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Abstract—In this paper, optimal control problems with con-
straints on summation of auxiliary utility function are called
constrained cost optimal control problems and a constrained cost
policy iteration adaptive dynamic programming (ADP) algorithm
is developed to solve constrained cost optimal control problems
for discrete-time nonlinear systems. A convergence analysis is
developed to guarantee that the iterative value functions nonin-
creasingly convergent to the approximate optimal value function.
It is also proven that any of the iterative control policy is feasible
and can stabilize the nonlinear systems. Finally, a simulation
example is given to illustrate the performance of the developed
constrained cost policy iteration algorithm.

Index Terms—Adaptive dynamic programming (ADP), re-
inforcement learning, constrained cost optimal control, policy
iteration.

I. INTRODUCTION

Adaptive dynamic programming (ADP) algorithms were
proposed in [1] and [2] to overcome the curse of dimension-
ality [3]. There are two main iterative ADP algorithms, which
are value iteration ADP (value iteration for brief) algorithm [4]
and policy iteration ADP (policy iteration for brief) algorithm
[5].

Policy iteration algorithm for discrete-time systems was
proposed in [5]. Liu et al. proved that for discrete-time non-
linear systems, the iterative value functions are monotonically
nonincreasing and convergent to the solution of the Bellman
equation [5]. In 2015, a generalized policy iteration algorithm
was proposed in [6] and the admissibility of the iterative
control policy are proved. In 2017, a local policy iteration
algorithm was proposed in [7] to reduce the computational
complexity of the policy iteration algorithm. Zhang et al. ap-
plied policy iteration algorithm to solve discrete-time nonzero-
sum games for multiplayer [11]. In recent years, the policy
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iteration algorithm has received more and more attention from
researchers [12]–[14].

However, almost all the discussions on the policy iteration
algorithm are interested in the single performance index func-
tion [5]–[7]. Many engineering probelms require describing
the goals of a system by two or more performance indices,
rather than the single performance index function employed in
classical optimal control [8]–[10]. Using several performance
indices provides more flexibility to represent the expected
behavior of the system in ways that are difficult to express
otherwise. In this paper, we consider the constrained cost
optimal problem for discrete-time nonlinear systems, where in
addition to its standard performance index function, the control
policy must satisfy constraints on summation of auxiliary
utility function. Examples of these applications can be found
in [15]. Yinlam Chow et al. [16] formulated the problem of
safe reinforcement learning as a constrained Markov decision
problems (CMDPs) and proposed a novel Lyapunov approach
for solving them. To the best of our knowledge, there are
still no discussions focused on the policy iteration adaptive
dynamic programming algorithms for constrained cost optimal
control problem for discrete-time nonlinear systems, which
motives our research.

In this paper, a new constrained cost policy iteration (CCPI)
algorithm is developed to solve undiscounted and constrained
optimal control problems of discrete-time nonlinear systems.
First, the CCPI algorithm is introduced to find the approximate
optimal control policy under constraints on summation of
auxiliary utility function. Second, the convergence properties
of the iterative value functions are analyzed and it will
show that any of the iterative control policies can satisfy
the constraint condition. Furthermore, an effective method
is developed to obtain the initial feasible control policy. In
numerical examples, the control results by the CCPI algorithm
will be compared with the traditional policy iteration to show
the effectiveness of the developed algorithm.
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The paper is organized as follows. In Section II, the problem
formulations are presented. In Section III, the CCPI algorithm
is derived. The statbility and feasibility of the iterative control
policy and the convergence properties of the iterative value
functions are also presented in this section. Then an effective
method is developed to obtain the initial admissible and
feasible initial control policy. In Section IV, the neural network
implementation for the optimal control scheme is discussed. In
Section V, the numerical results and analyses are presented to
demonstrate the effectiveness of the CCPI algorithm. Finally,
in Section VI, the conclusion is drawn.

