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a b s t r a c t

Human–robot object handover is one of the most primitive and crucial capabilities in human–robot
collaboration. It is of great significance to promote robots to truly enter human production and
life scenarios and serve human in numerous tasks. Remarkable progressions in the field of human–
robot object handover have been made by researchers. This article reviews the recent literature on
human–robot object handover. To this end, we summarize the results from multiple dimensions,
from the role played by the robot (receiver or giver), to the end-effector of the robot (parallel-jaw
gripper or multi-finger hand), to the robot abilities (grasp strategy or motion planning). We also
implement a human–robot object handover system for anthropomorphic hand to verify human–robot
object handover pipeline. This review aims to provide researchers and developers with a guideline for
designing human–robot object handover methods.
© 2024 The Author(s). Published by Elsevier B.V. on behalf of ShandongUniversity. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the continuous progress of modern society and science,
uman production and life have entered the era of big data
ith the improvement and development of software and hard-
are technology. Driven by the boom of chip manufacturing,
he assistance of software design, and the accumulation of natu-
al disciplines, applications such as large-scale computing, high-
erformance computing, and cloud computing are changing with
ach passing day, which in turn is promoting the development
f the field of artificial intelligence. Intelligent scientific research
uch as computer vision and natural language processing not only
rings convenience to humans by deploying their algorithms in
eal-world scenarios, but also provides new directions for the
evelopment of intelligent robots [1]. As the ‘‘pearl’’ in the field
f advanced manufacturing and the key development direction of
he Industry 4.0 revolution, intelligent robots have demonstrated
heir important research value and application potential in vari-
us scenarios in daily life and industrial production. In the past
ear, the proposal and development of the concepts of embodied
rtificial intelligence (Embodied AI) and humanoid robots have
lso made researchers and the public expect robots with universal
orms to serve human production and life.

In recent years, cooperation between humans and robots has
eveloped in a closer and more direct way [2–6]. Industry 4.0
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(http://creativecommons.org/licenses/by/4.0/).
envisions a fully shared environment, where robots are driven
by advances in robotic hardware technology [7] and able to
interact with their surroundings and other agents [8,9]. Human–
robot interaction (HRI) has occupied a prominent position in
the robot development strategies of various countries. The core
advantage of human–robot coexistence teams is assigning hu-
mans to focus on more complex tasks, while transfer repetitive
and low-skill tasks to robotic assistants. Such successful deploy-
ment is beneficial for both humans and robots. The structured
nature of traditional industrial environments promotes the use
of robots in such scenarios. However, there have been no simi-
lar successful applications in unstructured environments (homes,
hospitals, etc.). For such an environment, the robot needs to bet-
ter understand the tasks to be performed, which in turn requires
a powerful perception system to detect and track changes in
the surrounding dynamic environment, as well as an intelligent
action decision-making and motion planning system [10].

Enabling robots to complete object handover with humans is
the basic condition and key technology for successfully realizing
human–robot interaction and collaboration. As shown in Fig. 1,
the action of transferring objects is called object handover. Object
handover is defined as the continuous joint action of a giver
transferring an object to a receiver. Such frequent collaborative
action between humans requires the joint efforts of both parties
in the abilities of prediction, perception, action and adjustment.
Achieving human–robot object handover as efficient and smooth
as it between humans is a major challenge for the development
of intelligent robots.
niversity. This is an open access article under the CC BY license
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Fig. 1. Human-Robot object handover.

Fig. 2. The construction of this paper.

In this paper, we investigate methods for human–robot object
andover mainly after 2021. In order to give readers a more
omprehensive perspective on the different approaches, we sum-
arize literature from different dimensions to form method tax-
nomy. We first focus on the role of robots at the macro level,
s receiver taking objects from humans, or as giver delivering
bjects to humans. We then discuss different end-effectors used
y robots, parallel-jaw grippers or multi-finger hands. Finally, the
ethods to improve the robot grasp strategy or motion planning

n object handover are analyzed. We state that the object han-
over method depends on diverse sensory information or devices,
o the perception type is not regarded as a classification dimen-
ion. Based on the outlined method pipeline, a general framework
s abstracted and an object handover system is implemented for
erification. The main contributions can be summarized as:

• We review the human–robot handover literature mainly
after 2021, and propose a method taxonomy from three
dimensions for comprehensive description.

