
Reward Estimation with Scheduled Knowledge Distillation for

Dialogue Policy Learning

Junyan Qiua, Haidong Zhang b and Yiping Yangc

aUniversity of Chinese Academy of Sciences, Zhongguancun Road, Haidian District, Beijing,
China; b,cInstitute of Automation, Chinese Academy of Sciences, Zhongguancun Road,
Haidian District, Beijing, China

ARTICLE HISTORY

Compiled January 8, 2023

ABSTRACT
Formulating dialogue policy as a reinforcement learning (RL) task enables a dia-
logue system to act optimally by interacting with humans. However, typical RL-
based methods normally suffer from challenges such as sparse and delayed reward
problems. Besides, with user goal unavailable in real scenarios, the reward esti-
mator is unable to generate reward reflecting action validity and task completion.
Those issues may slow down and degrade the policy learning significantly. In this
paper, we present a novel scheduled knowledge distillation framework for dialogue
policy learning, which trains a compact student reward estimator by distilling the
prior knowledge of user goals from a large teacher model. To further improve the
stability of dialogue policy learning, we propose to leverage self-paced learning to
arrange meaningful training order for the student reward estimator. Comprehensive
experiments on Microsoft Dialogue Challenge and MultiWOZ datasets indicate that
our approach significantly accelerates the learning speed, and the task-completion
success rate can be improved from 0.47%∼9.01% compared with several strong base-
lines.

KEYWORDS
Reinforcement learning; dialogue policy learning; curriculum learning; knowledge
distillation

1. Introduction

Task-oriented dialogue (TOD) systems are designed to assist users to accomplish spe-
cific goals (e.g., booking flight tickets or querying the weather) with a natural inter-
action. It has been widely used to build commercial virtual voice assistants, such as
Apple Siri, Microsoft Cortana and Amazon Echo. As one of the key components of
TOD, dialogue policy determines the next action that agents should take under the
dialogue context at each turn (Zhang, Wang, Zheng, Zhao, & Huang, 2021; Zhao,
Wang, Zhu, et al., 2021).

Traditional researches on dialogue policy learning (DPL) mainly focus on non-
statistical methods with expensive expert handcrafted rule-making, which is non-
extensible and highly complex in nature (Chen, Liu, Yin, & Tang, 2017; Zhao, Wang,
Zhu, et al., 2021). Applying machine learning approaches, especially supervised learn-

CONTACT Junyan Qiu. Email: qiujunyan2018@ia.ac.cn

Table 1. An dialogue example with different user goals and the evaluation results. The user goal changes
from Italian restaurant to Thai one at turn 6. agt stands for agent while usr stands for user.

User goal 1: Find a restaurant, ask its phone number.
User goal 2: Find a Chinese restaurant.

agt1: What can I help you?
usr2: I want to find a place to eat.
agt3: What about La Pergola, it’s a nice Italian restaurant.
usr4: OK, what’s the phone-number?
agt5: 1456-2311.
usr6: Sorry, I change my mind, is there a restaurant that serves Thai food?
agt7: Sure, Above eleven, its number is 1334-2587.
usr8: Thank you.
agt9: Thank you.

For user goal 1: Succeed, all requirements satisfied.
For user goal 2: Failed, not a Chinese restaurant.

ing (SL), enables dialogue systems to optimize policy statistically (Hosseini-Asl, Mc-
Cann, Wu, Yavuz, & Socher, 2020; X. Li, Chen, Li, Gao, & Celikyilmaz, 2017; Z. Li,
Kiseleva, & de Rijke, 2020). However, the fixed training corpus does not necessarily
present all optimal strategies, thus the system can be biased by the annotations (Jeon
& Lee, 2022). Recently, DPL is formulated as a reinforcement learning (RL) problem,
where the agent learns dialogue policy by interacting with users so as to maximize ex-
pected cumulative discounted reward (Diakoloukas, Lygerakis, Lagoudakis, & Kotti,
2020; C. Tian, Yin, & Moens, 2022; Zhang et al., 2021; Zhao, Wang, Zhu, et al., 2021;
Zhou, Zhu, & Zhao, 2022). Thus, the performance of dialogue system depends much
on the designing of reward functions.

Typical reward functions merely provide rewards at the end of conversation depend-
ing on whether the task is successfully accomplished. Such a scheme does not reflect
the validity of system action at intermediate turns, which may lead to insufficient
exploration in large action space and slow down DPL considerably. Some researchers
proposed to get intrinsic reward after each action and learn to optimize its action
choices in time (Peng, Li, Gao, Liu, Chen, & Wong, 2018; S.-Y. Su, Li, Gao, Liu, &
Chen, 2018; Zhang et al., 2021). For example, (Peng, Li, Gao, Liu, Chen, & Wong,
2018; S.-Y. Su et al., 2018) employed a discriminator to distinguish responses from
agents and users, and used its output as the intrinsic reward. (P.-H. Su, Gašić, &
Young, 2018; Zhang et al., 2021; Zhao et al., 2020) divided predefined user goals into
multiple subgoals and generate intrinsic reward by estimating subgoals completion.
However, most of them ignored the fact that user goals have a crucial impact on eval-
uating task success, and they can not deal with shifty user goals, as exemplified by
dialogue example in Table 1

Knowledge distillation can transfer privileged information encoded in a complex
model (i.e., the teacher) to a compact one (i.e., the student) (Gou, Yu, Maybank,
& Tao, 2021; Hinton, Vinyals, Dean, et al., 2015). Considering that user goals are
unavailable in real-life conversations, we regard them as auxiliary information and
incorporate them into a teacher reward estimator at the training stage. The teacher
is then used to guide the training of a compact student reward estimator. Instead of

2

generating rewards based on predefined user goals, the proposed method can dynam-
ically adjust its strategy of rewarding by learning prior distributions of user goals. As
a result, it requires fewer human interactions to make the policy satisfactory and can
deal with shifty user goals more intelligently.

The standard training approach based on randomly sample shuffling, might suffer
from local optima, data noise and unstable problems (X. Wang, Chen, & Zhu, 2021;
Zhao, Wang, & Huang, 2021). Curriculum learning, which trains models from easy
samples to hard ones, can improve the generality and convergence rate of models
in dialogue policy optimization (S. Liu, Zhang, He, Xu, & Zhou, 2021; Zhao, Qin,
Zhenyu, Zhu, & Wang, 2022; Zhao, Wang, & Huang, 2021). Hence, we incorporate it
into the knowledge distillation process, and design a complexity measurer and training
scheduler to arrange reasonable training order for the student reward estimator.

To sum up, we propose a scheduled knowledge distillation framework (SKD), which
distills user goals to automatically generate proper reward for efficient DPL. It is
mainly composed of two processes: knowledge distillation transferring the internal
knowledge of user goals from the teacher reward estimator to the student, and curricu-
lum learning scheduling the order of sampled data throughout the training process of
the student. Specifically, we leverage BERT (Devlin, Chang, Lee, & Toutanova, 2018)
to construct a teacher reward estimator, which is accessible to user goals, and pre-train
it via deep Q-learning (Mnih et al., 2015). Besides, we also devise an annotator to gen-
erate turn-level supervised reward label based on sub-goals completion for the teacher
and train it by weakly supervised learning. Then we train the student reward estimator
to mimic outputs of the teacher. Since the teacher is trained with access to user goals,
we assume that the student can anticipate user goals while assigning rewards. The
self-paced learning, a typical kind of curriculum learning, arranges scheduled learning
process for the student reward estimator. The basic idea is to gradually increase the
difficulty of knowledge transferred to the student reward estimator. It mainly consists
of two components: 1) Complexity measurer that evaluates the difficulty of a conver-
sation by distinguishing outputs of the teacher and student reward estimator. The
conversation is deemed complicated if it indicates large divergence between them, and
vice versa. 2) Training scheduler controlling the knowledge distillation process based
on the conversation complexity given by the complexity measurer.

Extensive experiments demonstrate that our method significantly improves the effi-
ciency and effectiveness of dialogue policy learning by combining knowledge distillation
and curriculum learning. Moreover, our method can be easily applied to value-based re-
inforcement learning algorithms, e.g., deep Q-network (DQN) and deep dyna-Q (DDQ)
Peng, Li, Gao, Liu, and Wong (2018). To conclude, our contributions can be summa-
rized as follows:

• We propose a novel scheduled knowledge distillation (SKD) framework that in-
corporates user goals information to automatically generate immediate rewards
and learn dialogue policy efficiently. To the best of our knowledge, this is the
first work to leverage knowledge distillation of user goals for turn-level reward
prediction.

• We introduce a new curriculum learning method that combines knowledge dis-
tillation to automatically schedule the learning process of the student reward
estimator. As far as we know, we are the first to apply curriculum learning to
learn a reward estimator for efficient DPL.

• We conduct comprehensive experiments by constructing a dialogue agent for the
movie-ticket booking task. The results indicate that our method accelerates the

3

learning speed of dialogue policy and improves performance significantly.

The rest of the paper is organized as follows. In Section 2, we introduce existing
works that are mostly related to this paper. In Section 3, we briefly present the back-
ground of DQN and DDQ algorithms. In Section 4, we depict the detailed architecture
of our proposed method. The performance evaluation is given in Section 5, and the
conclusion and future work are presented in Section 6.

2. Related work

In this section, we will introduce existing works that are closely related to this paper,
including RL-based dialogue policy in 2.1, knowledge distillation in Section 2.2 and
curriculum learning in Section 2.3. The related works are summarized in Table 2.

2.1. RL-based dialogue policy

Reinforcement learning (RL) has been widely used to optimize dialogue policy due
to its ability to automatically fine-tune dialogue strategy based on user feedback
(Geishauser et al., 2022; G. Wu et al., 2021; Zhao et al., 2022; Zhao, Wang, & Huang,
2021). These methods regard real users as the environment and the agent learns its
policy by interacting with them. How to improve the efficiency of DPL to reduce
human-machine interactions remains to be the biggest challenge.

