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Abstract—Deep reinforcement learning (DRL) has achieved
superhuman performance on Atari games using only raw pixels.
However, when applied to complex 3D first-person shooter (FPS)
environments, it often faces compound challenges of inefficient
exploration, partial observability, and sparse rewards. To address
this, we propose the Depth-Detection Augmented Hierarchical
Proximal Policy Optimization (D2AH-PPO) method. Specifically,
our framework utilizes a two-level hierarchy where the higher-
level controller handles option control learning, while the lower-
level workers focus on mastering sub-tasks. To boost the learning
of sub-tasks, D2AH-PPO involves a combination technique, which
includes 1) object-aware representation learning that extracts
high-dimensional information representation of crucial compo-
nents, and 2) a rule-based action mask for safer and more pur-
poseful exploration. We assessed the efficacy of our framework in
the 3D FPS game ’ViZDoom’. Extensive experiments indicate that
D2AH-PPO significantly enhances exploration and outperforms
several baselines.

Index Terms—deep reinforcement learning, ViZDoom, repre-
sentation learning, FPS

I. INTRODUCTION

Deep reinforcement learning (DRL) has achieved significant
progress in various game environments, such as Go [1], Arcade
Games [2], and StarCraft II [3]. It is worth noting that the
environments in which DRL has excelled are primarily two-
dimensional. In this case, learning control policies directly
from raw input pixels is feasible, as raw pixels typically
contain almost all the state information of the game. Addi-
tionally, 2D games usually have lower-dimensional action-
state spaces, implying more manageable exploration and a
higher likelihood of learning consistent features. However,
the landscape changes significantly when transitioning to 3D
games [4]. Firstly, the extra spatial dimensions pose challenges
to partial observability. Moreover, dynamic viewpoints intro-
duce variations in scene component sizes and rotations, com-
plicating learning an adequate representation. Most notably,
the expansive exploration space characteristic of 3D environ-
ments exacerbates the issue of sparse environment feedback.
Agents are often confronted with sparse reward problems that
can overwhelm those with low exploration efficiency, directly
impeding their ability to learn effectively.

ViZDoom is a classic 3D FPS game research platform
that allows agents to play Doom games using screen buffers
and game variables. Since its release, substantial efforts [5]
[6] have been dedicated to investigating optimal strategies
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Fig. 1. Motivation: The depth-detection map provides essential information
about crucial components’ location and depth distance. According to the rules
of VDAIC, direct access to this high-dimensional abstraction is restricted.
Therefore, we utilize depth-detection masks to learn this representation.

for guiding AI agents through visual information. Existing
methods [7] simply introduce game scalar features as an-
chors for input augmentation. Bhatti [4] has achieved good
results by utilizing 3D-scene reconstruction and on-the-fly
object detection to extract semantic abstractions of scene
components. However, this highly engineered architecture has
led to a lack of generalization. Song [8] and Huang [9]
face similar issues. The former involves designing a divided
action space and structured intrinsic rewards, while the latter
utilizes depth prediction and enemy detection to guide combo-
action. However, both methods heavily rely on the quality
and accuracy of human prior knowledge. Any mismatch be-
tween a unique situation and existing knowledge can disrupt
the effectiveness of intrinsic rewards or auxiliary networks,
limiting their capacity to adapt to different scenarios. Current
RL algorithms struggle to outperform human performance in
3D FPS games due to the numerous challenges mentioned.

This paper introduces the D2AH-PPO method, which em-
ploys a hierarchical structure to enhance learning in 3D visual
environments like ViZDoom. It involves a two-level hierarchy.
The high-level controller utilizes depth-detection masks to
extract crucial components’ depth and positional information
(as shown in Fig. 1) automatically. This information is trans-
mitted to low-level workers to enhance input following option
decisions. These workers are specialized in mastering specific



sub-tasks. Drawing inspiration from autonomous driving [10]
and Tencent Solo [11], we introduce the rule-based action
mask to establish correlations between output policies and
actual actions. This approach effectively reduces ineffective
exploration and improves training efficiency. Importantly, to
ensure the algorithm’s generality and robustness, the rules
embedded in the masks are based on universal logic, such
as preventing collisions. This design ensures scalability and
applicability across various scenarios.

