =
⟨O1, ...,OT ⟩ of length T .

Method Overview. As depicted in Fig. 2, our map-based
pre-training framework consists of two modules, namely
topo-metric mapping and multimodal map learning. The
mapping module constructs an offline hybrid map via a sam-
pled expert path (§ 3.1). The learning module conducts map-
instruction interaction (§ 3.2), and then learns multimodal
map representations with three pre-training tasks (§ 3.3). Af-
ter pre-training, the same model is fine-tuned on a sequential
action prediction task with online constructed maps (§ 3.4).

3.1. Topo-Metric Mapping

To balance the demand of VLN for long-term planning
and short-term reasoning, we propose to construct a hybrid
map. As shown in Fig. 2 (a), assuming the agent currently
is at step t and the walked path is Γ′, we construct a global
topo map Gt and a local metric map Mt. We next introduce
how to construct these two maps.

Image Processing. For panoramic RGB images Vt of each
step t, we use a pre-trained vision transformer (ViT) [63] to
extract feature vectors Vp

t and downsized grid features Vg
t .

The associated depth images Dt are downsized to the same
scale as D′

t.

Topo Mapping. The graph-based topo map Gt = {Nt,Et}
keeps track of all observed nodes along the path Γ′. Given

Γ′, we initialize Gt by deriving its corresponding sub-graph
from the predefined graph G∗. The nodes Nt are divided
into three categories: visited node , current node and
ghost node , where ‘ghost’ denotes navigable nodes ob-
served along the path Γ′ but have not been explored. The
edges Et record the Euclidean distances among all adjacent
nodes. We map feature vectors Vp

∗ onto the nodes as their
visual representations. Taking time step t as an example,
Vp

t are first fed into a pano encoder [22] (a two-layer trans-
former) to obtain contextual view embeddings V̂p

t . Since
and have been visited and can access panoramas, they are
represented by an average of panoramic view embeddings,
e.g., Average(V̂p

t ) ∈ RD for (D is the embedding dimen-
sion). is partially observed and therefore is represented
by accumulated embeddings of views from which can be
observed. We equip Gt with a global action space AG for
long-term planning, which consists of all observed nodes.

Metric Mapping. The grid-based metric map Mt ∈
RU×V×D is constructed locally centered on the current
node . We define Mt as an egocentric map in which each
cell contains a D-sized latent feature representing a small
region of the surrounding layouts. Similar to MapNet [18],
we ground project grid visual features Vg

∗ onto the cells to
represent the map. Since Mt is a local representation and
can be observed from nearby visited nodes of the current
node, we integrate grid features from nearby visited nodes
to construct the map. Concretely, assuming the current node
is ni, we first query the topo map Gt to get its nearby vis-
ited nodes within κ order: Nκ = {nj |order(ni,nj) ≤ κ}.
Then, we combine the grid features Vg

∗ of nodes in Nκ, and
project them onto the ground plane (centered on the current
node), using the corresponding depths D′

∗ and poses P∗.
The projected features are discretized into the 2D spatial grid
Mt, using elementwise average pooling to handle feature
collisions in a cell. We equip Mt with a local action space
AM for short-term reasoning, which consists of the current
node and its adjacent nodes. We compute these nodes’ co-
ordinates on Mt by ground projecting their poses onto the
map, namely ‘node→cell’.
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3.2. Pre-training Model

As presented in Fig. 2 (b), we then fed the hybrid map
(Gt,Mt) obtained in § 3.1 into a pre-training model to
obtain multimodal map representations. The pre-training
model contains a topo map encoder and a metric map en-
coder, which take the instruction W to fuse with Gt and
Mt respectively. The outputs are later fed into three pre-
training tasks to learn navigation-oriented multimodal map
representations (§ 3.3).
3.2.1 Text Encoder
Each word embedding in the instruction W is added with
a position embedding [26] and a text type embedding [5].
Then, all embeddings are fed into a multi-layer transformer
to obtain contextual word embeddings W̃.
3.2.2 Topo Map Encoder