A feasible solution is to employ user simulators as substitution of real users. Tech-
nically, the simulator can generate infinite dialogue experience without any real-world
cost. Unfortunately, the quality of dialogue policy can not be guaranteed due to the
discrepancy between real and simulated users (Peng, Li, Gao, Liu, & Wong, 2018).
Thus, (Peng, Li, Gao, Liu, & Wong, 2018) proposed a Deep Dyna-Q (DDQ) frame-
work that introduced an trainable environment call world model to mimic real user
behaviors. Based on DDQ, some researchers attempted to improve the quality of simu-
lated experience by using GANs (Creswell et al., 2018) or employing Gaussian process
based model (G. Wu et al., 2021). Despite the outstanding achievements of these
methods, the reward function that governs the learning process is normally designed
as providing reward signals at the end of a conversation, which suffers from the reward
sparsity issue and decreases the efficiency of DPL significantly.

Another line of research proposed to improve the training efficiency by constructing
dense reward functions (Zhang et al., 2021; Zhao et al., 2020). For example, (Peng,
Li, Gao, Liu, Chen, & Wong, 2018; S.-Y. Su et al., 2018) applied adversarial training
by employing a discriminator to distinguish responses generated by agents from those
by users, and using its output as the intrinsic reward (Peng, Li, Gao, Liu, Chen, &
Wong, 2018). However, the notorious instability of adversarial training suffers badly
from non-convergence and highly sensitive to the hyperparameters selection (G. Wu
et al., 2021). (Khandelwal, 2021; Peng, Li, Gao, Liu, Chen, & Wong, 2018) leveraged
human dialogues or domain text as prior knowledge to pre-train the reward estimator,
which requires extra high-quality annotated data to pre-train the reward functions.

Furthermore, existing approaches have proved that randomly sampling user goals
for dialogue agent to train on may lead to the learned policy inefficient and unstable
(Zhao, Wang, & Huang, 2021). To address that issue, many researchers proposed
to incorporate curriculum learning into DPL. For example, (Zhao, Wang, & Huang,
2021; H. Zhu, Zhao, & Qin, 2021) replaced random user goal sampling with a teacher

4

model to arrange meaningful training order for the policy. Similarly, (S. Liu et al.,
2021) evaluated user goal complexity based on the dialogue state differential space
that the agent can explore for current training samples. (Zhao et al., 2022) leveraged
the learning experiences of dialogue policy and skip-level selection according to the
learning needs to maximize the efficiency.

However, all these methods ignored the crucial impact of user goals on evaluating
task success and could not deal with shifty user goals. In this paper, we propose a novel
framework that incorporates user goal to generate dynamic and accurate reward for
efficient DPL. Our method has three attractive features that combines the advantages
of the aforementioned three approaches: (1) It can be easily applied to value-based
approaches, including DQN and DDQ; (2) It provides accurate reward after each
action to explore the action space more efficiently; (3) It arranges meaningful learning
schedule for the reward estimator and policy that improves stability of dialogue policy
learning.

2.2. Knowledge distillation

Knowledge distillation (KD) was first proposed by (Hinton et al., 2015) to compress
the knowledge in a cumbersome model into a small one. It is generally composed of a
teacher model, a student model and a distillation approach: the teacher model holds
rich knowledge from annotated data or prescient extra inputs, while the student model
learns to match with it. The distillation approach aims to transfer the knowledge from
teacher to the student. It is widely used in computer vision (Greco, Saggese, Vento, &
Vigilante, 2021; Ren et al., 2021; X. Wang et al., 2020), natural language processing
(Haidar, Rezagholizadeh, et al., 2019; B. Li et al., 2021; J. Liu, Chen, & Liu, 2019)
and other applications (Ren et al., 2021; Shen, Xu, & Cao, 2020).

Moreover, KD can be also used to enhance the student model when the teacher is
equipped with privileged information (Z. Tian et al., 2020; W. Wu et al., 2019). As
stated before, the user goal is a crucial factor to build a reliable reward estimator,
while it is unavailable when communicating with real users. To this end, we construct
a teacher-student framework to transfer goal-anticipated information from the teacher
reward estimator, employing large-scaled language model and pre-trained with user
goals, to the student. This framework enables the reward estimator to keep user goals
in mind when generating rewards during inference.

2.3. Curriculum learning

Curriculum learning (Bengio, Louradour, Collobert, & Weston, 2009) (CL) is a strat-
egy that trains a machine learning model by learning from easy samples and gradually
increasing the complexity. It normally consists of two components, i.e., a difficulty
measurer (DM) that evaluates the complexity of each data and a training scheduler
(TS), which selects data with desired complexity degree for the model to train on.
Generally, all training data is sorted by the DM and passed to the TS, which samples
relatively simple examples and sends them to the model for training. The TS also
decides when to sample harder examples as the training progresses until the whole
dataset is included for training. A plenty of researches have exploited its power in a
wide range of application scopes, such as supervised learning tasks (El-Bouri, Eyre,
Watkinson, Zhu, & Clifton, 2020; Guo et al., 2018; Platanios, Stretcu, Neubig, Póczos,
& Mitchell, 2019), reinforcement learning tasks (Narvekar & Stone, 2019; Qu, Tang,

5

& Han, 2018) and graph learning tasks (Chu, Wang, Shi, & Jiang, 2021; Dong, Long,
Xu, & Xiao, 2021; Y. Wang, Wang, Liang, Cai, & Hooi, 2021). Recent works em-
ployed curriculum learning to arrange reasonable schedule for efficient DPL (S. Liu et
al., 2021; Zhao, Wang, & Huang, 2021; H. Zhu et al., 2021). In this paper, we incorpo-
rate a special kind of curriculum learning, self-paced learning, into distillation process
to train the student reward estimator more stable and efficiently.

Table 2. Summarization of related work.
RL-based dialogue policy

Categories Drawbacks References

DDQ-based framwork Reward sparsity Ignore user goals

Uncapable of dealing
with shifty user goals

(Creswell et al., 2018; Peng, Li, Gao, Liu, & Wong, 2018)
(G. Wu et al., 2021)

Reward shaping
Requiring extra resources
Unstable

(Zhang et al., 2021; Zhao et al., 2020)
(Peng, Li, Gao, Liu, Chen, & Wong, 2018; S.-Y. Su et al., 2018)
(Khandelwal, 2021)

Curriculum learning Reward sparsity
(Zhao, Wang, & Huang, 2021; H. Zhu et al., 2021)
(S. Liu et al., 2021; Zhao et al., 2022)

Knowledge distillation
Applications References

Natural Language processing (Greco et al., 2021; Ren et al., 2021; X. Wang et al., 2020)
Computer vision (Haidar et al., 2019; B. Li et al., 2021; J. Liu et al., 2019)
Other applications (Ren et al., 2021; Shen et al., 2020)

Curriculum learning
Application scopes References

Supervised learning (El-Bouri et al., 2020; Guo et al., 2018; Platanios et al., 2019)
Reinforcement learning (Narvekar & Stone, 2019; Qu et al., 2018)
Graph learning (Chu et al., 2021; Dong et al., 2021; Y. Wang et al., 2021)

3. Background

Before we describe our method in detail, we briefly introduce the background of two
RL-based dialogue policy learning strategies, i.e., deep Q-network in Section 3.1 and
deep dyna-Q in Section 3.2.

Human
Conversational Data

Agent

Dialogue
state

User

Imitation
Learning

Acting

Direct RL
Reward
Function

(a) DQN

Human
Conversational Data

User

Agent

World
Model

World
Model

Learning
Real

Experience

Supervised
Learning Imitation Learning

Acting

Planning Direct RL

Reward
Function

(b) DDQ

Figure 1. Different strategies of learning dialogue policy.

3.1. Deep Q-network

Dialogue policy determines which action the agent should take at next turn and is
normally formulated as a Markov Decision Process. It is normally optimized by ap-
plying reinforcement learning algorithms, consisting of an agent, a user and a re-
ward function, as shown in Fig. 1a. The agent is defined as a deep Q-network (DQN)

6

(Mnih et al., 2015) Q(st, at; θQ) parameterized by θQ. It is initialized on human con-
versational data via imitation learning, and optimized by interacting with the user,
which is referred to as direct reinforcement learning. Particularly, at each turn t, The
agent observes the dialogue state st, selects an action at from the action set A in a
ϵ−greedy way, i.e., randomly selecting an action with a small probability ϵ or accord-
ing to at = argmaxa∈AQ(st, a; θQ). The the reward function assigns a reward rt for
the agent and the user updates the dialogue states to st+1. The generated experience
(st, at, st+1, rt) is stored to a replay buffer called the real experience pool (Du) during
direct reinforcement learning. The objective for DQN optimization is defined as:

L = Est,at,st+1,rt [(Q(st, at; θQ)− y)2] (1)

y = rt + γ max
at+1∈A

Q′(st+1, at+1; θQ′) (2)

where γ ∈ [0, 1] is a discount factor, Q′(s, a; θQ′) is the target work that is updated
with the Q-network parameters θQ periodically and fixed between individual iterations
Mnih et al. (2015).

3.2. Deep Dyna-Q

Despite the effectiveness of learning dialogue policy via DQN, it is requisite to interact
with real users for policy optimization, which is expensive to train dialogue agents
from scratch. Previous researches proposed to build simulators as substitutions of
real users X. Li et al. (2016), which can generate unlimited simulated experiences
and does not cost any human forces. However, user simulators have difficulties in
modeling the conversational complexity of human interlocutors (Peng, Li, Gao, Liu, &
Wong, 2018). (Dhingra et al., 2017) pointed out that dialogue agents trained with user
simulators exhibit significant discrepancy compared with those trained with real users.
To tackle these problems, deep Dyna-Q (DDQ) (Sutton, 1990), a typical RL method,
has been introduced to dialogue policy learning (Peng, Li, Gao, Liu, & Wong, 2018;
S.-Y. Su et al., 2018; Zhao et al., 2020) to bridge the gap between real users and
user simulators. It employed a trainable environment called world model to mimic
real users. As shown in Fig. 1b, the world model is implemented by a neural network
W (st, at; θW) parameterized by θW . It is initialized on human conversational data via
supervised learning, and trained through multi-task learning, referred to as the world
model learning. The dialogue policy is optimized by interacting with simulated users,
referred to as planning, in most cases, and requires only a small number of real user
interactions. The simulated experience (st, at, st+1, rt) generated during planning is
stored to another replay buffer called simulated experience pool Ds.