II. PROBLEM FORMULATION

In this paper, we will study the following deterministic
discrete-time systems:

xk+1 = F (xk, uk) k = 0, 1, 2, . . . , (1)

where xk ∈ Rn is the n-dimensional state vector and uk ∈ Rm
is the m-dimensional control vector. Let x0 be the initial state
and F (xk, uk) be the system function.

The control action is determined as a function of the
state, i.e., uk = u (xk). Such a mapping u(·) : Rn →
Rm is called a control policy. For a given control policy
µ(·), let x0 = {x0, x1, . . .} be the sequence of states and
µ(x0) = {µ(x0), µ(x1), . . .} be the sequence of controls, the
performance index function of µ(·) is defined as

Jµ (x0) =

∞∑
k=0

U (xk, µ (xk)) , (2)

where U (xk, uk) is a positive definite utility function for
∀xk, uk. And the cost function of µ(·) is defined as

Dµ (x0) =

∞∑
k=0

d (xk, µ (xk)) , (3)

where d (xk, uk) is a positive semi-definite constrained utility
function for ∀xk, uk.

For convenience of analysis, results of this paper are based
on the following assumption.

Assumption 1: The origin xk = 0 is an equilibrium state
of system (1) under the control uk = 0, i.e., F (0, 0) = 0;
the feedback control uk = u(xk) satisfies uk = u(xk) = 0 for
xk = 0; the system function F (xk, uk) is Lipschitz continuous
on a compact set Ω ⊂ Rn containing the origin; the system
(1) is controllable on Ω.

We will study optimal control problem for (1) with con-
straints on cost function. The goal of this paper is to find
an optimal control policy µ∗(·), which stabilizes system (1),
simultaneously minimizes the performance index function (2)
and satisfies the constraint condition

Dµ∗(x0) ≤ d0, (4)

where d0 > 0 is an upper bound for the cost function. As (1)
is controllable, there exists a stable control policy µ(·), that
moves x0 to zero. Let Us denote the set which contains all the

stable control policies and Uc denote the set which contains
all the control policies that satisfy

Dµ(x0) ≤ d0. (5)

The goal of this paper is to solve

µ∗(·) = arg min
µ∈{Us∩Uc}

{Jµ (x0) : Dµ (x0) ≤ d0} , (6)

where µ∗(·) is the optimal control policy for the constrained
cost optimal control problem.

III. CONSTRAINT POLICY ITERATION ALGORITHM

In this section, the CCPI algorithm is developed to solve
the constrained cost optimal control problems. Stability proofs
will be given to show that any of the iterative control policies
can stabilize the nonlinear system. Feasibility proofs will be
given to show that any of the iterative control policies satisfies
the constraint condition. Convergence proofs will be given to
show that the iterative value functions will converge.

Before starting, the definition of admissible and feasible
policy is necessary. For the optimal control problems, the
control policy must not only stabilize the control systems,
but also make the performance index function finite, i.e., the
admissible control policy [17].

Definition 1: A control policy µ(·) is defined to be admis-
sible with respect to (2) on Ω if µ(·) is continuous on Ω,
µ(0) = 0, µ(xk) stabilizes (1) on Ω, and ∀x0 ∈ Ω, Jµ (x0) is
finite.

For the constrained cost optimal problem, the control policy
is not only admissible, but also satisfies the constraint condi-
tion (5), i.e., the feasible control policy.

Definition 2: A control policy µ(·) is defined to be feasible
with respect to (1) on Ω if µ(·) is admissible and ∀x0 ∈ Ω,
Dµ(x0) ≤ d0.

A. Derivation of the Constrained Cost Policy Iteration Algo-
rithm

For convenience of analysis, define an operator w.r.t. an
admissible control policy µ(·) and a generic utility function
h(x, a),

Tµ,h[V ] (xk) = h (xk, µ (xk)) + V (F (xk, µ (xk))) , (7)

where function V is a mapping from Rn to R, i.e., V : Rn 7→
R. We denote by T iµ,h the composition of the mapping Tµ,h
with itself i times.