• We abstract a general framework for human–robot han-
dover to help researchers and developers construct their
own human–robot interaction system in an easier way.

• We implement a human–robot object handover system for
anthropomorphic hand to verify our framework and list
potential directions in the future.

As shown in Fig. 2, this paper is organized as follows. Re-
ated literature reviews are outlined in Section 2. Such works
nspire us to formulate the method taxonomy from three dimen-
ions in Section 3. Sections 4–6 describe human–robot object
andover studies after 2021 in detail. Section 7.1 abstracts a
eneric framework based on investigated works. A human–robot
bject handover system is implemented by following the pro-
osed framework in Section 7.2. Section 8 provides the insights
f potential development in the future. Section 9 concludes this
eview.
 v

2

2. Previous surveys

There are some previous work survey human–robot object
handover methods. A complete review of human–robot object
handover methods before 2021 is presented in [2], with the per-
spective of the object handover process. Literatures are divided
into pre-handover stage and physical handover stage. Inspired
by [2], human–robot collaborations in industry scenario are dis-
cussed in [11], with special concentration on communication
channels between human and robot. [12,13] focus on visual as-
pect of the handover to dig out how robot vision promote and
affect the success of human–robot handover. [13] further delib-
erates proactive human–robot collaboration [14] boosted by vi-
sual perception. Learning-based methods are summarized in [15],
which uncovers the mechanism of building cognitive model and
behavioral block based on machine learning [16] in human–
robot collaboration. Except from vision, those approaches enable
robot to execute smooth motions learned by human demon-
strations are outlined in [17]. [18] aims to impartially evaluate
the research around human factors that are involved in studies
concerning physical interactions and robust manipulation capa-
bilities. They pinpoint the dominant human factors in physical
human–robot interaction (pHRI), recognize the elements often
tackled in correlation, and establish the commonly used assess-
ment methodologies.

In addition, there are some articles comparing various meth-
ods. [19] distinguishes the effects of adaptive and non-adaptive
transport methods. They find the adaptive transport approach
does not yield substantially longer average physical handover
durations compared to the non-adaptive transport approach. The
non-adaptive transport method does not prompt a significantly
sooner handover intervention during the runs compared to its
adaptive counterpart. The adaptive transport method is asso-
ciated with significantly lower ratings for trust in the robot
and perceived safety compared to the non-adaptive transport
method. [20] contrasts four trajectory generation methods for
robot-to-human object handover scenario. [21] engineers and
conducts a comprehensive evaluation of a pair of controllers
designed for human–robot handover interactions. These systems
are constructed with the capacity to allow end-users to delineate
timing parameters for the robot reach motion and deliver feed-
back in instances where the robotic system is unable to fulfill the
established constraints.

Different from the above, this paper focuses on reviewing the
human–robot object handover literature after 2021. Due to the
rapid changes in the current needs and scenarios of human–robot
collaboration, old methods may no longer be suitable for future
applications of robots. We adopt the classification in [2], but the
method taxonomy we propose characterizes each method along
three dimensions. This review aims to provide researchers and
developers with a guideline for designing human–robot handover
or collaboration methods and systems.

3. Method taxonomy

Our method taxonomy for human–robot object handover is
illustrated in Fig. 3. We classify the existing literature from three
dimensions and focus on robot ontology and capabilities, rather
than from the perspective of deep learning methods. We observe
that in the field of robotics, methods differences largely depend
on the agent and task, our taxonomy describes human–robot
object handover research in a more comprehensive fashion.

Robot Role. From a macro perspective, robots can play two
oles in human–robot object handover tasks, receiver and giver.
pecifically, in human-to-robot object handover, the robot acts
s a receiver and takes the object from the human hand, and vice

ersa. Different roles bring various problems and challenges.
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Fig. 3. Method taxonomy for human–robot object handover.
Fig. 4. Robot role distribution in human–robot object handover.