4. Method

In this section, we will introduce the detailed architecture of our proposed method in
three subsections, including knowledge distillation in Section 4.1, self-paced learning
in Section 4.2 and dialogue policy learning in Section 4.3.

Fig. 2 illustrates the proposed Scheduled Knowledge Distillation (SKD) for Dialogue
Policy Learning, which can be divided into two processes: 1) Knowledge distilla-
tion. In this process, we designed two reward estimators. One of them serves as the
teacher, which has access to user goals and is pre-trained via deep Q-learning and

7

Teacher Reward
Estimator

Student Reward
Estimator

Weak Reward
Annotator

Complexity
Measurer

Training
Scheduler

User Goal

Knowledge Distillation

Dialogue states

Dialogue Policy Learning
(DQN/DDQ)

Reward
Function

User/World
Model

Agent

CE

Self-paced Learning

Figure 2. Architecture of the proposed scheduled knowledge distillation for dialogue policy learning.

weakly supervised learning. The other one serving as the student is trained to mimic
outputs of the teacher. The dialogue policy is optimized and parameters of teacher re-
ward estimator are frozen while training the student model. 2) Self-paced learning.
We design two modules to arrange scheduled distillation for the student reward esti-
mator, i.e., complexity measurer and training scheduler. The former one evaluates the
difficulty degree of each conversation by calculating the divergence of outputs between
the teacher and student reward estimator. The latter one decides whether the current
example is too hard for the student to learn at current stage based on the evaluation
of the complexity measurer.

4.1. Knowledge distillation

Knowledge distillation is applied to transfer user goal anticipated information from
the teacher reward estimator to the student model. In this part, we first present the
architecture of the teacher and student reward estimators in subsection 4.1.1. Then we
introduce the pre-training procedure of the teacher model in subsection 4.1.2. To the
end, we describe the process of transferring knowledge to the student reward estimator
in subsection 4.1.3

4.1.1. Architecture of teacher and student reward estimators

4.1.1.1. Teacher reward estimator. Note that we expect to generate rewards for
each action based on historical dialogue states and user goals. Unfortunately, user
goals, which plays a crucial role in reward estimation, are normally unavailable in
real-life conversations. Thus, we design a teacher reward estimator to learn prior dis-
tribution of user goals.

8

BERT BERT BERT

Attention

BERT BERT BERT

GRU GRU GRU

(a) Teacher reward estimator

GRU GRU GRU

GRU GRU GRU

(b) Student reward estimator

Figure 3. Architecture of teacher and student reward estimators.

user inform slots

user request slots

agent inform slots

agent request slots

dialogue actions

(a) Multi-hot state repre-

sentations

Position Embedding
Turn Embedding
Role Embedding

Word Embedding

Slot Embedding

number of people : 2
<sep> city : detroit

(b) Embedded state rep-

resentations

departure time : tommorow

Word Embedding
Position Embedding

Slot Embedding

(c) Embedded user goal representations

Figure 4. Dialogue state and user goal representations

The teacher reward estimator is presented in Fig. 3a. It takes as input the dialogue
states and user goals, and outputs reward for the agent. Traditional methods repre-
sent dialogue states with multi-hot vectors, which are concatenated by several feature
categories, including dialogue actions, inform and request slots from users and agents
respectively Peng, Li, Gao, Liu, and Wong (2018); S.-Y. Su et al. (2018), as shown in
Fig. 4a. However, such mechanism viewing each dialogue state as individual unit can
not fully explore the semantic meaning shared across states and actions, e.g., both
city and theater convey information regarding locations, which should elicit similar
representations. To this end, we propose to map these states into dense embeddings
to capture semantic information contained in each token. As illustrated in Fig. 4b,
we designed five types of embeddings to represent the dialogue states including: (1)
word embedding Φw converting each token in the states to dense vectors; (2) position
embedding Φp indicating sequence order; (3) turn embedding Φt indicating turn order;
(4) role embedding Φr identifying the interlocutor, i.e., user and agent; (5) slot embed-
ding Φs describing types of slots, e.g., inform and request. The state representation st
is obtained by adding these embeddings. Notably, if there exist more than one slots
at one turn, they will be concatenated as a single sequence with a special token ⟨sep⟩
to separate them.

The user goal G is the objective of the conversation, which is composed of a set of
request slots R and constraint (inform) slots C Lu, Zhang, and Chen (2019). Request
slots specify the desired information, such as the location and time in movie-tickets
booking task. While constraint slots pinpoint the requirements, e.g, a cheap restaurant

9

that servers Chinese food. For example, when a user wants to “book two flight tickets
from Shanghai to Beijing tomorrow”, the user goal is formulated as:

G =

 C =

NumberOfT ickets : two
DepartureDate : tomorrow
DepartureP lace : Shanghai
Destination : Beijing

R = [DepartureT ime]

 (3)

The user goal can be divided into several subgoals, where each subgoal g contains
exactly one slot. For example, user goal Equation 3 can be divided into five subgoals
and two of them can be formulated as:

g1 =
(
C = [NumberOfT ickets : two]

)
(4)

and

g2 =
(
R = [DepartureT ime]

)
(5)

Similar to the dialogue state, each subgoal g is also mapped into dense embedding.
It is calculated by adding three types of embeddings, i.e., word embedding, position
embedding and slot embedding, the brief illustration is depicted in Fig. 4c.

After obtaining dialogue state and user goal representations, we design a teacher
reward estimator to generate reward for each action. Concretely, we employ a large
scale pre-trained language model BERT (Devlin et al., 2018) to encode the historical
dialogue states {s1, s2, · · · , st}. It first leverages BERT to convert the dialogue state
to hidden vectors. In order to get the fixed-size representation, we take the output of
BERT corresponding to the first token < cls >, which is a special token added before
each sequence following (Devlin et al., 2018), hi = BERT(si). Then, these vectors are
fed into Gated Recurrent Units (GRU) (Chung, Gulcehre, Cho, & Bengio, 2014) to
capture semantic dependencies across turns, c = GRU([h1,h2, · · · ,ht]).

Similarly, the embedded sub-goals are separately converted into fixed-size vectors
by BERT, uj = BERT(gj). The dialogue state and user goals are then aggregated by
computing attention distributions between them.

αi =
exp(c · ui)∑

j=1∼t exp(c · uj)

e =

t∑
i=1

αi · ui

Finally, the aggregation representation is fed into a feedforward neural network to
generate reward for each action:

ptea = sigmoid(e ·W + b) (6)

rtea = Ra · ptea (7)

10

where W ∈ Rdm×|A| and b ∈ R|A| are trainable parameters (dm represents the number
of hidden nodes), Ra is a hyper-parameter referred to as the anchor reward. ptea and
rtea are |A|-dimensional vectors, where each dimension i represents the probability of
the ith action deemed effective and the reward of taking the ith action respectively.

4.1.1.2. Student reward estimator. The architecture of student reward estimator
is depicted in Fig. 3b. It differs from the teacher model in two aspects: (1) It utilizes
GRU instead of BERT to encode the dialogue states to compress the model size and
reduce the cost of computing resources during inference; (2) It generates rewards
merely depending on the historical dialogue states without access to user goals, which
conforms to the real-world situations.

4.1.2. Pre-training of teacher reward estimator

The teacher reward estimator is pre-trained on two parts. The first part is deep Q-
learning, which is stated in section 3.1 and defined as follows:

Ltea
Q = Est,at,st+1,rt [(Q(st, at; θQ)− y)2] (8)

y = r + rteai + γ max
at+1∈A

Q′(st+1, at+1; θ
′
Q) (9)

where rteai indicates the reward of taking the ith action in the action set A gen-
erated by the teacher reward estimator1, at is the action selected from action set A
at turn t, which is converted to action representations through an action embedding
Φa ∈ R|A|×dm . Furthermore, we also introduce weakly supervised learning to train the
teacher model more effectively with supervised guidance. To this end, we devise a weak
reward annotator in a non-parametric way by checking whether the dialogue action
fulfills one of the sub-goals. We assign a reward for each of them in the action set A
which constitutes the reward label r = {r1, r2, · · · , r|A|}, where ri denotes the reward
label of taking the ith action ai. Its value depends on whether the action can success-

fully complete user sub-goals, i.e., ri =

{
Ra if ai completes one user sub-goal
0 otherwise

2.

Particularly, one sub-goal is deemed to be satisfied under two circumstances: (1)
constraint slots are requested or (2) the information of request slots are informed. For
example, querying about the number of tickets and informing the departure time are
identified as effective actions which fulfill sub-goals stated in Equation 4 and 5 respec-
tively. The weakly supervised learning loss then capitalizes on L2 norm to compute
the distance between the reward label r and reward predicted by the teacher rtea.

LWS = E(∥r− rtea∥2) =
1

|A|

|A|∑
i=1

(ri − rteai)2 (10)

The final loss is defined as the summation of the aforementioned two parts:

Ltea = Ltea
Q + LWS (11)

1r = 2T if the dialogue succeeds and r = −T if it fails. T is the maximize number of dialogue turns. In this

paper, T = 40. r = −1 if the dialogue is not finished yet.
2Ra is the same with that in Equation 7

11

The gradient with respect to the parameters of teacher reward estimator θT is

∇θTLtea = Est,at,st+1,rt [−2(Q(st, at; θQ)− y) ·∇θT r
tea
i]+

1

|A|

|A|∑
i=1

[−2(ri− rteai) ·∇θT r
tea
i]

(12)

4.1.3. Transferring knowledge to the student reward estimator

Knowledge distillation was proposed to compress knowledge in a cumbersome model,
i.e., the teacher, to a compact one, i.e., the student Hinton et al. (2015). In this paper,
the knowledge is transferred by training the student network to mimic the soft label
generated by the teacher reward estimator. Following Romero et al. (2014), we leverage
cross entropy loss to measure the similarity between them. While training the student
network, we freeze parameters of the pre-trained teacher.

LKD =
1

N

N∑
i=1

H(ptea
i ,pstu

i) (13)

where H indicates the cross entropy loss, N is the number of examples in the training
set, i is the index of the ith example.