Now, we give the CCPI algorithm as follows. Let µ0(·) be
an arbitrary feasible control policy. For i = 0, compute the
performance index function of µ0(·),

Vµ0
(xk) = lim

j→∞
T jµ0,U

[Ψ] (xk) , (8)

and the cost function of µ0(·),

Dµ0
(xk) = lim

j→∞
T jµ0,d

[Ψ] (xk) . (9)

Then the iterative control policy is computed by

µ1 (xk) = arg min
µ(xk)∈Mµ0 (xk)

Tµ,U [Vµ0 ](xk), (10)
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where Mµ0
= {µ(·) ∈ Ua : Tµ,d[Dµ0

(xk)] ≤ Dµ0
(xk)}. For

∀i = 1, 2, . . ., let Vµi(xk) be the iterative value function
constructed by µi(xk), which satisfy the following GHJB
equations:

Vµi (xk) = U (xk, µi (xk)) + Vµi (F (xk, µi (xk))) . (11)

Vµi(xk) is computed by

Vµi (xk) = lim
j→∞

T jµi,U [Ψ] (xk) (12)

The iterative control policy is updated by

µi+1 (xk) = arg min
µ(xk)∈Mµ0 (xk)

Tµ,U [Vµi ](xk) (13)

In the following section, we will show the properties of the
CCPI algorithm.

B. Properties of the Constraint Policy Iteration Algorithm
The monotonicity and convergence of the iterative value

function, as well as the feasibility of the iterative control law
will be derived.

Theorem 1: For i = 0, 1, . . ., letting Vµi(xk) and µi(xk) be
obtained by the constrained cost policy iteration algorithm (8)–
(10) and (12)–(13), µ0(·) is feasible, then the iterative value
function Vµi(xk) is monotocially non-increasing convergent
as i increases and for any i = 0, 1, . . ., the iterative control
law µi(xk) is a feasible control law.
Proof The statement is proven by mathematical induction.
First, for i = 0, as µ0(xk) is a feasible control law, then
we can derive

Tµ0,U [Vµ0
](xk) = U(xk, µ0(xk)) + Vµ0

(F (xk, µ0(xk)))

= Vµ0
(xk), (14)

and

Tµ0,U [Dµ0 ](xk) = d(xk, µ0(xk)) +Dµ0(F (xk, µ0(xk)))

= Dµ0(xk). (15)

Consider i = 1. According to (10), it is known that

µ1 (xk) = arg min
µ(xk)

Tµ,U [Vµ0
](xk)

s.t. Tµ,d[Dµ0
](xk) ≤ Dµ0

(xk). (16)

Then, for all xk ∈ Ω, it can be derived that

Tµ1,U [Vµ0 ](xk)

= U(xk, µ1(xk)) + Vµ0(F (xk, µ1(xk)))

= min
µ(xk)

{Tµ,U [Vµ0 ](xk)|Tµ,d[Dµ0 ](xk) ≤ Dµ0(xk)}

≤ Tµ0,U [Vµ0 ](xk)

= Vµ0(xk). (17)

It can also be derive that

Tµ1,U [Vµ0
](xk) =U (xk, µ1 (xk)) + Vµ0

(xk+1)

≥U (xk, µ1 (xk)) + Tµ1,U [Vµ0
](xk+1)

≥
∞∑
j=0

U (xk+j , µ1 (xk+j))

+ lim
N→∞

Tµ1,U [Vµ0
] (xk+N ) . (18)

For xk ∈ Ω, it is known that Vµ0
(xk) and µ1 (xk) are both

finite and hence 0 ≤ Tµ1,U [Vµ0
](xk) <∞. It implies that

0 ≤
∞∑
j=0

U (xk+j , µ1 (xk+j)) <∞ (19)

and xk+N → 0 as N →∞. Thus, it is shown that µ1(xk) is
an admissible control law.