This module takes the topo map Gt and the encoded instruc-
tion W̃ to conduct node-level cross-modal fusion.
Node Embedding. Each node feature ni ∈ Nt is added with
a location embedding and a navigation step embedding. The
location embedding is calculated by the relative orientation
and euclidean distance of each node to the current node, and
the step embedding is the latest visited time step for visited
nodes ( , ) and 0 for ghost nodes . We add a zero-
vector ‘stop’ node n0 in the graph to denote a stop action
and connect it with all other nodes.
Cross-modal Long-term Transformer. The encoded node
and word embeddings are fed into a multi-layer transformer
to conduct node-level cross-modal fusion. The architecture
of each layer is similar to LXMERT [5], which contains one
bi-directional cross-attention sub-layer, two self-attention
sub-layers, and two feed-forward sub-layers. Following [24],
we replace the vision self-attention sub-layers with graph-
aware self-attention (GASA), which introduces graph topol-
ogy for node encoding. The outputs are node-instruction-
associated representations (Ñt, W̃G).

3.2.3 Metric Map Encoder

This module takes the metric map Mt and the encoded
instruction W̃ to conduct cell-level cross-modal fusion.
Cell Embedding. Each cell feature mu,v ∈ Mt is added
with a position embedding pu,v and a navigability embed-
ding nu,v. To capture the relations between the agent and
surrounding room layouts, we design an egocentric polar
position embedding for each cell:

pu,v = [cos(θu,v), sin(θu,v), disu,v] (1)

where θu,v and disu,v denote the relative heading and nor-
malized distance of a cell to the map center (agent position).
We empirically found it is better than a learnable [26] or 2D
position embedding [63]. Navigability embeddings are set
to 1 for cells that lie in the local action space AM , and 0

otherwise. Both position and navigability embeddings are
linearly transformed to D-dimension.
Cross-modal Short-term Transformer. The encoded cell
and word embeddings are fed into a multi-layer transformer
to conduct cross-modal fusion. Each layer architecture is
similar to that in § 3.2.2, but uses self-attention for cell
encoding rather than GASA. The short-term transformer
conduct cross-modal reasoning on the fine-grained (cell-
level) map representation, which can benefit reasoning about
complicated spatial relations, such as “go into the hallway
second to the right from the stairs”. The outputs are cell-
instruction-associated representations (M̃t, W̃M ).

3.3. Pre-training Tasks

We devise three tasks to learn the multimodal map repre-
sentations (Ñt, M̃t) obtained in § 3.2.
Masked Language Modeling (MLM). MLM is the most
commonly used proxy task in BERT pre-training [26]. For
VLN, MLM aims to recover masked words Wm via reason-
ing over the surrounding words W\m and the hybrid map.
Precisely, we first randomly mask out input tokens of the
instruction with a 15% probability and then conduct map-
instruction interaction as explained in § 3.2. To learn both
long-term and short-term reasoning, we sum the obtained
W̃G

\m and W̃M
\m, then feed it into the MLM head. This task

is optimized by minimizing the negative log-likelihood:

LMLM = −E(W,Γ′)∼D logPθ(Wm|W\m,Gt,Mt) (2)

where D denotes the training dataset and θ represents train-
able parameters.
Hybrid Single Action Prediction (HSAP). HSAP is de-
signed to benefit the downstream goal: predicting navigation
actions. Our model predicts an overall action in the global
action space AG. For a more robust action plan, we integrate
the short-term reasoning results from the metric map into the
topo map. In practice, we first convert cells lying in the local
action space AM into the global action space AG, using a
‘cell→node’ operation (the inverse of ‘node→cell’ in § 3.1).
We denote the converted cells as M̃′

t = {m̃i|i ∈ AG′},
where AG′

is a subset of the global action space AG. Then,
we use two feedforward networks (FFN) to predict naviga-
tion scores for nodes ñi ∈ Ñt and cells m̃i ∈ M̃′