II. RELATED WORK

A. Games AIs.

As the most classic FPS benchmark, ViZDoom [12] fea-
tures lightweight, fast, and highly customizable characteristics.
Three Visual Doom AI Competitions (VDAIC) [13] have
been organized to promote the application of RL in shooter
games [7] [8]. One standout example is the F1 [14] agent,
which successfully implemented a modified version of the
A3C algorithm and incorporated curriculum learning. This
approach allowed the agent to progressively challenge itself
against increasingly difficult opponents, ultimately winning
the championship on track 1 in 2016. On the other hand,
Clyde [5] attained particular results through reward shaping,
while Curiosity [15] utilized intrinsic rewards to hasten the
network’s convergence by introducing human-designed fea-
tures and other signals. Moreover, DRL has found extensive
applications in various gaming environments. For instance,
the Deep Q-Network (DQN) algorithm [16] has demonstrated
remarkable success in mastering Atari 2600 games [2] and
outperforming world-class Go players [1]. Juewu-mc’s [17]
proposal suggests that the implementation of A2RL and DSIL
technologies can significantly enhance the performance and
learning efficiency of sub-policies, resulting in successful
diamond mining in Minecraft. Tencent Solo [11] incorporated
innovative techniques like control dependency decoupling and
action masks into its approach. Additionally, they leveraged
a large-scale training system to achieve victory over top
professional human players in the most popular MOBA game,
Honor of Kings. Pearce [18] employed large-scale behavioral
cloning (BC) [19] to play CS:GO.

B. Deep Reinforcement Learning.

Hierarchical reinforcement learning (HRL), which is rel-
evant to our research, enhances learning efficiency through
the creation and utilization of a hierarchical framework for
cognitive and decision-making processes. Building upon the
work of Dayan [20], Vezhnevets [21] introduced a feudal
network that can autonomously identify subgoals. Drawing
from the concept of options [22], the Option-Critic [23]
(OC) model expanded the policy gradient theory to include
options, enabling the learning of scalable options applicable
to extensive domains. the MaxQ architecture [24] decomposed
tasks by decomposing value functions, whereas H-DQN [25]
focused on acquiring hierarchical work values across various
time scales. Barto [26] believed that HRL offers a natural
framework for incorporating principles of intrinsic motivation.

Our work is also related to representation learning, a cru-
cial aspect for enhancing sample efficiency in RL. Previous
research by Wu [27] and Lin [17], for instance, leveraged
attention-aware masks and action-aware masks, respectively,
to highlight crucial information within states, facilitating com-
prehensive representations of high-dimensional unlabeled data.
This approach holds promise for various tasks in a self-
supervised manner. Similarly, Srinivas [28] utilized contrastive
learning to derive representations with similarity constraints
from well-organized datasets comprising both similar and
dissimilar pairs. These representations were then utilized in
off-policy control learning. Our work proposes a new self-
supervised representation learning method to generate depth-
detection feature representations of key components within
self-supervised learning scenarios. This method contributes
to the broader endeavor of enhancing representation learning
techniques for RL applications.

III. PRELIMINARIES

Below we briefly introduce the theoretical support for the
hierarchical framework and the PPO algorithm [29].

A. Hierarchical Reinforcement Learning

In the context of modeling the action decision process, a
standard Markov decision process (MDP) (S,A,P,R, γ) is
considered. Here, S denotes the space of feasible states and
A represents the space of feasible actions. The function R :
S × A → R serves as the reward function, and P(s

′ |s, a)
represent the transition probability. Additionally, γ ∈ (0, 1] is
referred to as the discount factor.

The Semi-Markov decision process [22] (Semi-MDP) pro-
vides a theoretical framework for implementing a hierarchical
approach based on options, where the duration between actions
(options) is uncertain. Formally, the decision process for the
controller can be represented as a semi-MDP denoted as Mc =
(S,O,Pc,RE , γ,F). This is based on multiple worker-based
MDP processes denoted as Mi = (S,A,Pi,RE + Ri, γ),
where F(t|s, o) is the termination condition which represents
the probability that the transition time is t when option o is
executed in state s. The controller selects workers i according
to its policy pc and assigns intrinsic rewards RiI accordingly.

B. Proximal Policy Optimization (PPO)

The RL agent aims to find an optimal strategy πo to
maximize the cumulative expected return, i.e. the objective

E
(s,a)∼π

[
∞∑
t
γtr(st, at)]. The PPO [29] algorithm incorporates

a direct clipping mechanism into the objective function used
for policy gradients. This approach results in a more conserva-
tive update strategy and simplifies the computational process.