According to (16), the iterative control law µ1(xk) satisfies

Tµ1,d[Dµ0
](xk) ≤ Dµ0

(xk). (20)

Then we have

Dµ0
(xk) ≥ Tµ1,d [Dµ0

] (xk)

≥ lim
i→∞

T iµ1,d [Dµ0
] (xk)

= Dµ1
(xk) . (21)

Thus, we have

Dµ1
(xk) ≤ Dµ0

(xk) ≤ d0. (22)

Therefore, the iterative control law µ1(xk) is feasible.
According to (17) and (18), we have

Vµ0(xk) ≥ Tµ1,U [Vµ0 ](xk)

≥
∞∑
j=0

U (xk+j , µ1 (xk+j)) + lim
N→∞

Tµ1,U [Vµ0
] (xk+N )

≥
∞∑
j=0

U (xk+j , µ1 (xk+j))

= Vµ1
(xk). (23)

Assume that the statement is true for i = l. As µl(xk) is a
feasible control law, we can derive

Tµl,U [Vµl ](xk) = U(xk, µl(xk)) + Vµl(F (xk, µl(xk)))

= Vµl(xk), (24)

and

Dµl (xk) ≤ d0. (25)

Similar to the proof for i = 0, we can prove that µl+1(xk) is
feasible and

Vµl(xk) ≥Tµl+1,U [Vµl ](xk)

≥
∞∑
j=0

U (xk+j , µl+1 (xk+j))

+ lim
N→∞

Tµl+1,U [Vµl ] (xk+N )

≥
∞∑
j=0

U (xk+j , µl+1 (xk+j))

=Vµl+1
(xk). (26)

Therefore, we have Vµi+1(xk) ≤ Vµi(xk),∀i ≥ 0 and the
iterative control law µi(xk) is feasible. Let J∗′(xk) be the

Authorized licensed use limited to: ShanghaiTech University. Downloaded on March 07,2024 at 07:33:24 UTC from IEEE Xplore.  Restrictions apply. 



optimal performance index function of unconstrained optimal
control problem, i.e.,

J∗′(xk) = min
µ∈Us

Jµ(xk) (27)

and J∗(xk) be the be the optimal performance index function
of constraint optimal control problem, i.e.,

J∗(xk) = min
µ∈Us
{Jµ(xk) : Dµ(xk) ≤ d0}. (28)

Then
Vµi(xk) ≥ J∗(xk) ≥ J∗′(xk). (29)

Then {Vµi(xk)} is a monotonically nonincreasing sequence
and is lower bounded by J∗′(xk), therefore the iterative
function Vµi(xk), ∀xk ∈ Rn is convergent. The proof is
complete. �

C. Obtaining the Initial Feasible Control Policy

Theorem 2: Suppose Assumption 1 holds. Let Ψ(xk) ≥ 0
be an arbitrary semipositive definite function. Let µ(·) be
an arbitrary control policy for system (1), which satisfies
µ(0) = 0. Then, µ(·) is an feasible control policy if and
only if lim

j→∞
T jµ,U [Ψ] (xk) and lim

j→∞
T jµ,d[Ψ] (xk) exist and

lim
j→∞

T jµ,d[Ψ] (xk) ≤ d0.

Proof According to Theorem 3.3 in [5], µ(·) is an admissiable
control policy if and only if lim

j→∞
T jµ,U [Ψ] (xk) exists. Then

according to Definition 2, µ(·) is feasible if and only if
lim
j→∞

T jµ,d[Ψ] (xk) ≤ d0.

According to Theorem 2, we can establish an effective
iteration algorithm by repeating experiments using neural net-
works. The detailed implimentation of the iteration algorithm
is expressed in Algorithm 1.

D. Summary of the Constraint Policy Iteration Algorithm

According to the above preparations, we can summarize the
discrete-time CCPI algorithm in Algorithm 2.

IV. NEURAL NETWORK IMPLEMENTATION

In this paper, BP neural networks are used to approximate
µi, Vi(xk) and Di(xk), respectively. Here, there are three net-
works, which are critic network, action network and cost critic
network, respectively. All networks are chosen as three-layer
feedforward neural network. The whole structure diagram is
shown in Fig.1.