Robot End-effector. With the development of software and
hardware technology, the morphology of robot end effectors has
evolved from low-DOF parallel-jaw grippers to high-DOF anthro-
pomorphic hands. While parallel-jaw grippers are favored by
researchers due to simple mechanical structure and low collision
probability, there are still certain studies on utilizing multi-finger
hand to complete human–robot interaction.

Robot Ability. The process of human–robot object handover
can be divided into two stages: pre-handover and physical han-
dover. For the physical handover stage, the robot capabilities
are reflected in grasping force adjustment and failure handling.
However, the robustness of grasp strategy and motion planning
in the pre-handover stage directly affect the success of object
handover. Therefore, most research work focuses on such two
abilities.

4. Robot role

The proportion of the role of robots in human–robot object
handover tasks in the surveyed research work are shown in Fig. 4.
Overall, more than half of the work focus on making the robot act
as a receiver to complete the task of human-to-robot handover. In
the remaining work, in addition to using robot as regular givers,
some researchers are committed to solving the robot-to-robot
object handover problem. Only one work explored bidirectional
handover scenario. We describe research work in this section
mainly from the perspective of scene settings or task scenarios.

4.1. Human-to-robot handover (H2R)

Indeed, the role of robots as receivers in H2R object handover
tasks is a thorny and incompletely explored problem. Specifically,
robots may face the following challenges:
3

• Human behavior uncertainty: human may behave very dif-
ferently when handing over objects, such as speed, orien-
tation, force, etc. Robots need to be able to adapt to these
uncertainties.

• Real-time response: robots need to have the ability to re-
spond to human motion. This involves efficient sensor data
processing and fast action generation.

• Grasping strategy: robot needs to generate feasible and
collision-free grasp to safely take the object occluded by
human hand.

To this end, researchers have also mainly explored the above
difficulties. Some work train robot object handover policies in
simulation environments. [22] builds a pseudo-robot arm as a
human arm to guide a 7-DOF Franka robot arm to complete the
training of reinforcement learning policy [23] for motion control.
In contrast, [24] applies a multi-agent generative adversarial im-
itation learning to directly learn human–human demonstrations
collected in the real world. Such method enables robot to adapt
to diverse objects in the handover process. However, it is difficult
to achieve sim-to-real transfer for the satisfactory policy trained
in the simulation environment due to challenging acquisition of
fully-observed state in the real world. Therefore, most work try
to implement its ideas on real robots.

We divide human–robot object handover scenarios based on
the selected object number. Specifically, those works that use
only a single or one class of objects demonstrate the effectiveness
of their methods in specific scenarios, while those test multiple
classes of objects model real human–robot interaction scenarios
in the future.

4.1.1. Single object
[25] feeds human hand RGB-D information into a long short-

term memory (LSTM) [26] network to predict final handover
position. [27] generates predictions that encapsulate how fu-
ture human motion could influence the cost of a robot strategy
to receive the object from human giver. In order to eliminate
the error caused by visual perception, [28,29] rely on inertial
measurement unit (IMU)-type sensors to obtain high-precision
human hand poses in real time, thereby providing input for the
proposed method of generating flexible motion of the robot arm.
Differently, other works discuss more specific handover tasks or
scenarios. [30–32] construct a scene in which a human hands a
cup to a robot, and the amount of water in the cup is unknown.
The robot needs to determine whether the cup is empty or filled
with water through human behavior, and plan its motion from
human arm movement. [33] focuses on human-to-cobot dualarm
handover operations for large box-type objects. [34] introduces a
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rediction-planning pipeline for preemptive human robot place-
ent handovers in a indirect paradigm. Although these work pro-
ote the ability of robots to interact with human in specific sce-
arios, they are difficult to meet the requirements of real-world
uman–robot collaboration due to the lack of generalizability.