Let rt(θ) denote the probability ratio
M−1∏
i=0

πθ(a
(i)|s)

πθold
(a(i)|s) . The

standard PPO algorithm uses a ratio clip function as follows
to discipline extreme changes to the policy:

J CLIP
π (θ) = E

(s,a)∈Bπ

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

(1)
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Fig. 2. Our proposed D2AH-PPO architecture. combines a depth-detection mask with input embedding to form the representation of object awareness.
Subsequently, ’options’ are made based on this input, and intrinsic rewards are computed. The selected worker executes a series of orthogonal actions
modified by rule-based action masks, engaging with the environment in alignment with their strategies.

where Ât(s, a) =
∞∑
l=0

(γλ)lδVt+l is the advantage value com-

puted by generalized advantage estimation (GAE) [30], and
δVt = Rt + γV (st+1) − V (st). ϵ is a truncation factor used
to limit the magnitude of updates, ensuring that the difference
between old and new policies is not too large.

IV. ALGORITHM DESIGN

In consideration of the phases of the shooter games,
we design a hierarchical network comprised of a controller
and workers. Within this framework, we define n sub-tasks
based on human cognitive patterns and structure demonstra-
tions, which are used to pre-train the controller (BD →
{BD0 ,BD1 , . . . ,BDn−1}) [31]. Fig. 2 illustrates the architec-
ture. Specifically, the controller determines abstract sub-tasks,
or options, at a lower level of time resolution. Meanwhile,
the worker assigned to the option performs fundamental game
actions at a higher time resolution to complete the sub-
tasks provided. Following human habits, the action space is
divided to allow for the simultaneous execution of multiple
actions. Further, environmental depth-detection information is
introduced to facilitate exploration, and intrinsic reward is
designed for each worker. Last, we introduce a rule-based
action mask embedded with basic logical rules, making it
suitable for application in any RL environment. The details
of our network are provided in the remaining paragraphs.

A. Hierarchical Framework

In a two-level hierarchical network, the controller serves as a
high-level option-maker. Its role involves learning a policy that
effectively translates the continuous state space S into a dis-
crete options space O = (0, 1, . . . , n− 1). On the other hand,
the low-level workers are responsible for learning policies that
can accomplish the objectives associated with each option.

They interact with the environment, continually observe it,
and generate actions until the termination conditions are met.

Negative log-likelihood loss was used in pre-training to help
the controller accurately select workers at an early stage:

min
θ

n−1∑
i=0

E
(s,oi)∈BDi

[− log πcθ(o
i|s)], (2)

where (s, oi) is state-option pair sampled from the demonstra-
tions BDi and θ represents parameters of the controller’s policy
πc. We design four distinct types of workers. Each shares the
same network structure and outputs the original game action
after decoupling. Details will be presented later on.

Decoupling control dependencies can greatly improve agent
actions’ flexibility while reducing the action space’s com-
plexity. Referring to Song [8], to address the independence
of action space, we partition the entire action space A into
A = A1 × A2 × . . . × AM , where Ai represents a distinct
action subspace where actions are mutually exclusive (e.g.,
moving forward and backward), the actions within each Ai

are orthogonal (e.g., movement and turning), and M is the
number of subspace partitions. Different from Ye [11], let us
consider each action a = (a0, . . . , aM−1). Then the workers’
PPO objective without clipping after decoupling is:

max
θ

E
(s,a)∈Bπ

[(
M−1∏
i=0

πθ(a
(i)|s)

πθold(a
(i)|s)

)
Ât(s, a)

]
(3)

B. Depth-Detection Augmentation

Inspired by previous research [32] [9], we combine ViZ-
Doom’s component identification and depth prediction capa-
bilities to augment worker performance during the training
phase. Unlike 2D scenes, exploration in 3D environments
requires a sense of distance, so depth information is necessary



to guide the agents. Various components are segmented from
the depth map to create a depth-detection map D(s), where s
is the current state of the environment.

The depth-detection map is a valuable tool for workers
to extract and comprehend high-level information effectively.
Nonetheless, it is important to highlight that the competition
guidelines allow only the use of the original pixel input for
evaluation. We suggest acquiring this representation to replace
the additional input to address this limitation. Specifically, our
proposal involves training a mask network on the feature maps
of each critical component. This approach aims to capture
components’ position and distance information within the
current input state. Denote the feature maps as fθ(s) ∈ RH×W

and the mask network as mϕ(s) ∈ [0, 1]H×W , where θ and
ϕ correspond to the parameters of the neural network for the
policy and the mask network, respectively. Given the state s,
the objective function for training the mask is as follows:

J 1
m(ϕ) = E

s∈Bπ

[−∥gψ(mϕ(s)⊙ fθ(s))− fθ(D(s) · s)∥2], (4)

J 2
m(ϕ) = ∥mϕ(s)∥1, (5)

Jm(ϕ) = J 1
m(ϕ) + λmJ 2

m(ϕ). (6)

Eq 4 is designed to maximize the preservation of crucial
components in the embedded information after masking,
while Eq 5 serves as a regularization term that prevents the
mask from excessively covering multiple regions. The hyper-
parameter λm plays a critical role in balancing these dual goals
of retaining important information and avoiding data saturation
caused by the mask. gψ is a projection function trained using
the following objective function:

Jg(ψ) = E
s∈Bπ

[∥gψ(fθ(s))− fθ(D(s) · s)∥2]. (7)

This objective function learns to evaluate the information
content of crucial components in the embedding. gψ is pre-
trained and fine-tuned when optimizing the mask network.