4.2. Self-paced learning

Self-paced learning, a typical kind of curriculum learning, is designed to control the
order of the student learning from the teacher in the distillation process. It consists of
two components, including complexity measurer and training scheduler.

4.2.1. Complexity measurer

In order to arrange scheduled learning process for the student reward estimator, we
apply adversarial training to measure the conversation complexity. To achieve that,
we employ a discriminator D to distinguish outputs of the teacher and student reward
estimator. It is defined as the Kullback-Leibler (KL) loss between the rewards predicted
by the teacher and student reward estimator, and generates a real value indicating the
differentiation between them.

scorei = KL(ptea
i ∥pstu

i) (14)

If the discriminator outputs a small scorei, it suggests that the student reward estima-
tor is able to mimic the teacher regarding the current example i, which can be deemed
as a simple case and selected as a training instance in the early stage. Otherwise it is
a hard one.

4.2.2. Training scheduler

As shown in Equation 13, the student learns from the teacher in all samples equally.
To gradually increase the complexity of samples that the student model trained on,
we introduce example weights v = {v1, v2, · · · , vN} ∈ {0, 1}N into the knowledge

12

distillation loss stated in Equation 13:

Lv−KD =
1

N

N∑
i=1

viH(ptea
i ,pstu

i) =
1

N

N∑
i=1

|A|∑
j=1

−vi[p
tea
i,j · log(pstui,j)] (15)

where N is the number of training samples. We use self-paced learning to estimate v
as follows:

min
v

N∑
i=1

viscorei + g(vi;λ) (16)

where g(vi;λ) is a SP-regularizer defined as a negative ℓ1 norm X. Wang et al. (2021):

g(vi;λ) = −λ · vi (17)

where λ is a hyperparameter controlling the learning pace. The optima value of v can
be calculated by:

v∗i =

{
1 scorei < λ
0 otherwise

(18)

The solution is intuitive: if scorei is smaller than the threshold λ, then it is a easy
example and should be used for knowledge distillation (vi = 1 in Equation 15) at the
current step. Otherwise it is not selected as a training example (vi = 0). To select
examples with desired complexity, we gradually increase λ as the training processes.
Concretely,

λ(t) = λ0 +
1− λ0

T
· t (19)

where t is the current training step, T is the total training step, λ0 ∈ [0, 1] is a initial
value to ensure the easiest examples are selected when the training starts.

4.3. Dialogue policy learning

The dialogue policy network Q(s, a; θQ) is trained by using experience stored in the
real or simulated experience buffer3, i.e., Du and Ds. To facilitate policy learning, we
construct a new action-value function by combing the original Q−function and the
student reward estimator F (s, a; θS), Mathematically:

Lstu
Q = Est,at,st+1,rt [(Qs(st, at; θQ, θS)− y)2] (20)

y = r + γ max
at+1∈A

Q′
s(st+1, at+1; θ

′
Q, θ

′
S) (21)

where Qs(st, at; θQ, θS) = Q(st, at; θQ)+F (st, at; θS). During interaction, the action is
decided by the combined action-value function, i.e., at = argmaxat∈AQs(st, at; θQ, θS).

3Simulated experience buffer is only used in DDQ based agents.

13

Table 3. The statistics of datasets.

Dataset #Intents #Slots #Dialogues

MDC
Movie-Ticket Booking 11 29 2890
Restaurant Reservation 11 30 4103
Taxi Ordering 11 29 3094

MultiWOZ 13 30 10438

The policy network Q(s, a; θQ) can be optimized by back-propagation and mini-batch
gradient descent with respect to θQ:

∇θQLstu
Q = Est,at,st+1,rt [2(QS(st, at; θQ, θS)− y) · ∇θQQ(st, at; θQ)] (22)

Notably, the parameters of student reward estimator is updated together with the
dialogue policy network. The final loss of training the student reward estimator and
gradient is calculated by:

Lstu = Lv−KD + Lstu
Q (23)

∇θSLstu =
1

N

N∑
i=1

|A|∑
j=1

−vi[p
tea
i,j · 1

pstui,j

· ∇θSp
stu
i,j]

+ Est,at,st+1,rt [2(Qs(st, at; θQ, θS)− y) · ∇θSF (st, at; θS)] (24)

5. Experiment

In this section, we will introduce the datasets used in this paper in Section 5.1, baselines
in Section 5.2, implementation details in Section 5.3, simulation evaluation in Section
5.4 and human evaluation in Section 5.5.

5.1. Datasets

We conduct experiments on two public dialogue datasets, i.e., Microsoft Dialogue
Challenge (MDC) (X. Li et al., 2016, 2018) and MultiWOZ (Budzianowski et al.,
2018). Microsoft Dialogue Challenge contains three tasks including movie-ticket book-
ing, restaurant reservation and taxi-ordering. Each task has a built-in user simulator
for experimentation purpose. The datasets are collected via Amazon Mechanical Turk
(X. Li et al., 2016) and annotated using schema defined by domain experts. MultiWOZ
is a task-oriented dialogue dataset with more than 10k dialogues involving 5 domains
(restaurant, hotel, attraction, taxi and train). We use rule-based dialogue state tracker
and user simulator provided by ConvLab-2 (Q. Zhu et al., 2020) for simulated inter-
action. Agenda-based user simulators (SCHATZMANN & YOUNG, 2009), providing
stack-like representation of user states, are employed to reduce human intervention.
The detailed statistics of three datasets are presented in Table 3.

14

5.2. Baselines

To validate the effectiveness of our proposed method, we carry out comprehensive
experiments and compare with 4 DQN-based agents and 6 DDQ-based agents. Besides,
we also add aRule-basedmodel constructed by manually annotated rules and various
forms of logic4, and evaluate its performance on MDC dataset.

5.2.1. DQN-based agents

• The DQN agent (Peng, Li, Gao, Liu, & Wong, 2018) is learned by standard
DQN algorithm with only direct reinforcement learning in each epoch.

• VACL (Zhao et al., 2022) presents a versatile adaptive curriculum learning
framework that applies automatic curriculum learning on dialogue policy tasks.

• The ACL-DQN agent (Zhao, Wang, & Huang, 2021) takes user goal sampled
by a teacher model for automatic curriculum learning.

• SDPL (S. Liu et al., 2021) proposes a scheduled dialogue policy learning frame-
work that models dialogue complexity by estimating the dialogue state differen-
tial space, and arranges reasonable learning schedule. DQN-SDPL is a DQN
agent that incorporates SDPL framework.

• The DQN-SKD is the method proposed in this paper, which incorporates KD
and CL into the DQN agent.

5.2.2. DDQ-based agents

• The DDQ agent (Peng, Li, Gao, Liu, & Wong, 2018) are learned by interacting
with real users as well as a trainable environment called world model to improve
data efficiency.

• DR-D3Q (Zhao et al., 2020) proposes dueling direct reinforcement learning and
planning with dynamic reward based on the DDQ framework.

• ES-DDQ (Zhang et al., 2021) incorporates emotional features into DDQ agents.
• D3Q (S.-Y. Su et al., 2018) combines DDQ framework with generative adversar-
ial network (GAN), which incorporates a discriminator into the planning process
to control the quality of generated experience.

• GP-DDQ (G. Wu et al., 2021) designs a novel DDQ-based framework that
builds the world model as a Gaussian Process model to generate high-quality
simulated experiences.

• DDQ-SDPL (S. Liu et al., 2021) is a DDQ agent that incorporates SDPL
framework.

• DDQ-SKD is the method proposed in this paper, which incorporates KD and
CL into the DDQ agent.

5.3. Implementation details

For all the agents implemented in this paper, the policy networks Q(s, a; θQ) are two-
layer MLPs with 80 hidden nodes and tanh activation functions following (Peng, Li,
Gao, Liu, & Wong, 2018). The world model W (s, a; θW) in DDQ-based agents contains
two shared hidden layers and three task-specific layers. We use base uncased version
of BERT, with 12 layers, 768 hidden nodes and 12 attention heads, to encode dialogue
states and user goals in the teacher model. The hidden nodes of GRU in the teacher

4Readers can refer to the E2Edialog (X. Li et al., 2018) repository for implementation details.

15

https://github.com/MiuLab/E2EDialog/tree/master/deep_dialog

and student model are set to 7685 and 80 respectively. ϵ−greedy exploration is applied
with ϵ = 0.05 during training. The buffer size of real and simulated experience pool,
i.e., Du and Ds is set to 5000 following Peng, Li, Gao, Liu, and Wong (2018). The batch
size is set to 16. The learning rates for optimizing the policy and reward estimator
are set to 5e − 4 and 1e − 5 respectively. The maximum length of conversation L is
set to 40. Besides, Replay Buffer Spiking (RBS) (Lipton et al., 2016), a variant of
imitation learning, is employed to generate initial experiences. We apply rule-based
agent implemented by (X. Li et al., 2018) and pre-fill Du with 100 dialogues before
training. The anchor reward Ra is set to 5, λ0 in Equation 19 is set to 0.2.

5The reason for setting the hidden nodes of GRU in teacher model to 768 is to make it compatible with the

outputs of BERT model.

16

Table 4. Experimental results on Microsoft Dialogue Challenge dataset. Best results are marked in bold.