.1.2. Diverse objects
In order to restore the real human–robot object handover

cene, some literature is dedicated to testing methods on diverse
bjects. Compared with using a single object, such task further re-
uires the robot generalization ability. By employing single-view
isual perception, [35–40] improve smoothness and flexibility
f robot arm motion. Different grasp networks are adopted to
uarantee robot grasp generalizability. [41] imagines a scenario
here a mobile robot cares for patients in the ward, and enables
he robot to choose reasonable grasp to take over the object
rom the patient hand. From the perspective of user privacy, a
ederated learning scheme is used in [42] to distributedly train
he grasp network on multiple clients, making robot adapt to
bjects with various shapes and sizes. In the hardware setup of
he above work, the parallel-jaw gripper is mounted in the tool
enter point (TCP) of the robot arm as the end effector. However,
ew works have explored the object handover scenario on multi-
inger hand robots, and the high degree of freedom of planning
pace makes research in this direction predictably more chal-
enging. [43] inherit the idea of learning-based grasp generation,
nd propose an end-to-end grasp detection network to predict
iverse and dense grasp proposals on object point clouds based
ith 5 predefined grasp taxonomies. This work empowers the
ulti-finger hand robot grasp generalizability, and combines the
echanical structural characteristics of the multi-finger hand to
oost the diversity of grasp configurations. [44] relies on tactile
loves worn on human hand to obtain a classification of the rigid
r soft properties of objects before transferring it, allowing multi-
inger hand to perform predefined torque-based grasp for objects
f different physical properties.

.2. Robot-to-human handover (R2H)

Compared with human-to-robot handover, robots need to
earn dissimilar ability when acting as givers in robot-to-human
andover:

• Human comfort: robots need to understand and follow hu-
man comfort and expectations, such as where, how quickly,
and in which direction objects should be handed to humans.

• Initiative: robots need to be more proactive in determining
the timing and method of handover, which may require
complex predictions and decisions.

• Release strategy: robots needs to determine when and how
to release the object to ensure that the human can safely
and comfortably receive the object.

We describe the scenarios targeted by research work into two
ategories, namely general scenarios and specific tasks.

.2.1. General scenario
A basic robot-to-human handover is tested in [45] to en-

ance smoothness of robot motion. [46,47] set up two handover
cenarios to verify their reactive object handover method. The
traightforward handover is the user approaching and grasping
he object from the robot giver. Unlikely, the user is asked to
erform a secondary task before engaging in the handover in the
erturbed handover. With the same thoughts, [48] treats human
nd robot as a cohesive entity to simultaneously improve the

xperience of both during the object handover process. [49–53]

4

explore how robot can grasp objects with the ability of detect-
ing affordances to promote human receiver convenience. Human
body poses are predicted in [54] to help robot react human and
deliver objects in a proper location. The above studies are all
aimed at improving the capabilities of robots in the pre-handover
stage.

4.2.2. Specific task
There are some work develops object handover systems for

specific tasks, providing inspiration for the deployment of robots
in certain operating environments. [55] targets robot to adap-
tively execute the task of transferring a box to its human counter-
part stands on a ladder, by taking into consideration the preferred
interaction style of the human partner. Similarly, the small box
transfer is conducted in [56]. [57] presents a human–robot col-
laborative assembly system, which enables robot to recognize
human action and deliver necessary object to provide an intuitive
experience for the human. [58] asks robot to serve older adults
in a nursing room. The handover transfer point should guarantee
manipulability and limit the effects of gravity forces. [59] esti-
mates the position of the human hand through a smartwatch and
a smartphone on a human partner to provide a target for robot
motion control.

4.3. Bidirectional handover

Bidirectional object handover refers to the robot ability to act
as both a receiver and a giver, which remains a open challenge.
Specifically, when a robot only acts as a receiver, it can usually
acquire the status of human hand and object through a single
visual perception device. However, when acting as a giver, the
initial position of the object may be far away from the human
hand, which may place more requirements on the performance,
quantity, and installation angle of the sensors, resulting in differ-
ent hardware settings for the two roles. Despite this, there are
some studies probe into bidirectional handover on specific task
scenarios.

[60] establishes a human body comfort model and introduce
human intention recognition to predict object transfer points in
H2R and R2H handovers. [61] facilitates the robot capability to in-
teractively receive or give a large planar object utilizing a vertical
grasp posture with human partner. A supermarket-like environ-
ment is set in [62], where experiments involving human–robot
interaction exclusively through haptic signals are conducted. The
findings underscore the significance of force and tactile feed-
back in successfully executing handover procedures within a
collaborative task. [63] innovatively utilizes an on-shoulder su-
pernumerary robotic limb. They consider a scenario involves a
situation where a human user requires a tool that is beyond
their reach. In this context, the robot is programmed to fetch and
deliver the tool to the human user, and subsequently replace the
tool once the user has completed their work.