The learned representation can replace the depth-detection
map to enhance any RL algorithm. For example, within policy-
based PPO methods, integrating the learned representation into
the policy πθ(a|(1 + mθ(s, a)) ⊙ fθ(s)) can facilitate more
effective back-propagation and updates of policy gradients.

C. Intrinsic Reward Shaping
Combining intrinsic reward based on workers’ utility with a

hierarchical structure is a successful approach for addressing
issues related to reward delay and sparse reward [8]. The
distance information can be obtained from the depth map, and
the intrinsic reward for each worker is designed as follows:

Attacker is responsible for aiming and shooting. Conse-
quently, its intrinsic rewards consist of a positive reward for
the proximity of the crosshair to the enemy and a negative
reward for the enemy disappearing from view:

Ratt
I (s, a, s′) =


0, if ne = 0 or n′e = 0

1, if
ne
max
i=0

datt,i(s) >
ne′
max
j=0

datt,j(s
′)

−1, otherwise

,

(8)

where ne is the number of enemies on the screen, and
datt = (datt,1, . . . , datt,ne) is the distance between enemies and
crosshair.

Resources Collector collects resources such as guns, ammo,
and medicine by walking around the map. So its intrinsic
rewards should include a positive reward for finding and
getting close to the item and a negative reward for staying
away from the resources:

Rres
I (s, a, s′) =


0, if nr = 0 or n′r = 0

1, if
nr
max
i=0

dres,i(s) >
nr′
max
j=0

dres,j(s
′)

−1, otherwise

,

(9)
where nr is the number of resources on the screen, and dres =
(dres,1, . . . , dres,nr ) is the distance to the resources.

Enemies Navigator is responsible for finding enemies, so a
positive reward for finding an enemy:

Rene
I (s, a, s′) =

{
1, n′e − ne ≥ 1

0, otherwise
. (10)

Tools User is exclusively authorized to utilize tools (such
as medicine), so it receives an additional positive reward for
successful tool usage and a negative reward for being attacked
while using the tool.

Rtoo
I (s, a, s′) =


1, use successful

−1, injured

0, else

. (11)

For worker i, its reward function is Rit = RiI,t + RE,t. As
the controller runs at a slower time scale, its reward function is
calculated as the sum of extrinsic rewards accumulated during

the worker’s period: Rct =
t+N∑
t′=t

RE,t′ .

D. Rule-Based Action Masks

Based on universal logic in FPS games and the basic prior
knowledge of human players, we propose a rule-based action
mask to eliminate the discrepancies between workers’ final
strategies and the actual situation. The judgment method for
situations refers to Song [8]. For example, our masks obey
the rules including but not limited to the following aspects: 1)
avoid collisions with prohibited walls or obstacles directly in
your path; 2) refrain from firing weapons without discretion
when there are no visible enemies; 3) ensure appropriate
utilization of items by avoiding the unnecessary use of healing
supplies when health levels are optimal; 4) take care not
to discard equipment or items that could potentially lead to
self-weakening. Experiments show that our action mask helps
reduce exploration in RL and speeds up training efficiency.

V. EXPERIMENTS

A. Experiments Setup

In our experimental setup, we utilize the ViZDoom platform
for conducting our research. Specifically, we focus on the full
deathmatch scenario, which involves unknown maps adapted



TABLE I
PERFORMANCE OF THE AGENTS IN THE TEST MAPS.

Player Frags F/D ratio Kills Suicides Deaths

F1 55.0 3.24 56.7 1.7 17.0
Arnold 51.0 4.78 53.3 2.3 10.7
CLYDE 45.7 2.63 47.7 2.0 17.3
Human 39.0 2.17 45.7 6.7 18.0

D2AH-PPO 58.0 4.05 62.7 4.7 14.3

Fig. 3. Ablation study of our proposal. Each experiment was conducted with
three different random seeds, and we presented their means and variances.

from VDAIC 2016. During the experiments, agents are trained
and evaluated on various maps. At the beginning of each
scenario, agents are equipped with a pistol and can acquire
different weapons and items, including ammunition, medical
kits, and armor. To ensure consistency and comparability in
our experiments, we employed PyOblige [12] to create a set
of seven maps for training purposes and three maps for testing.
It is noteworthy that all generated maps share similar levels of
difficulty and textures, providing a standardized environment
for our evaluations.