Agent
Epoch=100 Epoch=200 Epoch=300

Success Reward Turns Success Reward Turns Success Reward Turns

Movie-Ticket Booking

Rule-based 0.2135 -10.42 27.14 0.2367 -11.45 29.01 0.2256 -11.01 28.91

DQN-
based

DQN 0.4676 -4.54 32.91 0.5586 10.98 25.91 0.6978 28.91 24.24
VACL 0.4079 -4.79 29.49 0.4331 -1.42 28.81 0.4339 -1.33 28.79
ACL-DQN 0.5717 15.92 27.36 0.7523 37.39 21.30 0.7573 45.28 18.57
DQN-SKD 0.6418 18.56 20.42 0.7716 39.81 20.14 0.8128 48.10 15.30

DDQ-
based

DDQ(10) 0.5918 23.14 27.12 0.6321 36.19 19.17 0.7316 40.19 18.45
DR-D3Q 0.6183 15.94 21.42 0.6812 22.67 19.27 0.7899 33.75 16.68
ES-DDQ 0.6243 22.74 22.78 0.7232 35.76 20.78 0.7581 40.10 18.55
D3Q(10) 0.6333 28.99 16.01 0.7000 37.24 15.52 0.6667 33.09 15.83
GP-DDQ 0.7069 35.09 21.48 0.7706 43.65 19.60 0.7874 45.72 19.54
DDQ-SDPL 0.7600 44.75 14.90 0.8000 51.15 13.29 0.8300 54.63 12.73
DDQ-SKD 0.7645 43.31 14.78 0.8144 53.12 13.91 0.8347 57.01 12.56

Restaurant Reservation

Rule-based 0.1784 -19.56 30.09 0.1891 -20.11 31.52 0.1894 -20.20 30.91

DQN-
based

DQN 0.3567 2.63 26.24 0.4098 8.13 22.19 0.4132 6.78 23.15
VACL 0.3664 -8.49 24.93 0.4352 -1.81 23.96 0.4321 -2.17 24.05
DQN-SKD 0.4134 10.44 23.14 0.5143 15.14 18.09 0.5222 17.78 17.01

DDQ-
based

DDQ(10) 0.4356 12.56 21.45 0.5723 22.07 15.43 0.5678 19.01 14.23
DR-D3Q 0.4233 14.43 20.23 0.5924 25.13 14.67 0.5762 24.13 13.91
D3Q(10) 0.4566 15.33 18.34 0.5531 19.01 13.91 0.5626 23.15 17.35
DDQ-SKD 0.4716 16.01 20.24 0.6145 28.77 14.89 0.6241 25.16 12.33

Taxi Ordering

Rule-based 0.2791 -8.40 27.81 0.2809 -9.12 28.09 0.2894 -9.01 26.56

DQN-
based

DQN 0.5133 15.32 20.13 0.6784 24.12 17.49 0.7136 27.43 16.31
VACL 0.4814 3.75 21.96 0.6460 19.20 19.89 0.6556 20.23 19.56
DQN-SKD 0.5732 18.43 18.90 0.7123 27.31 16.76 0.7321 28.94 16.01

DDQ-
based

DDQ(10) 0.5567 16.71 19.12 0.6533 25.88 18.32 0.7451 30.13 15.67
DR-D3Q 0.5331 16.43 18.23 0.7198 28.19 16.71 0.7261 25.78 15.94
D3Q(10) 0.5812 20.44 16.12 0.7316 31.04 15.57 0.7819 34.41 14.13
DDQ-SKD 0.6256 23.19 15.79 0.7644 35.28 16.47 0.8201 36.37 15.01

5.4. Simulation Evaluation

In this setting, the agents are optimized by conversing with rule-based user simulators
(or world model trained to mimic real users in DDQ-based agents) following (Peng,
Li, Gao, Liu, & Wong, 2018). Despite the gap between real users and user simulators,
it allows us to perform detailed analysis of different agents without much cost and
reproduce the experimental results easily.

17

5.4.1. Main results

The performances of agents at different epochs on the Microsoft Dialogue Challenge
and MultiWOZ datasets are presented in Table 4 and Table 5 respectively. We evalu-
ate the quality of all these agents in terms of success rate, average reward and average
turns. Among them, success rate is the main metric indicating the proportion of suc-
cessful conversations. Particularly, the conversation is deemed as successful when all
the requests are filled in and the constraints are satisfied. The final results are averaged
over 5 repetitions of experiments. We record the results at training epoch 100, 200 and
300. Normally, better performance at certain epoch means higher efficiency.

As shown in Table 4, it can be clearly observed that the RL-based agent (including
DQN and DDQ-based agents) consistently outperforms rule-based ones significantly.
Notably, the performance of RL-based agent barely exhibits evident promotion as the
training epoch increases. This is because rule-based agent does not learn to optimize
its policy from dialogue experiences. The advantage is that it normally achieves better
results at the beginning of training when few dialogue experience is available, which
is suitable for pre-filling the experience pool Du before training.

When our method is combined with DQN agent, it outperforms the original DQN
with a considerable margin in all training epochs in terms of three metrics. The results
demonstrate that SKD can provide accurate and prompt rewards for the agent to
explore the action space more efficiently. Particularly, when compared with the ACL-
DQN and VACL agents, which also applied curriculum learning, DQN-SKD still boosts
the success rate significantly. This is because the teacher policy model applied in
the ACL-DQN agent is trained from scratch during policy optimization, which is
naive and may arrange immature curriculum for the student policy model in the
early training stage. VACL measures user goal difficulty by calculating the average
cumulative return (reward) of corresponding sampled trajectories. However, the sparse
and delayed reward does not necessarily reflect the user goal’s difficulty. Comparatively,
our method can address those aforementioned two problems. On the one hand, SKD
pre-trains the teacher reward estimator in advance, so that the quality of curriculum
arranged for the student model can be guaranteed during the whole training process.
On the other hand, the teacher and student reward estimators in SKD, both providing
meaningful and dynamic reward, are able to evaluate the dialogue difficulty more
accurately and sufficiently.

When combined with DDQ agent, our method still achieves the best or competi-
tive results among the DDQ-based agents. Specifically, DDQ-SKD promotes the final
success rate by 5.53% compared with the original DDQ agent. We conclude that our
method can improve the learning speed and performance of the dialogue agent with in-
formative reward generated by the student reward estimator. Considering those agents
that devise enriched reward function to address reward sparsity issue, e.g., DR-D3Q,
ES-DDQ, our method outperforms them with a considerable margin. We attribute it
to the knowledge distillation, where the student reward estimator benefits a lot from
the teacher model, which is embedded with rich user goal and historical dialogue state
information. Moreover, DDQ-SKD outperforms DDQ-SDPL in Movie-Ticket Booking
task, which joints curriculum learning and dialogue policy optimization, by 0.45%,
1.44% and 0.47% at 100, 200 and 300 epochs. This is because DDQ-SDPL sorts all
training samples from easy to hard in advance regardless of the learning process of
dialogue policy. By contrast, our method defines the complexity of each sample by
monitoring the feedback of the student reward estimator, which can adjust the train-
ing schedule more flexible and efficient.

18

Table 5. Experimental results on MultiWOZ dataset. Best results are marked in bold.

Agent
Epoch=100 Epoch=200 Epoch=300

Success Reward Turns Success Reward Turns Success Reward Turns

DQN-
based

DQN 0.4321 13.57 15.61 0.4789 19.15 16.14 0.5577 26.42 14.16
DQN-SDPL 0.4500 2.51 13.49 0.5200 11.04 13.36 0.5700 12.22 13.81
DQN-SKD 0.4912 21.66 13.51 0.5581 26.17 12.42 0.5914 28.19 12.45

DDQ-
based

DDQ(10) 0.5132 23.19 16.12 0.5714 27.35 15.33 0.5963 28.27 16.24
DR-D3Q 0.6177 25.66 15.67 0.6231 31.64 16.79 0.6201 30.56 15.66
D3Q(10) 0.5735 23.91 14.85 0.6047 29.98 14.16 0.6316 32.61 13.91
DDQ-SKD 0.6317 27.15 14.19 0.6434 34.01 13.67 0.6536 31.98 13.41

Table 5 presents the main results on MultiWOZ dataset, which is more complicated
since it contains more domains and dialogue turns. Experimental results indicate that
SKD achieves state-of-the-art performance compared with both DQN and DDQ-based
agents. Concretely, DQN-SKD outperforms DQN-SDPL by 2.14% in terms of suc-
cess rate, which is even higher than the improvement of 0.47% in the Movie-Ticket
Booking task. The results proved quantitative evidence that SKD consistently outper-
forms SDPL when combined with DQN and DDQ agents. Besides, it suggests that our
method is superior in arranging more reasonable schedules under complicated situa-
tions. On the contrary, for the DDQ-based agents, mostly addressing reward sparsity
and hysteresis problems (i.e., DR-D3Q and D3Q), the improvements are generally
lower in MultiWOZ than those in MDC dataset. It suggests that the reward estimator
works better in simpler conversations.

5.4.2. Ablation study

To evaluate the impact of each module on the final performance and dialogue learning
speed, we conduct several ablation experiments by removing each component respec-
tively.

• knowledge distillation: train the student reward estimator without knowl-
edge distillation (wo.KD-1). Furthermore, we implement another baseline that
employs an auxiliary weakly supervised learning objective to train the student:
Lstu
WS = E(∥r− rstu∥2) (wo.KD-2).

• curriculum learning: remove the example weights v in Equation 15, i.e., utilize
Equation 13 to transfer knowledge to the student (wo.CL).

• weak supervision: pre-train the teacher reward estimator without weak super-
vision (wo.WS).

• reinforcement learning: pre-train the teacher reward estimator with out re-
inforcement learning. (wo. RL)

The final results are presented in Table 6 and Fig. 5. Generally, performance degra-
dation can be observed after removing part of the modules in both DQN and DDQ-
based agents. Among them, directly removing the knowledge distillation (wo.KD-1)
results in the most severe performance drop with 7.84% and 6.35% success rate degra-
dation compared with DQN-SKD and DDQ-SKD respectively. The results suggest
that it is insufficient to properly reward actions without the guidance of teacher re-
ward estimator, which may even misguide the dialogue policy and make it stuck into
local optima. When the student model is trained with weakly supervised learning

19

Table 6. Success rate of removing the curriculum learning (CL), knowledge distillation (KD), weak supervi-
sion (WS) and reinforcement learning (RL) on Movie-Ticket Booking dataset.