t, and
dynamic fuse them conditioned on the agent state:

sGi = FFN(ñi), sMi = FFN(m̃i) (3)

si =

{
δts

G
i + (1− δt)s

M
i , if i ∈ AG ∩ AG′

sGi , otherwise
(4)

where the padded ’stop’ node ñ0 and central cell m̃c,c denote
the agent state, therefore δt = Sigmoid(FFN([ñ0; m̃c,c]). In
most VLN tasks, it is not necessary for an agent to revisit
a node, therefore we mask the scores of visited nodes. The
task is optimized via a cross-entropy loss over fused scores
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{si} and teacher action a∗t :

LHSAP = −E(W,Γ,a∗
t )∼D logPθ(a

∗
t |W,Gt,Mt) (5)

Masked Semantic Imagination (MSI). We note there are
some unobserved areas on the metric map Mt, which brings
uncertainty for decision-making. To mitigate this issue, we
propose MSI to enable the agent to imagine the information
of unobserved areas, by reasoning over instructions and par-
tially observed maps. Concretely, we first randomly mask
out cells of the metric map Mt with an empirical 15% prob-
ability to simulate unobserved areas. Then, the masked map
Mt,\m interacts with the instruction W as explained in § 3.2.
Finally, the MSI head forces the model to predict semantics
S of masked regions conditioned on the multimodal map
representation M̃t,\m. Each cell of the metric map may
contain multiple semantics; therefore, the task is formulated
as a multi-label classification problem and optimized via a
binary cross-entropy loss:

LMSI = −E(W,Γ)∼D

C∑
i

[Si logPθ(Si|W,Mt,\m)

+(1− Si) log(1− Pθ(Si|W,Mt,\m))]

(6)

where Si corresponds to the i-th semantic class (C = 40),
and we obtain these labels from Matterport3D dataset [64].

3.4. Training and Inference

Training. As standard practices in transformer-based VLN
methods [10, 11, 12], we first mix the three tasks in § 3.3
to pre-train the model with offline expert data. To avoid
overfitting to expert experience, we then fine-tune the model
with sequential action prediction. The topo map Gt in this
stage is online updated. As shown in Fig. 3, at step t, we
obtain Gt by adding newly observed nodes to Gt−1 and
updating the node status. For trajectory rollout in fine-tuning,
we alternately run ‘teacher-forcing’ and ‘student-forcing’ [1].
The ‘teacher-forcing’ is equivalent to Eq. 5, where the agent
always executes the teacher action. In ’student-forcing’, at
each step, the next action is sampled from the predicted score
distribution (Eq. 4) and supervised by pseudo labels [24].
More details are in the appendix.

Visited Node Current Node Ghost Node Navigable Node Action

𝐆𝐆𝐭𝐭−𝟏𝟏 𝐆𝐆𝐭𝐭New Observations

Figure 3: Online topo map update at step t. The agent
executes an action to reach a ghost node and receives new
observations. It then adds newly observed nodes to Gt−1,
updating node representations and types. The simulator
provides navigable nodes at each step.

Inference. At each step during testing, the agent online
constructs a hybrid map similar to the fine-tuning stage,

and then performs cross-modal reasoning over the map as
explained in § 3.2. Following the single-run setting of VLN,
the agent greedily selects the node (ghost node or ‘stop’
node) with the maximum predicted score (Eq. 4) as the
next action. If the selected node is a long-term action (not
adjacent to the current node), the agent plans the shortest
path to reach the selected node using Dijkstra’s algorithm on
the current topo map. The agent stops if it selects the ‘stop’
node or reaches the maximum action steps.