V. SIMULATION STUDIES

We now examine the performance of the developed algo-
rithm in the following discrete-time nonlinear system

xk+1 = h (xk) + g (xk)uk, (30)

where
h (xk) = [0.9x1k + 0.1x2k,

−0.05
(
x1k + x2k

(
1− (cos (2x1k) + 2)

2
))

+ x2k]>,

g (xk) =

[
0

0.1 cos (2x1k) + 0.2

]

Algorithm 1 Obtain the Initial Feasible Control Policy
Initialization:

Choose a semi-positive definite function Ψ(xk) ≥ 0;
Initialize four neural networks cnet1, cnet2, dnet1 and
dnet2 with small random weights;
Let Φ0(xk) = Ψ(xk);
Give the max iteration of computation imax.
Choose a computation precision ε;

Iteration:
1: Establish a neural network (action network for brief) with

small random weights to generate an initial control policy
µ(·) with µ(xk) = 0 for xk = 0;

Determine whether the initial control policy is admis-
sible

2: Let i = 0. Train the critic network cnet1 to approximate
Φ1(xk), where Φ1(xk) satisfies

Φ1 (xk) = U (xk, µ (xk)) + Φ0 (xk+1) ;

3: Copy cnet1 to cnet2.
4: Let i = i + 1. Use cnet2 to get Φi(xk+1) and train

the critic network cnet1 to approximate Φi+1(xk), where
Φi+1(xk) satisfies

Φi+1 (xk) = U (xk, µ (xk)) + Φi (xk+1) ;

5: Use cnet1 to get Φi+1(xk) and use cnet2 to get Φi(xk).
If |Φi+1 (xk)− Φi (xk)| < ε, then goto Step 7. Else goto
next step;

6: If i > imax, then goto Step 1. Else goto Step 3;

Determine whether the initial control policy is feasible
7: Let i = 0. Train the cost critic network dnet1 to approx-

imate Φ1(xk), where Φ1(xk) satisfies

Φ1 (xk) = d (xk, µ(xk)) + Φ0 (xk+1) ;

8: Copy dnet1 to dnet2.
9: Let i = i+1. Use dnet2 to get Φi(xk+1) and train the cost

critic network dnet1 to approximate Φi+1(xk) Φi+1(xk),
where Φi+1(xk) satisfies

Φi+1 (xk) = d (xk, µ(xk)) + Φi (xk+1) ;

10: Use dnet1 to get Φi+1(xk) and use dnet2 to get Φi(xk).
If |Φi+1 (xk)− Φi (xk)| < ε, then goto Step 12. Else goto
next step;

11: If i > imax, then goto Step 1. Else goto Step 8;
12: Use dnet1 to get Φi+1(xk). If Φi+1(xk) ≤ d0, then goto

Step 13, else goto Step 1;
13: return µ(xk) and let µ0(xk) = µ(xk).

xk = [x1k, x2k]
> ∈ R2, and uk ∈ R, k = 0, 1, . . .. The initial

state is x0 = [−0.87, 0.97]>. The upper limit of the constraint
function d0 is set to 3.7. The utility function is the quadratic
form that is expressed as U (xk, uk) = x>k Qxk + u>k Ruk,
where Q = 0.1I , R = 0.1I , and I is the identity matrix
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Algorithm 2 Discrete-Time Constraint Policy Iteration Algo-
rithm
Initialization:

Choose randomly an array of initial states x0;
Choose a computation precision ε;
Give the initial feasible control policy µ0;
Give the max iteration of computation imax.