Model Epoch=100 Epoch=200 Epoch=300 Epoch=400

DQN-SKD 0.6418 0.7716 0.8128 0.8145
wo.KD-1 0.5218 0.6168 0.6841 0.7361
wo.KD-2 0.5584 0.6916 0.7616 0.7841
wo.CL 0.5091 0.7329 0.7960 0.7946
wo.WS 0.6010 0.7563 0.7746 0.8012
wo.RL 0.5557 0.7081 0.7314 0.7535

DDQ-SKD 0.7645 0.8144 0.8447 0.8367
wo.KD-1 0.6045 0.6995 0.7631 0.7732
wo.KD-2 0.6433 0.7513 0.7654 0.8110
wo.CL 0.6896 0.7266 0.7789 0.7981
wo.WS 0.7292 0.8012 0.8141 0.8257
wo.RL 0.6320 0.7288 0.7548 0.8032

(i.e., wo.KD-2), the performance degradation can be greatly alleviated. This can be
explained by the fact that user goal plays an essential role in evaluating the effective
of actions and task success. Surprisingly, it performs even better to train the student
model on the teacher (i.e., DQN-SKD and DDQ-SKD) than directly on the annotated
data (wo.KD-2). This is because the teacher model has superiority in learning the in-
ternal features contained in the annotated data with the help of BERT and user goal
information. And training on the soft labels predicted by the teacher makes learning
easier for the student model by focusing the relationships learned by the teacher across
all the actions.

0 50 100 150 200 250 300 350 400
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

su
cc

es
s

ra
te

DQN-based

DQN
DQN-SKD
wo.KD-1
wo.KD-2
wo.CL
wo.WS
wo.RL

(a) DQN-based agents

0 50 100 150 200 250 300 350 400
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

su
cc

es
s

ra
te

DDQ-based

DDQ
DDQ-SKD
wo.KD-1
wo.KD-2
wo.CL
wo.WS
wo.RL

(b) DDQ-based agents

Figure 5. Learning curves of agents discarding different components on Movie Ticket Booking dataset.

When curriculum learning is discarded, the success rate drops 1.99% and 3.86%
compared with DQN-SKD and DDQ-SKD respectively. Learning curves depicted in
Fig. 5 also shows significant learning speed degradation. Fig. 6 is the boxplots of dif-
ferent agents at 400 training epochs with 5 repetitive experiment results. Obviously,
DQN-SKD and DDQ-SKD agents are more stable than those trained without cur-
riculum learning. The results demonstrate that curriculum learning used to train the
student reward estimator can not only promote the final performance but also enhance

20

the stability of policy learning.

DQN DQN-SKD wo.CL

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

(a) DQN-based agents

DDQ DDQ-SKD wo.CL
0.72

0.74

0.76

0.78

0.80

0.82

0.84

(b) DDQ-based agents

Figure 6. Box plots of DQN and DDQ based agents on Movie-Ticket Booking dataset. The center, bottom
and top line of the box show the median, 25th and 75th percentiles respectively. The lines that extend from
the box represent the expected variation of the data. The shorter the box, the more stable it is.

When the teacher reward estimator is pre-trained without weak supervision, the
learning curves depict relatively mild performance decay. This is because the teacher
model benefiting from the user goal information, which serves as the input of the
teacher model, can easily learn knowledge of task completion and thus make up the
absence of weakly supervised guidance. Pre-training teacher reward estimator without
RL degrades the final performance by 6.10% and 3.35% on compared to DQN-SKD and
DDQ-SKD respectively. We believe that human-machine interactions in RL framework
enables the reward estimator to perceive more dialogue actions that are not presented
in the annotated data, and thus improves the quality of generated reward.

5.4.3. Different choices of Anchor reward

To explore how different choices of the anchor reward Ra influence the final perfor-
mance and learning speed of the agents, we present learning curves of agents with
different anchor rewards in Fig. 7. We observe that weak supervision generally pro-
motes the learning speed at the early training stage as Ra gets larger, as can be
observed from the first 50 epochs of DDQ-based agents. However, as the training pro-
gresses, agents with extremely large Ra gradually lags behind those with relatively
small Ra. For example, DDQ-SKD achieves about 50% success rate with Ra = 10 at
epoch 100, where it achieves more than 75% with Ra = 5. In fact, the performance is
gradually improved as Ra increases until Ra = 5 and declined as it continues to grow.
We conclude those observations as follows: while weak supervision can accelerate the
convergence of dialogue policy, the optimal anchor reward Ra should be determined
seriously to balance the trade-off between local guidance and global reward. More
specifically, When Ra is too small, the weak supervision may have little impact on
guiding the teacher model to generate proper reward reflecting the action validity.
When Ra is too large, the agent tends to focus on short term reward rather than
global optimum (i.e., accomplishing the task). Overemphasis on fitting the weakly
annotated data may harm the final performance.

21

0 50 100 150 200 250 300 350 400
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
su

cc
es

s r
at

e

DQN
DQN-SKD, Ra=1
DQN-SKD, Ra=3
DQN-SKD, Ra=5
DQN-SKD, Ra=7
DQN-SKD, Ra=10

(a) DQN-based

0 50 100 150 200 250 300 350 400
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

su
cc

es
s r

at
e

DDQ
DDQ-SKD, Ra=1
DDQ-SKD, Ra=3
DDQ-SKD, Ra=5
DDQ-SKD, Ra=7
DDQ-SKD, Ra=10

(b) DDQ-based

Figure 7. Learning curves of DQN-SKD and DDQ-SKD with different anchor reward Ra.

5.4.4. Reward visualization

In order to demonstrate the strength of our reward estimator in providing proper
reward reflecting action validity and task completion, we present Fig. 8 that illustrates
the reward provided by the student reward estimator at the end of each agent response.
To better show the ability of the reward estimator to evaluate the action, we employ
a rule-based agent, which requests information in a fixed order, to interact with the
user simulator.

As shown in Fig. 8, it is clear the reward can generally reflect the dialogue state and
action validity of the agent. To be specific, the reward estimator is capable of assigning
penalty to discouraging duplicated actions at turn 2 of both dialogues, where the agent
requests the movie name identified at the last turn by the user. Similar observations can
be seen from turn 12 of dialogue 8a. Besides, even if the agent takes the same action,
the agent is able to provide reward according to the dialogue states and agent actions.
For example, when the agent asks for the location at turn 6, the reward estimator
assigns a negative reward to this action in dialogue 8a, which does not answer the
inquiry of the user about start time. In comparison, the reward assigned to the action
at turn 6 is positive in dialogue 8b, which is reasonable. This is because the reward
estimator taking historical dialogue states as input can avoid rewarding duplicated or
invalid actions. Another interesting phenomenon can be observed at turn 14, where
the agent books tickets for the user in both dialogues. The reward is relatively small
(1.25) since it does not meet all requirements of the user in dialogue 8a, while it is
rather large (4.25) when the agent successfully fulfill the task in dialogue 8b. This is
attributable to the knowledge distillation that makes the student reward estimator
anticipate user goal and task completion information.

5.4.5. Performance of dealing with shifty user goals

To illustrate the superiority of our method in dealing with shifty user goals, we develop
a user simulator that randomly changes part of user goals during conversation and let it
interact with different agents that are trained with 300 epochs on MultiWOZ dataset.
We test them on 100 dialogues for each agent. The results are shown in Fig. 9. Not
surprisingly, our method still achieves the best result among all DDQ-based agents.
Compared with D3Q and DR-D3Q, which degrade the success rate by 13.34% and

22

reward

usr1: What start time can I book 5 tickets for avengers?

agt2: What movie are you interested in?

usr3: I want to watch avengers.

agt4: What time would you like to see it?

usr5: What start time is available?

agt6: Which city would you like?

usr7: I do not care

agt8: What date would you like to watch it?

usr9: What date is available?

agt10: Which theater would you like?

usr11: Thank you.

agt12: How many tickets do you need?

usr13: I want 5 tickets please!

agt14: Okay, I have booked 5 tickets for avengers for you.

usr15: Thank you.

agt16: Thank you.

-3.86

3.45

-2.34

4.15

2.89

-3.56

1.25

2.51

4

2

0

2

4

(a)

reward

usr1: Can I get tickets for triple 9 tomorrow?

agt2: What movie are you interested in?

usr3: I want to watch triple 9.

agt4: What time would you like to see it?

usr5: I want to watch at 7:10 pm.

agt6: Which city would you like?

usr7: I want to watch at seattle.

agt8: What date would you like to watch it?

usr9: I want to set it up tomorrow.

agt10: Which theater would you like?

usr11: I want to watch at amc lowes oak tree.

agt12: How many tickets do you need?

usr13: I want 6 tickets please!
agt14: Great - I was able to purchase 6 tickets for you to see triple 9
tomorrow at amc lowes oak tree theater in seattle at 7:10 pm.
usr15: Thank you.

agt16: Thank you.

-4.16

3.91

2.68

-2.56

3.45

3.18

4.25

3.51

4

2

0

2

4

(b)

Figure 8. Reward visualization of a dialogue simulation between a rule based agent and a user simulator.

The reward is provided by a trained student reward estimator.

9.49% on shifty user goals respectively, our method exhibits the mildest performance
decay by 2.36%. This is because the teacher reward estimator learns prior distribution
of user goal information and thus enables the system to handle user goals more flexible.
Another potential reason may be that the system can act more properly when the
policy is combined with reward functions during interaction.

DDQ D3Q DR-D3Q DDQ-SKD
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

su
cc

es
s

ra
te 0.4533

14.30%

0.4867

13.34%

0.5367

9.49%

0.6300

2.36%

Figure 9. Success rate of different agents dealing with shifty user goals on MultiWOZ. The number in each

bar represents success rate degradation compared to that in Table 6 at Epoch=300.

5.4.6. The effect of different complexity measuring strategies

In this section, we further explore the effects of different criterion of complexity mea-
suring for self-paced learning. In addition to the KL loss between the output of teacher
and student reward estimator (Stu-Tea) stated in Equation 14, we consider other two
different metrics to evaluate the dialogue complexity, which is defined as the KL loss
between the true label p and (1) the output of teacher ptea (Gold-Tea), (2) the out-
put of the student pstu (Gold-Stu), where p = r/Ra. Besides, we also measure the

23

Table 7. Experimental results of DDQ-SKD with different complexity measurer on MultiWOZ dataset. wo.
CL means without curriculum learning.