4. Experiments

We evaluate the proposed method on R2R [1], R2R-
CE [27], RxR [3] and REVERIE [2] datasets. R2R, R2R-
CE, and RxR focus on fine-grained instruction following,
whereas R2R-CE is a variant of R2R in continuous envi-
ronments and RxR provides more detailed path descrip-
tions (e.g., objects and their relations). REVERIE is a goal-
oriented task using coarse-grained instructions, such as “Go
to the entryway and clean the coffee table”.
Navigation Metrics. As in [1, 65, 66], we adopt the follow-
ing navigation metrics. Trajectory Length (TL): average path
length in meters; Navigation Error (NE): average distance in
meters between the final and target location; Success Rate
(SR): the ratio of paths with NE less than 3 meters; Oracle
SR (OSR): SR given oracle stop policy; SR penalized by
Path Length (SPL); Normalize Dynamic Time Wrapping
(NDTW): the fidelity between the predicted and annotated
paths and NDTW penalized by SR (SDTW).
Object Grounding Metrics. As in [2], we use Remote
Grounding Success (RGS) and RGSPL (RGS penalized by
Path Length) to evaluate the capacity of object grounding.
All metrics are the higher the better, except for TL and NE.

4.1. Implementation Details

Image Processing and Mapping. We resize and central
crop RGB images to 224× 224. Following [67, 42], we use
ViT-B/16-CLIP [51] to extract visual features. The scale of
grid visual features Vg

t is 14× 14 (outputs before the MLP
head of ViT). We set the metric map scale as 21× 21, and
each cell represents a square region with a side length of
0.5m (the entire map is thus 10.5m× 10.5m).

Model Configuration. Following [48, 24], we set the layers’
number of the text encoder, and the two map encoders as 9,
4, 4. Other hyperparameters are the same as LXMERT [5]
(e.g. the hidden layer size is 768). In the pre-training stage,
we use pre-trained LXMERT for initialization on R2R, R2R-
CE, and REVERIE datasets, and pre-trained RoBerta [68] is
used for the multilingual RxR dataset. REVERIE provides
additional object annotations for the final object grounding
task, and BEVBert adaptation to this dataset is presented in
the appendix.
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Training Details. The trainable modules in our model in-
clude the pano encoder in § 3.1, the text encoder, and the
two map encoders. For all datasets, we first offline pre-
train BEVBert with batch size 64 for 100k iterations using
4 NVIDIA Tesla A100 GPUs (∼10 hours). We use the
Prevalent [10], RxR-Markey [69] and REVERIE-Spk [24]
synthetic instructions as data augmentation on R2R/R2R-
CE, RxR and REVERIE respectively. We choose a pre-
trained model with the best zero-shot performance (e.g., SR
+ SPL on R2R/R2R-CE, SR + NDTW on RxR, SR + RGS
on REVERIE) as initialization for downstream fine-tuning.
Then, we use alternative teacher-forcing and student-forcing
to online fine-tune the model in the simulator, with batch size
16 for 40k iterations on 4 NVIDIA Tesla A100 GPUs (∼20
hours). The best iterations are selected by best performance
on validation unseen splits.

4.2. Comparison with State-of-the-Art

R2R. Tab. 1 compares BEVBert against state-of-the-art
(SoTA) methods on the R2R dataset. BEVBert beats other
methods on all evaluation metrics except for the ensemble-
based EnvEdit [42]. On the test unseen split, for instance,
BEVBert outperforms the previous best method DUET [24]
by 4 SR and 3 SPL. It is worth noticing that compared with
Chasing [62] which also uses metric maps, our improvement
is substantial (↑ 40 SR and ↑ 32 SPL on the test unseen
split). We attribute this to our hybrid map design, which bal-
ances short-term reasoning and long-term planning, whereas
Chasing resorts to metric maps, leading to non-ideal long-
term planning capacity. Moreover, Chasing is trained from
scratch, while BEVBert gains superior generalization ability
with the proposed pre-training framework.