Iteration:
Let the iteration index i = 0;

1: Construct the initial iterative value function Vµ0(xk) and
the iterative cost function Dµ0(xk) according to µ0 by

Vµ0 (xk) = U (xk, µ0 (xk)) + Vµ0 (xk+1)

and

Dµ0 (xk) = d (xk, µ0 (xk)) +Dµ0 (xk+1) ;

2: Update the iterative control policy by

µ1 (xk) = arg min
µ(xk)∈Mµ0

(xk)

{U (xk, uk) + Vµ0
(xk+1)} ;

3: Let i = i + 1. Construct the iterative value function
Vµi(xk), which satisfies

Vµi (xk) = U (xk, µi (xk)) + Vµi (F (xk, µi (xk))) ;

4: Update the iterative control policy µi+1 by

µi+1 (xk) = arg min
µ(xk)∈Mµ0

(xk)

{U (xk, µ(xk)) + Vµi (xk+1)} ;

5: If |Vi−1 (xk)− Vi (xk) | < ε, goto Step 7. Else goto Step
6.

6: If i < imax, then goto Step 3. Else goto Step 8.
7: return µi(xk) and Vi(xk).
8: return The algorithm dosen’t converge within imax

iterations.

with suitable dimensions. The constrained utility function is
a nonquadratic form, where the constraint utility function is
expressed as

d(xk, uk) = ln(x>k Qxk + 1) + ln(u>k Ruk + 1),

where Q = 0.01I and R = 0.6I .
To implement the developed CCPI algorithm, we choose

three-layer feedforward neural networks as function approx-
imation structures. The structures of the critic, action and
cost critic neural networks are both chosen as 2–12–1. The
maximum number of iteration steps is selected as imax = 20.
The compact set Ω or the opreation region of the system is
selected as −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1. The training set
{xk} is constructed by randomly choosing 500 samples from
the compact set Ω at each iteration. For each iteration step,
these networks are trained for 20000 steps using the learning
rate of α = 0.01 so that the neural network training error
becomes less than 10−5. The cost function of the initial control
policy Dµinitial

(x0) = 3.64 ≤ d0, so the initial control policy
is feasible.

Action

Network
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Network

Critic
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Network

Cost
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x 1kx +

1( )
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D x
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( , )
k k

d x u

Fig. 1. Structure diagram of the algorithm

Implement the CCPI algorithm for 3 iterations to reach the
comoputation precision ε = 0.005. To show the effectiveness
of the developed CCPI algorithm, Implement the policy iter-
ation algorithm for four iterations to reach the comoputation
precision ε = 0.01.

For these two algorithms, the convergence trajectories of
the iterative value functions are shown in Fig.2 (a), and the
convergence trajectories of the cost functions of the iterative
control policies are shown in Fig.2 (b). During each iteration,
the iterative control policy is updated. We obtain the final
control policy after convergence of the algorithm. Applying
the final control policy to the given system for Tf = 50 time
steps, we can obtain the states and controls trajectory, which
are shown in Fig.3 (a), (b) and (c), respectively.
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Fig. 2. Numerical results using CCPI. (a) Convergence trajectory of iterative
value function. (b) Convergence trajectory of iterative cost function

For tradition policy iteration algorithm, we can see that
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Fig. 3. (a) Trajectory of state x1. (b) Trajectory of state x2. (c) Trajectory
of control action.

the optimal control policy of the unconstrained cost optimal
control problem is obtained after 3 iterations, but the iter-
ative cost function exceeds d0 because the policy iteration
algorithm completely ignores the constraints. The suboptimal
performance index function is obtained by the CCPI algorithm
after 3 iterations and any of the iterative control policy is
feasible. The iterative cost function is always less than d0
during the iteration process in CCPI algorithm. This example
shows that the CCPI algorithm has convergence and feasibility
on nonlinear systems.

VI. CONCLUSION

In this paper, a constrained cost policy iteration adaptive
dynamic programming (ADP) algorithm is developed to solve
infinite horizon undiscounted constrained cost optimal control
problems for discrete-time nonlinear systems. A convergence
analysis is developed to guarantee that the iterative value
function is nonincreasingly convergent to the suboptimal
performance index function. It is also proven that any of
the iterative control policy is feasible and can stabilize the
nonlinear systems. Finally, a simulation example is given to
illustrate the performance of the present method.
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