5. Robot end-effector

Robots consist of end-effectors and robot arms. For end-

effectors, they are divided into vacuum suction cups, parallel-jaw
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Fig. 5. Robot end-effector distribution in human–robot object handover.

rippers, and multi-finger hands. Vacuum suction cups are often
sed in industrial scenarios to execute pick-and-place task for
eavy objects, yet not employed in human–robot collaboration
asks. The distinction between parallel-jaw grippers and multi-
inger hands is reflected in the degree of freedom, planning
pace, ease of use and manipulability. As shown in Fig. 5, most
urrent research is based on parallel-jaw gripper robots. As for
he robot arms, they are categorized into limited DOF, full DOF
nd redundant DOF, which are determined by whether its DOF
s less than, equal to and greater than 6. For limited DOF robot
rms, they are theoretically unable to reach any position in 3D
pace, resulting in its adoption being limited to certain research
ocused on specific scenarios. Both of the latter two have the
bility to achieve 6D poses. Compared with full DOF robot arms,
he obstacle avoidance and singularity handling capabilities of
edundant DOF robot arms are relatively better. We find that even
f researchers chose parallel-jaw grippers, there exists apparent
ivergence in the choice of robot arms. This section reports on
obot morphology from research efforts, which we span two
ategories based on end-effectors. The robot arms are detailed
n each category.

.1. Parallel-jaw gripper

Parallel-jaw grippers are widely used in current research due
o their simple mechanical structure and degree of freedom. We
bserve that while leveraging simple end-effectors, researchers
refer to select redundant DOF robot arms, which is probably
elated to the fact that most work is oriented towards motion
lanning (detailed in Section 6.2). We subdivide this subsection
nto 3 subcategories according to the classification of robot arms.

Redundant DOF Robot Arm. [22,27–29,35–38,40,48] all use
Franka Emika robot arm. Thanks to its ease of use and rich open
source projects, Franka Emika is one of the most popular robot
arms in the robotic research community. [30,31] employ Kinova
Gen3 and [39] uses a Flexiv Rizon. Kuka LBR/LWR robot arms are
adopted in [56,62]. The Baxter robot is a bimanual robot with 7
DOFs for each arm. Since its inception, it has been favored by
a group of researchers. In the human–robot handover task, it is
applied in [33,55,61].

Full DOF Robot Arm. [32,57,59] use UR5, the most famous col-
laborative robot arm. [34,51,63] adopt Rethink Robotics Sawyer,
Moying Bimanual Robot and Unitree Z1 robot arm respectively.
Limited DOF Robot Arm. The remaining three studies all employ
limited DOF robot arms. We notice that the main goal of these
works are grasp strategies (detailed in Section 6.1), the accessi-
bility of the robot arm in any position in 3D space is not vital for
the author. Specifically, [49] utilizes a 5-DOF Kuka youBot, [41,42]
utilize a 5-DOF Trossen Robotics ViperX 300 and [50] utilizes a 4-
DOF PR2 Bimanual Robot. [45] validates their method on Toyota
Human Support Robot (HSR), which has a single 4-DOF arm.
5

Fig. 6. Robot ability distribution in human–robot object handover.

5.2. Multi-finger hand

The studies using multi-finger hands can be subdivided ac-
cording to the above criteria as well. We also describe the multi-
finger hand used in each literature.

Redundant DOF Robot Arm. [44] adopts Franka Emika robot
arm with an Allegro Hand. The combination of Kuka LBR iiwa
7 and Robotiq 3-finger gripper is used in [52]. By equipping an
anthropomorphic hand on 7-DOF arm, IVO humanoid robot [64] is
used in [54]. [25] employs Talos Humanoid Robot with 7 DOFs for
each arm. The end-effector of Talos Humanoid Robot is a 2-DOF
3-finger gripper.