Complexity measurer
Epoch=100 Epoch=200 Epoch=300

Success Reward Turns Success Reward Turns Success Reward Turns

Stu-Tea 0.6317 27.51 14.19 0.6434 34.01 13.67 0.6536 31.98 13.41
Gold-Tea 0.6178 26.71 16.43 0.6281 29.76 14.57 0.6458 32.51 13.62
Gold-Stu 0.5315 22.47 15.44 0.5754 26.52 16.78 0.5999 28.14 15.79
Rule 0.5589 21.01 17.43 0.5671 25.51 17.10 0.6031 27.42 15.22

wo. CL 0.4918 20.43 18.91 0.5549 23.91 17.49 0.5838 24.76 16.44

dialogue difficulty based on the number of slots N contained in the corresponding user
goal (Rule). Specifically, score = N/Nmax, Nmax is a constant representing the max-
imum number of slots of user goal in the dataset. Intuitively, the more slots, the more
difficult it is. We conduct experiments on MultiWOZ dataset based on DDQ-SKD
agent.

The results are presented in Table 7. Generally, Stu-Tea outperforms others on most
metrics. More concretely, even though the golden labels are involved in complexity
measuring, Stu-Tea still shows better performances. The results suggest that evaluat-
ing the difference between outputs of teacher and student models can better reflect
the student’s learning process. Comparatively, Rule achieves the worst results among
all complexity measurer variants, while still outperforms wo. CL. We conclude that
the number of slots in a user goal can only partially judge the complexity compared
with other measurements.

5.4.7. Case study

Table 8 presents dialogue examples of simulated user interacting with different agents.
It is obvious that the DQN and DDQ agents can accomplish the task more efficiently
when they are combined with our method. More specifically, the DQN agent tends to
perform like a naive rule-based agent that requests information in predefined order.
And it asks for the theater information repeatedly (Which theater would you like?)
when the user does not answer it properly, which fails to accomplish the task within
the maximum turns. As for the DDQ agent, although it books two tickets for the user,
several important information, including date, theater and start time, are neglected.
Furthermore, it may request information that has already been identified in the con-
text. For example, the DDQ agent asks the user for the preferred movie at turn 2
and the number of tickets at turn 8, which are both identified when the conversation
starts, i.e., at turn 1. Such problems may decrease the efficiency of completing tasks,
and even make real users impatient and terminate the conversation early.

In comparison, our methods avoid these problems and accomplish the tasks per-
fectly. We attribute this to the following factors: (1) Reward annotations are capable
of preventing the agent from performing redundantly, since the weak reward annota-
tor allocates a negative reward to discourage such reduplicate behaviors by evaluating
sub-goals completion. (2) The student reward estimator, learning rich contextual and
user goal anticipated information from the teacher model, is able to guide the agent
to explore the action space more effectively.

24

Table 8. Dialogue examples of simulated user interacting with different agents trained at 100 epochs. usr
denotes user, while agt denotes agent.

G =

 C =

Date : tomorrow
City : detroit
MoiveName : deadpool
StartT ime : 7pm

R =

[
Theater

]

 G =

C =

 City : duQuoin
NumberofPeople : 2
MovieName : StarWars

R =

 Date
Thether
StartT ime

.

DQN DDQ

usr1: What theater will play the deadpool at 7pm tomorrow?
agt2: What movie are you interested in?
usr3: I want to watch deadpool.
agt4: Which city would you like?
usr5: I want to watch at detroit.
agt6: What date would you like to watch it?
usr7: I want to set it up tomorrow.
agt8: Which theater would you like?
usr9: Which theater is available?
agt10: Which theater would you like?
...

usr1: What start time can I book 2 tickets for star wars?
agt2: What movie are you interested in?
usr3: I want to watch star wars.
agt4: What time would you like to see it?
usr5: Any time is fine.
agt6: Which city would you like?
usr7: I want to watch at du Quoin.
agt8: How many tickets do you need?
usr9: I want 2 tickets please.
agt10: Ok, your purchase of 2 tickets for star wars at
du Quoin is confirmed.
usr11: Oh, sorry this is wrong ticket.
agt12: Thank you.

Failure: the conversation is repeated and the agent is not able
to book the ticket within the maximum turns.

Failure: the agent is not able to book the tickets with
all requests identified.

DQN-SKD DDQ-SKD

usr1: What theater will play the dead pool at 7pm tomorrow?
agt2: Which city would you like?
usr3: I want to watch at detroit.
agt4: How many tickets do you want?
usr5: I want 3 tickets please!
agt6: Great, I was able to book 3 tickets for you to watch
dead pool at theater in detroit at 7pm tomorrow!
usr7: Thank you.
agt8: Thank you.

usr1: What start time can I book 2 tickets for star wars?
agt2: Which city would you like?
usr3: I want to watch at du Quoin.
agt4: What date do you want?
usr5: Any day will do.
agt6: How about 2 tickets for star wars at du Quoin for
tomorrow at theater?
usr7: What time will it start?
agt8: It starts at 7pm.
usr9: Ok, thank you.
usr10: Thank you.

Success Success

5.5. Human Evaluation

We recruit real users to evaluate the performance of four agents, including DQN,
DDQ, DQN-SKD and DDQ-SKD, by conversing with them. All evaluated agents are
trained with 100 epochs. In each dialogue session, the user is asked to select one of
the agents without knowing the identification of the selected agent. At the beginning
of each conversation, the user is presented with a user goal randomly sampled from
the corpus and interacts with the agent to accomplish the task. The user can choose
to abandon the task and terminate the dialogue if the conversation is deemed too
duplicated or the user believes the task is unlikely to be completed. Such dialogue
sessions are then considered to be failed. The user is required to provide feedback on
each conversation regarding task success. We evaluate these agents in 400 dialogues in
total.

As shown in Fig. 10, we can observe that the success rate of all the agents are
dropped with a significant margin compared with those in simulation experiments.
It is not surprising since the real user, who is not as patient as the simulated user,
may terminate the conversation within a small number of turns before the task is

25

DQN DQN-SKD DDQ DDQ-SKD
0.0

0.1

0.2

0.3

0.4

0.5

su
cc

es
s r

at
e

0.278

108

0.368

99

0.358

81

0.446

112

Figure 10. Human evaluation results of DQN, DQN-SKD, DDQ and DDQ-SKD agents. The number of test

dialogues are presented in on each bar.

accomplished. Besides, it is clear that the success rate of DQN and DDQ agents are
improved by 9.0% and 8.8% when combined with our method, which accords with the
observations in the simulation experiments.

6. Conclusion and future work

In this paper, we propose a novel method called scheduled knowledge distillation
(SKD), which learns dynamic reward function by combining knowledge distillation
and curriculum learning for efficient dialogue policy learning. In knowledge distilla-
tion, we first pre-train a teacher reward estimator that benefits from the deep semantic
information contained in BERT and user goal information via deep Q-learning. Be-
sides, we also construct weak annotated data based on the sub-goals completion and
train the teacher model by weakly supervised learning. Then, the knowledge is trans-
ferred to the student reward estimator by training it to mimic the outputs of the
teacher model. In curriculum learning, we leverage the divergence between outputs of
the teacher and student reward estimators to evaluate the dialogue complexity, and
train the student model from easy to hard samples based on the evaluation results. We
conduct experiments on two popular task-oriented datasets and results demonstrate
the efficiency and effectiveness of our method.

Although our method is combined with DQN and DDQ algorithms, the main con-
tribution of our work SKD can also be easily applied to other value-based approaches,
e.g., Q-learning, DDQN, we will explore it in the future. Besides, our method causes
extra training cost due to the pre-training of teacher reward estimator, and we will
try to reduce the computational complexity in our future work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

26

Data availability

The Movie-ticket booking dataset analyzed during the current study is available in
the TC-BOT repository (https://github.com/MiuLab/TC-Bot).

References

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning (pp. 41–48).

Budzianowski, P., Wen, T.-H., Tseng, B.-H., Casanueva, I., Ultes, S., Ramadan, O., & Gasic,
M. (2018). Multiwoz-a large-scale multi-domain wizard-of-oz dataset for task-oriented
dialogue modelling. In Proceedings of the 2018 conference on empirical methods in natural
language processing (pp. 5016–5026).

Chen, H., Liu, X., Yin, D., & Tang, J. (2017). A survey on dialogue systems: Recent advances
and new frontiers. Acm Sigkdd Explorations Newsletter , 19 (2), 25–35.

Chu, G., Wang, X., Shi, C., & Jiang, X. (2021). Cuco: Graph representation with curriculum
contrastive learning. In Ijcai (pp. 2300–2306).

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent
neural networks on sequence modeling. In Nips 2014 workshop on deep learning, december
2014.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A.
(2018). Generative adversarial networks: An overview. IEEE signal processing magazine ,
35 (1), 53–65.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 .

Dhingra, B., Li, L., Li, X., Gao, J., Chen, Y.-N., Ahmad, F., & Deng, L. (2017). Towards
end-to-end reinforcement learning of dialogue agents for information access. In Proceedings
of the 55th annual meeting of the association for computational linguistics (volume 1: Long
papers) (pp. 484–495).

Diakoloukas, V., Lygerakis, F., Lagoudakis, M. G., & Kotti, M. (2020). Variational denoising
autoencoders and least-squares policy iteration for statistical dialogue managers. IEEE
Signal Processing Letters , 27 , 960–964.

Dong, X., Long, C., Xu, W., & Xiao, C. (2021). Dual graph convolutional networks with
transformer and curriculum learning for image captioning. In Proceedings of the 29th acm
international conference on multimedia (pp. 2615–2624).

El-Bouri, R., Eyre, D., Watkinson, P., Zhu, T., & Clifton, D. (2020). Student-teacher curricu-
lum learning via reinforcement learning: predicting hospital inpatient admission location.
In International conference on machine learning (pp. 2848–2857).

Geishauser, C., van Niekerk, C., Lin, H.-C., Lubis, N., Heck, M., Feng, S., & Gasic, M. (2022).
Dynamic dialogue policy for continual reinforcement learning. In Proceedings of the 29th
international conference on computational linguistics (pp. 266–284).

Gou, J., Yu, B., Maybank, S. J., & Tao, D. (2021). Knowledge distillation: A survey. Inter-
national Journal of Computer Vision , 129 (6), 1789–1819.

Greco, A., Saggese, A., Vento, M., & Vigilante, V. (2021). Effective training of convolutional
neural networks for age estimation based on knowledge distillation. Neural Computing and
Applications , 1–16.

Guo, S., Huang, W., Zhang, H., Zhuang, C., Dong, D., Scott, M. R., & Huang, D. (2018).
Curriculumnet: Weakly supervised learning from large-scale web images. In Proceedings of
the european conference on computer vision (eccv) (pp. 135–150).