R2R-CE. Tab. 2 presents the results on the R2R-CE dataset.
We adjust the topo mapping process in § 3.1 to adapt
BEVBert to continuous environments. Specifically, at each
step, the agent predicts a set of waypoints [70] and orga-
nizes them as a topo map similar to [50]. BEVBert sets
new SoTA on the R2R-CE dataset, with 4 SR and 2 SPL
improvement over the topo-map-only ETPNav [50]. This
further highlights the efficacy of the proposed hybrid map.

RxR. Tab. 3 reports the results on the RxR dataset. RxR
is more challenging than R2R because its paths are much
longer and involve more detailed path descriptions. With the
fine-grained metric map, BEVBert is skilled at these com-
plex instructions and achieves considerable improvement.
For instance, on the test unseen split, BEVBert surpasses
the ensemble-based EnvEdit [42] by 4 SR, 0.8 NDTW and
2.4 SDTW. We also report BEVBert’s performance without
Marky synthetic instructions [69]. Compared to EnvEdit,
BEVBert still leads on SR, and the improvements over the
SoTA single-model HAMT [22] are notable (e.g. ↑ 7.6 SR,
↑ 0.8 NDTW and ↑ 4.3 SDTW on the val unseen split).

Val Unseen Test Unseen

Methods NE↓ OSR↑ SR↑ SPL↑ NE↓ OSR↑ SR↑ SPL↑
Seq2Seq [1] 7.81 28 21 - 7.85 27 20 -
SF [32] 6.62 45 36 - 6.62 - 35 28
Chasing [62] 7.20 44 35 31 7.83 42 33 30
RCM [38] 6.09 50 43 - 6.12 50 43 38
SM [33] 5.52 56 45 32 5.67 59 48 35
EnvDrop [39] 5.22 - 52 48 5.23 59 51 47
AuxRN [71] 5.28 62 55 50 5.15 62 55 51
NvEM [36] 4.27 - 60 55 4.37 66 58 54
SSM [19] 4.32 73 62 45 4.57 70 61 46
PREVAL [10]† 4.71 - 58 53 5.30 61 54 51
AirBert [12]† 4.10 - 62 56 4.13 - 62 57
RecBert [48]† 3.93 - 63 57 4.09 70 63 57
REM [40] 3.89 - 64 58 3.87 72 65 59
HAMT [22]† 3.65 - 66 61 3.93 72 65 60
HOP+ [72]† 3.49 - 67 61 3.71 - 66 60
EnvEdit* [42]† 3.24 - 69 64 3.59 - 68 64
TD-STP [49]† 3.22 76 70 63 3.73 72 67 61
DUET [24]† 3.31 81 72 60 3.65 76 69 59
BEVBert (Ours)† 2.81 84 75 64 3.13 81 73 62

Table 1: Comparison with SoTA methods on R2R dataset. *
Ensemble of three agents. †Pre-training-based methods.

Val Unseen Test Unseen

Methods NE↓ OSR↑ SR↑ SPL↑ NE↓ OSR↑ SR↑ SPL↑
Seq2Seq [27] 7.37 40 32 30 7.91 36 28 25
CM2 [21] 7.02 42 34 28 7.70 39 31 24
HPN [73] 6.31 40 36 34 6.65 37 32 30
MGMAP [15] 6.28 48 39 34 7.11 45 35 28
CWP [70] 5.74 53 44 39 5.89 51 42 36
Sim2Sim [74] 6.07 52 43 36 6.17 52 44 37
Reborn [75] 5.40 57 50 46 5.55 57 49 45
ETPNav [50] 4.71 65 57 49 5.12 63 55 48
BEVBert (Ours) 4.57 67 59 50 4.70 67 59 50

Table 2: Comparison with SoTA methods on R2R-CE
dataset.