Full DOF Robot Arm. UR5 is utilized in [43,46,47,53]. [43]
evaluates their algorithms on HIT-DLR II Dexterous Hand. [46,47,
53] use IH2 Azzurra Hand (Prensilia SRL) and Robotiq 3-finger
gripper respectively.

Limited DOF Robot Arm. Only [58] applies Pepper Robot
with 5-DOF arm and 1-DOF hand. They set up a structured task
scenario and test with simple object.

6. Robot ability

Robot ability, in the context of human–robot object handover,
encompasses various capabilities that enable successful interac-
tion between humans and robots. The handover process can be
divided into two distinct stages: the pre-handover stage and the
physical handover stage. While the physical handover stage pri-
marily relies on the robot grasping force adjustment and failure
handling abilities, the robustness of the grasp strategy and motion
planning during the pre-handover stage significantly influence
the overall success of object handover. Consequently, current
research in this field predominantly focuses on enhancing these
two key abilities, aiming to improve the efficiency and reliability
of human–robot object handover.

As shown in Fig. 6, improving the motion planning capabil-
ities of robots occupies the mainstream in human–robot object
handover study. A substantial portion of the effort is dedicated
to enhancing the adaptability and initiative of robot arm move-
ments. Concurrently, pertaining to grasping, such literature en-
deavors to grasp the object by employing simple approaches.
Undeniably, robot arm movements carry significant weight. They
profoundly affect the perceptual experiences of human partici-
pants, particularly their sense of impending danger. Nevertheless,
the rudimentary grasp strategies are unmatched to the fluid robot
arm movements. In addition, object handover proficiency should
account for more than the mere act of transfer — it should
also consider subsequent manipulation or tool-use of objects in
post-handover.
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We survey some works that simultaneously attempt to solve
the above two aspects of the problem. [55,61,63] design specific
application scenarios and devise task-specific controllers for the
robot to accomplish grasp and motion. As for [40], it adopts RL
and trains the policy for grasp and motion generation at the same
time. However, the vast majority of work remains predominantly
concentrated on enhancing a single specific capability in order to
optimize the performance of object handover systems.

6.1. Grasp strategy

Grasp strategy denotes that these studies accentuate the gen-
eration of viable 6D poses and joint angles for the end-effector.
Within these investigations, robots predominantly function as
givers, equipped with parallel-jaw grippers. This is attributable
to the fact that task difficulty diminishes when employing simple
grippers in unobstructed scenarios. Grasp strategy research can
be bifurcated into two main categories: grasp part detection and
grasp configuration generation. The distinction lies in that the
former tends to analyze which part of the object is suitable for
grasping, while the latter is inclined towards the generation of an
array of grasp candidates for selection. Although the first method
offers a more profound comprehension of object characteristics,
the downside is its subpar generalization capability for unseen
objects. Conversely, the latter falls under the domain of generic
grasping [65] and exhibits superior adaptability.

6.1.1. Grasp part detection
[49,50,52,53] focus on enabling robots to comprehend the

object affordance during delivering it, thereby elevating the in-
teraction beyond mere object pick and transfer. By adopting
the thoughts of learning from human demonstrations, [49] de-
velops a task-oriented handover system that facilitates robot
being aware of tool-affordances and their subsequent applica-
tion. Analogously, to extend handover behaviors to unseen ob-
jects, [50] proposes a heuristic-guided, hierarchically optimized
cost structure, the optimization of which adapts object config-
urations for human with restricted arm mobility. [53] modifies
Mask R-CNN [66] and trains the network on synthetic dataset to
segment object affordance. Based on [52,53] further explores the
object deliver orientation method with being aware of object af-
fordances. They compare techniques learned from human–human
handovers with rule-based approaches and find that human part-
ners favor the performance of the latter one. [57] builds an
assembly system based on human action recognition to grasp
proper parts for human. After generating affordance map for
handover scene by utilizing [41,67] formulates the grasp choice
as Markov Decision Process (MDP) [68] and adopts Double Q-
learning (DDQN) [69] to obtain preferred grasp on reasonable
grasp point. [32] constructs a scenario of human giver delivering
container with uncertain amount of water in it to robot. Based on
visual perception, their method estimates the physical properties
of the container and extracts feasible grasp region to take over
the object.