To ensure a fair comparison, we utilize the same resource
configuration and fixed hyperparameters for all experiments.
All algorithms are run on the same machine, equipped with
24 Intel(R) 4310 (2.1GHz) CPU cores and 1 3090 GPU card.
The initial learning rate for the Adam optimizer is set to 1e-4,
and the reward discount factor γ is set as 0.99. Additionally,
we set λ = 0.95 in the GAE.

B. Performance Evaluation

Following the VDAIC guidelines, we employed Frags,
calculated as the difference between kills and suicides, as a
evaluation metric for evaluation. Additionally, we reported
the number of kills, suicides, deaths, and Frag to death (F/D)
ratios to further analyze the agent’s abilities. Our agent was
benchmarked against F1 [14], Arnold [7], CLYDE [5], and
human players for comparative analysis.

Table I shows the agents’ performance in the test maps, each
map was tested for 15 minutes, and the final performance was
averaged. D2AH-PPO achieved the highest Frags score, 5.5%
higher than the second place, 48.7% higher than humans, and
exhibited a higher rate of both suicides and deaths while also

(a) Regular screen (b) Depth buffer

(c) Saliency map of the mask

Fig. 4. Saliency map for the learned mask. (a) regular screen buffer; (b) depth
buffer; (c) saliency map of the learned mask.

achieving a higher number of kills. This may be attributed to
the intrinsic reward shaping being more offensive.

The experiment findings indicate a significant enhancement
in our approach regarding sample efficiency, stability, and
overall performance. Upon analyzing the experimental replay
records, a notable observation was made regarding certain
baselines, like Arnold, which displayed proficiency in resource
location but struggled with more intricate tasks like precise
aiming and effective shooting. Specifically, when confronted
with adversaries possessing limited hit ranges, these agents
exhibited persistence in their attacks but demonstrated poor
accuracy in hitting their targets. Consequently, this inadequacy
in target accuracy often led to their defeat by the enemies.

C. Ablation Study

To evaluate the efficacy of the proposed techniques, we
analyzed three variations of our approach: 1) without depth-
detection Augmentation (w/o D2A), 2) without intrinsic re-
ward shaping (w/o IRS), and 3) without rule-based action
masks (w/o RBAM). The training curves for each variant
are illustrated in Fig. 3. We found that each introduced
technique has substantially contributed to the overall perfor-
mance. Among them, D2A has the greatest impact on the
final performance of the agents because it directly enhances
the input, significantly improving the decision-making and
control abilities of the agents in later stages, such as more
precise shooting. We also observed that RBAM and IRS
have significantly improved the convergence speed of agent
training. Particularly, RBAM demonstrates a notable impact in
accelerating the early learning process. This is due to its ability
to guide agents towards exploring more rational action trajec-
tories in the initial stages of training. It is worth mentioning
that regardless of the variant, the final performance has reached
human levels, and two variants outperform the CLYDE, further
demonstrating the effectiveness of our approach.

D. Visualization

We also employ a comprehensive visual analysis to gain
a deeper understanding of our methods’ effectiveness. Ini-
tially, we analyze the learned mask within the D2AH-PPO



framework by generating saliency maps [33] for the depth-
detection mask generator. To be more precise, to illustrate
the most significant parts of the images as perceived by the
mask network, we calculate the absolute value of the Jacobian
|∇smϕ(s)|. The visualizations depicting these saliency maps
for a particular state are presented in Figure 4.

We found that the trained mask can effectively capture po-
sitional and distance information of distinct component types.
This insight sheds light on the attention mechanism within
the model, highlighting its emphasis on crucial components.
More specifically, the mask network demonstrates an ability
to prioritize crucial component information within the current
state, thereby enhancing the input for the workers’ network.
The learned mask can facilitate a deeper understanding of the
3D environment for the agent, ultimately leading to improved
learning and control over actions.

VI. CONCLUSION

This paper proposes D2AH-PPO, a hierarchical RL frame-
work designed for playing ViZDoom. Our approach consists
of a high-level controller and several low-level workers that
employ representation learning to acquire high-dimensional
abstractions of the game environment components. Addi-
tionally, the introduction of intrinsic rewards and rule-based
action masks serves to enhance the performance and learning
efficiency of the sub-policies. Experiments demonstrate that
our framework outperforms all solutions in the past VDAIC
competitions. In future work, we aim to apply D2AH-PPO to
other FPS games, as well as other 3D open-world games.
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