Val Unseen Test Unseen

Methods NE↓ SR↑ NDTW↑ SDTW↑ NE↓ SR↑ NDTW↑ SDTW↑
LSTM [3] 10.9 22.8 38.9 18.2 12.0 21.0 36.8 16.9
EnvDrop+ [67] - 42.6 55.7 - - 38.3 51.1 32.4
CLEAR-C [76] - - - - - 40.3 53.7 34.9
HAMT [22] - 56.5 63.1 48.3 6.2 53.1 59.9 45.2
EnvEdit* [42] - 62.8 68.5 54.6 5.1 60.4 64.6 51.8
BEVBert†(ours) 4.6 64.1 63.9 52.6 - - - -
BEVBert (ours) 4.0 68.5 69.6 58.6 4.8 64.4 65.4 54.2

Table 3: Comparison with SoTA methods on RxR dataset.
* Ensemble of three agents. †Without Markey-T5 instruc-
tions [69].

Val Unseen Test Unseen

Methods SR↑ RGS↑ RGSPL↑ SR↑ RGS↑ RGSPL↑
AutoVLN* [47] 55.89 36.58 26.76 55.17 32.23 22.68

FAST [2] 14.40 7.84 4.67 19.88 11.28 6.08
SIA [77] 31.53 22.41 11.56 30.80 19.02 9.20
RecBert [48] 30.67 18.77 15.27 29.61 16.50 13.51
AirBert [12] 27.89 18.23 14.18 30.26 16.83 13.28
HAMT [22] 32.95 18.92 17.28 30.40 14.88 13.08
TD-STP [49] 34.88 21.16 16.56 35.89 19.88 15.40
DUET [24] 46.98 32.15 23.03 52.51 31.88 22.06
BEVBert (Ours) 51.78 34.71 24.44 52.81 32.06 22.09

Table 4: Comparison with SoTA methods on REVERIE
dataset. * 900 extra scenes for training.

REVERIE. BEVBert also generalizes well on the goal-
oriented REVERIE dataset as shown in Tab. 4. On the val
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unseen split, BEVBert surpasses the previous best model
DUET [24] by 4.80 SR, 2.56 RGS, and 1.41 RGSPL. We also
note improvements on the test unseen split are less promi-
nent compared to DUET. We attribute it to the distribution
shift between the val unseen and test unseen splits (e.g., com-
paring the performance difference between val unseen and
test unseen, HAMT ↓ 2.55 SR v.s. DUET ↑ 5.33 SR).

4.3. Quantitative and Qualitative Analysis

We present quantitative and qualitative analyses to illus-
trate BEVBert’s efficacy for complex spatial reasoning.
Quantitative Analysis. We aim to evaluate BEVBert’s per-
formance on instructions that involve spatial reasoning, such
as “go into the hallway second to the right from the stairs”.
Thus, from R2R and RxR val unseen splits, we first extract
the relevant instructions which contain either spatial tokens
(e.g. “left of”, “rightmost”) or numerical tokens (e.g. “sec-
ond”, “fourth”). An agent’s reasoning capability can be
inferred from how well it follows these instructions. We
compare the performance of BEVBert and SoTA methods on
these instructions in Fig. 4. As the number of special tokens
in each instruction increases, the performance of all models
shows downward trends. This indicates spatial reasoning is
a bottleneck of existing methods. However, BEVBert con-
sistently outperforms these counterparts, especially on the
RxR dataset which contains more spatial descriptions. This
highlights BEVBert’s superiority in spatial reasoning.

Figure 4: Comparison of navigation performance on spatial
and numerical related instructions (BEVBert vs. DUET [24]
SR (light color) and SPL (dark color) on R2R val unseen
split, BEVBert vs. EnvEdit [42] SR and SDTW on RxR val
unseen split).

Qualitative Analysis. We visualize the predicted paths of
BEVBert and DUET [24] in Fig. 5. DUET uses discrete
panoramas for local reasoning, leading to non-ideal spatial
reasoning capacity. For example, it does not follow the
instruction strictly (e.g. “go between the kitchen counters”,
“walk behind the couch”) and leads to incorrect endpoints.
By contrast, thanks to the explicit spatial representation,

Instruction: Walk behind the couch towards the kitchen. Enter the kitchen. Walk towards the doors 
that go outside. Turn left when you reach the doors. Walk down the hallway past the kitchen. Stop 
where the four hallways intersect.