Haidar, M., Rezagholizadeh, M., et al. (2019). Textkd-gan: Text generation using knowl-
edge distillation and generative adversarial networks. In Canadian conference on artificial
intelligence (pp. 107–118).

27

https://github.com/budzianowski/multiwoz

Hinton, G., Vinyals, O., Dean, J., et al. (2015). Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 , 2 (7).

Hosseini-Asl, E., McCann, B., Wu, C.-S., Yavuz, S., & Socher, R. (2020). A simple language
model for task-oriented dialogue. Advances in Neural Information Processing Systems , 33 ,
20179–20191.

Jeon, H., & Lee, G. G. (2022). Dora: Towards policy optimization for task-oriented dialogue
system with efficient context. Computer Speech & Language, 72 , 101310.

Khandelwal, A. (2021). Weasul: Weakly supervised dialogue policy learning: Reward estima-
tion for multi-turn dialogue. In Proceedings of the 14th international conference on natural
language generation (pp. 64–75).

Li, B., Wang, Z., Liu, H., Du, Q., Xiao, T., Zhang, C., & Zhu, J. (2021). Learning light-weight
translation models from deep transformer. In Proceedings of the aaai conference on artificial
intelligence (Vol. 35, pp. 13217–13225).

Li, X., Chen, Y.-N., Li, L., Gao, J., & Celikyilmaz, A. (2017). End-to-end task-completion
neural dialogue systems. In Proceedings of the eighth international joint conference on
natural language processing (volume 1: Long papers) (pp. 733–743).

Li, X., Lipton, Z. C., Dhingra, B., Li, L., Gao, J., & Chen, Y.-N. (2016). A user simulator for
task-completion dialogues. arXiv preprint arXiv:1612.05688 .

Li, X., Wang, Y., Sun, S., Panda, S., Liu, J., & Gao, J. (2018). Microsoft dialogue challenge:
Building end-to-end task-completion dialogue systems. arXiv preprint arXiv:1807.11125 .

Li, Z., Kiseleva, J., & de Rijke, M. (2020). Rethinking supervised learning and reinforcement
learning in task-oriented dialogue systems. arXiv preprint arXiv:2009.09781 .

Lipton, Z. C., Gao, J., Li, L., Li, X., Ahmed, F., & Deng, L. (2016). Efficient exploration
for dialogue policy learning with bbq networks & replay buffer spiking. arXiv preprint
arXiv:1608.05081 , 3 .

Liu, J., Chen, Y., & Liu, K. (2019). Exploiting the ground-truth: An adversarial imitation
based knowledge distillation approach for event detection. In Proceedings of the aaai con-
ference on artificial intelligence (Vol. 33, pp. 6754–6761).

Liu, S., Zhang, J., He, K., Xu, W., & Zhou, J. (2021). Scheduled dialog policy learning: An
automatic curriculum learning framework for task-oriented dialog system. In Findings of
the association for computational linguistics: Acl-ijcnlp 2021 (pp. 1091–1102).

Lu, K., Zhang, S., & Chen, X. (2019). Goal-oriented dialogue policy learning from failures.
In Proceedings of the aaai conference on artificial intelligence (Vol. 33, pp. 2596–2603).

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., . . . others
(2015). Human-level control through deep reinforcement learning. nature, 518 (7540), 529–
533.

Narvekar, S., & Stone, P. (2019). Learning curriculum policies for reinforcement learning.
In Proceedings of the 18th international conference on autonomous agents and multiagent
systems (pp. 25–33).

Peng, B., Li, X., Gao, J., Liu, J., Chen, Y.-N., & Wong, K.-F. (2018). Adversarial advantage
actor-critic model for task-completion dialogue policy learning. In 2018 ieee international
conference on acoustics, speech and signal processing (icassp) (pp. 6149–6153).

Peng, B., Li, X., Gao, J., Liu, J., & Wong, K.-F. (2018). Deep dyna-q: Integrating planning
for task-completion dialogue policy learning. In Proceedings of the 56th annual meeting of
the association for computational linguistics (volume 1: Long papers) (pp. 2182–2192).

Platanios, E. A., Stretcu, O., Neubig, G., Póczos, B., & Mitchell, T. (2019). Competence-based
curriculum learning for neural machine translation. In Proceedings of the 2019 conference of
the north american chapter of the association for computational linguistics: Human language
technologies, volume 1 (long and short papers) (pp. 1162–1172).

Qu, M., Tang, J., & Han, J. (2018). Curriculum learning for heterogeneous star network
embedding via deep reinforcement learning. In Proceedings of the eleventh acm international
conference on web search and data mining (pp. 468–476).

Ren, S., Guo, K., Ma, J., Zhu, F., Hu, B., & Zhou, H. (2021). Realistic medical image
super-resolution with pyramidal feature multi-distillation networks for intelligent healthcare

28

systems. Neural Computing and Applications , 1–16.
Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., & Bengio, Y. (2014). Fitnets:

Hints for thin deep nets. arXiv preprint arXiv:1412.6550 .
SCHATZMANN, J., & YOUNG, S. (2009). The hidden agenda user simulation model. IEEE

transactions on audio, speech, and language processing , 17 (4), 733–747.
Shen, Y., Xu, X., & Cao, J. (2020). Reconciling predictive and interpretable performance in

repeat buyer prediction via model distillation and heterogeneous classifiers fusion. Neural
Computing and Applications , 32 (13), 9495–9508.

Su, P.-H., Gašić, M., & Young, S. (2018). Reward estimation for dialogue policy optimisation.
Computer Speech & Language, 51 , 24–43.

Su, S.-Y., Li, X., Gao, J., Liu, J., & Chen, Y.-N. (2018). Discriminative deep dyna-q: Robust
planning for dialogue policy learning. In Emnlp.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Machine learning proceedings 1990 (pp. 216–224).
Elsevier.

Tian, C., Yin, W., & Moens, M. F. (2022). Anti-overestimation dialogue policy learning for
task-completion dialogue system. In Findings of the association for computational linguis-
tics: Naacl 2022 (pp. 565–577).

Tian, Z., Bi, W., Lee, D., Xue, L., Song, Y., Liu, X., & Zhang, N. L. (2020). Response-
anticipated memory for on-demand knowledge integration in response generation. In Pro-
ceedings of the 58th annual meeting of the association for computational linguistics (pp.
650–659).

Wang, X., Chen, Y., & Zhu, W. (2021). A survey on curriculum learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence .

Wang, X., Fu, T., Liao, S., Wang, S., Lei, Z., & Mei, T. (2020). Exclusivity-consistency
regularized knowledge distillation for face recognition. In European conference on computer
vision (pp. 325–342).

Wang, Y., Wang, W., Liang, Y., Cai, Y., & Hooi, B. (2021). Curgraph: Curriculum learning
for graph classification. In Proceedings of the web conference 2021 (pp. 1238–1248).

Wu, G., Fang, W., Wang, J., Cao, J., Bao, W., Ping, Y., . . . Wang, Z. (2021). Gaussian process
based deep dyna-q approach for dialogue policy learning. In Findings of the association for
computational linguistics: Acl-ijcnlp 2021 (pp. 1786–1795).

Wu, W., Guo, Z., Zhou, X., Wu, H., Zhang, X., Lian, R., & Wang, H. (2019). Proactive
human-machine conversation with explicit conversation goal. In Proceedings of the 57th
annual meeting of the association for computational linguistics (pp. 3794–3804).

Zhang, R., Wang, Z., Zheng, M., Zhao, Y., & Huang, Z. (2021). Emotion-sensitive deep dyna-q
learning for task-completion dialogue policy learning. Neurocomputing , 459 , 122–130.

Zhao, Y., Qin, H., Zhenyu, W., Zhu, C., & Wang, S. (2022). A versatile adaptive curriculum
learning framework for task-oriented dialogue policy learning. In Findings of the association
for computational linguistics: Naacl 2022 (pp. 711–723).

Zhao, Y., Wang, Z., & Huang, Z. (2021). Automatic curriculum learning with over-repetition
penalty for dialogue policy learning.

Zhao, Y., Wang, Z., Yin, K., Zhang, R., Huang, Z., & Wang, P. (2020). Dynamic reward-based
dueling deep dyna-q: Robust policy learning in noisy environments. In Proceedings of the
aaai conference on artificial intelligence (Vol. 34, pp. 9676–9684).

Zhao, Y., Wang, Z., Zhu, C., Wang, S., Moens, M.-F., Huang, X., . . . others (2021). Efficient
dialogue complementary policy learning via deep q-network policy and episodic memory
policy. In Proceedings of the 2021 conference on empirical methods in natural language
processing (pp. 4311–4323).

Zhou, X., Zhu, F., & Zhao, P. (2022). Predicting before acting: improving policy quality by
taking a vision of consequence. Connection Science, 34 (1), 608–629.

Zhu, H., Zhao, Y., & Qin, H. (2021). Cold-started curriculum learning for task-oriented
dialogue policy. In 2021 ieee international conference on e-business engineering (icebe) (pp.
100–105).

29

Zhu, Q., Zhang, Z., Fang, Y., Li, X., Takanobu, R., Li, J., . . . Huang, M. (2020). Convlab-2:
An open-source toolkit for building, evaluating, and diagnosing dialogue systems. arXiv
preprint arXiv:2002.04793 .

30

	Introduction
	Related work
	RL-based dialogue policy
	Knowledge distillation
	Curriculum learning

	Background
	Deep Q-network
	Deep Dyna-Q

	Method
	Knowledge distillation
	Architecture of teacher and student reward estimators
	Pre-training of teacher reward estimator
	Transferring knowledge to the student reward estimator

	Self-paced learning
	Complexity measurer
	Training scheduler

	Dialogue policy learning

	Experiment
	Datasets
	Baselines
	DQN-based agents
	DDQ-based agents

	Implementation details
	Simulation Evaluation
	Main results
	Ablation study
	Different choices of Anchor reward
	Reward visualization
	Performance of dealing with shifty user goals
	The effect of different complexity measuring strategies
	Case study

	Human Evaluation

	Conclusion and future work