DUET

DUET

Instruction: Walk straight past the table and turn right to go between the kitchen counters and walk 
straight past the refrigerator into the pantry and stop halfway between the two shelves on the right. 

BEVBert

BEVBert

Figure 5: Predicted paths of DUET [24] and BEVBert on
R2R-unseen. Yellow and green circles denote the start and
target locations, respectively, and the red circles represent
incorrect endpoints.

BEVBert could interpret these complicated descriptions and
make correct decisions.

4.4. Ablation Study

We conduct extensive experiments to evaluate key design
choices of BEVBert. Results are reported on the R2R val
unseen split and the main metrics are highlighted.

1) Comparison of map variants. Tab. 5 presents the results
of our model trained with different map variants. Row 1
only uses topo maps for action prediction. It achieves a
decent 70.25 SR, but there is a clear gap (∼ 4.5 SR) with
hybrid maps (Row 5, Row 6), due to the lack of metric
information for local spatial reasoning. Row 2 further fuses
depth features [78] into topo maps’ node representations, but
with no gain. This suggests that simple depth fusion cannot
improve spatial reasoning ability. Row 3 and Row 4 only
use metric maps, leading to higher TL but poorer navigation
performance (OSR and SR), because the agent lacks long-
term planning ability and makes some ineffective exploration.
In Row 5 and Row 6, the navigation performance increases
substantially when applying the proposed topo-metric maps.
It indicates that the proposed hybrid map is a good trade-off
between the above two maps, which enables long-term and
short-term balanced decision-making.

2) The dependency on depth sensors. We adopt in-domain
pre-trained RedNet [79] for depth estimation and then inves-
tigate BEVBert’s dependence on depth sensors. As shown in
Tab. 5 (Row 3 v.s. Row 4, Row 5 v.s. Row 6), there is almost
no performance drop when applying estimated depths for
metric mapping. This suggests that our approach does not
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# Map Depth TL NE↓ OSR↑ SR↑ SPL↑
1 Topo - 12.59 3.39 78.01 70.25 61.29
2 sensing† 11.76 3.38 77.95 70.03 61.45

3 Metric estimated 14.41 3.91 70.35 60.64 52.17
4 sensing 14.15 3.93 70.95 60.90 52.80

5 Hybrid estimated 13.61 2.88 82.63 74.67 63.63
6 sensing 14.55 2.81 83.65 74.88 63.60

Table 5: Comparison of map variants. We denote ground-
truth and estimated depths as ‘sensing’ and ‘estimated’ re-
spectively. † represents fusing depth features in the topo map
setting, other variants do not take depths as model inputs.

highly rely on accurate depth sensing. The main reason is
that our metric maps are constructed in feature space, where
we use rough grid depths (e.g., 14× 14) for feature projec-
tion. We believe BEVBert has the potential to be extended
in large-scale training with synthetic environments [41, 80],
where depth sensors are unavailable.

# Proxy Tasks TL NE↓ OSR↑ SR↑ SPL↑
1 None 15.56 4.36 73.61 60.24 48.29
2 MLM 16.26 3.09 83.82 73.52 60.13
3 MLM + HSAP 14.50 3.03 82.67 74.03 63.03
4 MLM + HSAP + MSI 14.55 2.81 83.65 74.88 63.60

Table 6: Ablation study of pre-training tasks.

3) The effect of pre-training tasks. Tab. 6 illustrates the
effect of different pre-training tasks. Row 1 trains the model
from scratch. It has the worst performance because the
learned map lacks generic multimodal representations. With
the generic MLM task, Row 2 can achieve decent perfor-
mance (e.g., 73.52 SR and 60.13 SPL). However, the TL
is high, thus leading to lower SPL compared to Row 3 and
Row 4. In Row 3, the TL decreases, and SPL increases
significantly after applying the HSAP task (e.g., ↑ 2.90 SPL
over Row 2). It indicates that action prediction tasks are
beneficial to learn action-informed map representations for
efficient navigation. Row 4 further improves the navigation
performance with the proposed MSI task (e.g., ↑ 0.85 SR
and ↑ 0.57 SPL over Row 3). The potential reason is that
the agent learns to imagine unobserved areas and reduce
the uncertainty for decision-making, which helps generalize
unseen environments.

# Scale Cell Size Map Size Flops NE↓ OSR↑ SR↑ SPL↑
1 11× 11 0.5m2 5.5m2 4.5G 2.98 81.61 73.27 63.07
2 11× 11 1.0m2 11.0m2 4.5G 2.82 83.01 74.58 63.37
3 21× 21 0.5m2 10.5m2 15.2G 2.81 83.65 74.88 63.60
4 31× 31 0.5m2 15.5m2 32.7G 2.83 83.23 74.84 64.88

Table 7: The effect of metric maps scale and size. Scales are
set to odd to ensure the agent is at the central cell.

4) Scale and size of metric maps. Tab. 7 reports BEVBert’s
performance using different scales and sizes of metric maps
and the short-term transformer flops. There is an upward
trend in performance as the map size increases (Row 2 v.s.
Row 1), because the agent could perceive environments in

a boarder scope. Row 3 performs slightly better than Row
2 when the cell size decreases, which can be contributed
to a better perception of minor objects. With a larger map
scale, Row 4’s performance does not increase obviously. The
potential reason lies in the topo map used to capture long-
range navigation dependency; thus, a large metric map only
brings marginal benefit. On the other hand, a larger metric
map causes heavy computation (e.g., flops of the transformer
are approximately quadratic w.r.t. the map scale). Therefore,
Row 3 is our default setting.
5) The effect of multi-step integration for metric maps.
We devise a local integration strategy for metric mapping
in § 3.1, which incorporates historical observations from
visited nodes within κ order. Tab. 8 presents the effect of κ.
With κ = 0, the metric map is constructed from the current
node’s observations alone. It has the worst performance due
to the lack of historical information, which may confuse the
agent to understand mentioned short-term temporal depen-
dency, such as “keep the exhibit board on your right, go ...”.
When incorporating 1st-order historical observations, Row
2 improves SPL by 1.23 over Row 1, but no more gain as κ
goes up in Row 3. Because 1st-order integration is enough
for a small local map.

# κ TL NE↓ OSR↑ SR↑ SPL↑
1 0 14.43 3.01 82.12 73.73 62.37
2 1 14.55 2.81 83.65 74.88 63.60
3 2 14.89 2.81 84.29 75.18 62.71

Table 8: The effect of order κ in metric mapping.

6) Visual features. BEVBert achieves better performance
with CLIP pre-trained features as shown in Tab. 9. Imagenet
features may lack diverse visual concepts because they are
learned by a one-hot classification task that focuses on salient
regions of images. By contrast, CLIP features are learned by
large-scale image-text matching, where visual grid features
are informed by diverse linguistic concepts [67], which can
be more suitable for metric mapping.

# Features TL NE↓ OSR↑ SR↑ SPL↑
1 ViT-B/16-ImageNet [81] 15.90 2.91 83.44 74.03 61.86
2 ViT-B/16-CLIP [51] 14.55 2.81 83.65 74.88 63.60

Table 9: Comparison of different visual features.

5. Conclusion

In this paper, we first devise a hybrid map to balance
the demand of VLN for both short-term reasoning and long-
term planning. Based on the hybrid map, we propose a new
pre-training paradigm, BEVBert, to learn visual-textual asso-
ciations in an explicit spatial representation. We empirically
validate that the learned multimodal map representations
could enhance spatial-aware cross-modal reasoning and fa-
cilitate the final language-guided navigation goal. Extensive
experiments demonstrate the effectiveness of the proposed
method and BEVBert achieves state-of-the-art.
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