6.1.2. Grasp configuration generation
[43] generates diverse grasps with five taxonomies for an-

thropomorphic hand based on PointNet++ [70], which strives
to enhance grasp generalizability when receiving objects from
human hand. [51] extracts the pose of the human hand and object
through various visual modules, and determines the grasp config-
uration through analytical ways. [42] follows federated learning
scheme to train its grasp network to protect user privacy. Their
network takes multi-view images as input and predict 6-DOF
poses for the end-effector. [44] considers classifying soft/rigid
object with tactile glove before delivering it to robot. The robot
perform predefined configurations for soft/rigid to stably grasp it
without damage. [62] designs a visual servoing controller and a
grip force controller to obtain grasp configuration.
6

6.2. Motion planning

Compared to the relatively immature stage of works centered
on grasp strategy, the field of motion planning is blossoming.
Explicitly, endeavors in motion planning aim to make robots
safer, smoother, and more proactive in object handover process.
[22,24] evaluate their approaches in simulation, however, facing
the challenging of sim-to-real transfer. We categorize the studies
experimented on real robots into three types: those based on
learning, those reliant on control, and those grounded in analysis.

6.2.1. Learning-based motion planning
Currently, the learning-based methods can be further divided

into supervised learning (SL) or reinforcement learning (RL)
approaches. [25,39] adopt the paradigm of temporal models,
training on their constructed datasets to generate the motion
trajectory of the robot arm with RGB-D images as input. Pre-
cisely, [39] integrate target-invariance thoughts [71] and Trans-
former [72] to generate robust and flexible trajectories. Similar
to [25,73] adopts LSTM to predict handover position. [34] encodes
human pose and gaze in a RNN-based network [74] and decodes
probabilistic heatmap of object transfer point. [54] applies motion
attention [75] to predict human body pose to promote safe and
smooth R2H handover. Based on sensory data from IMU and
smartwatch, [59] incorporates Differentiable Ensemble Kalman
Filter (DEnKF) [76] to facilitate the attainment of equilibrium
between less-restricted movements and the realization of stable
and effective pose estimations that are conducive for human–
robot collaboration. In contrast, [37,38] utilize Twin Delayed
Deep Deterministic policy gradient algorithm (TD3) [77], a pow-
erful actor–critic RL methods to accomplish object handover.
Notably, [37] extends the ideas of [36], replacing model predic-
tive control (MPC) [78] with RL, thereby enhancing the motion
capability of the robot arm.

6.2.2. Control-based motion planning
There are some works that favor control methods to tackle the

task of human–robot object handover. For instance, [29–31,45]
model the handover system and compute optimal hyperparame-
ters for PID-type controllers. [27,36] go a further step, employ-
ing MPC to perform reactive H2R object handover. It is worth
mentioning that although [36–38] primarily focus on motion
planning, they both use the grasp generation network from their
previous work [79], hence exhibiting the grasp generalizability for
diverse objects.

6.2.3. Analysis-based motion planning
[35] obtains reach cost and selects reasonable grasp target

frame by frame to guarantee temporal consistency. A human
comfort model and transfer intention recognition model are es-
tablished in [58,60], which are applied to calculate object transfer
point. This aspect incorporates the target 6D pose of the end-
effector. Within the analysis-based motion planning methods,
dynamic movement primitives (DMPs) [80] are widely used to
enhance robot performance in human–robot object handovers.
Given a small amount of human demonstration, DMPs can gener-
ate flexible motion trajectories and generalize to dynamic
changes in the target position. [28,33,46,47,56,81] adopt DMPs
and their variations to obtain the robot arm motion. Due to their
adaptability to various tasks, DMPs become the first choice when
learning-based methods are difficult to applied.
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Fig. 7. Generic human–robot object handover framework.
Fig. 8. Human-to-robot handover platform by anthropomorphic hand.
. Generic framework and implementation for anthropomor-
hic hand robot

In this section, we first abstract a generic method frame-
ork for human–robot object handover based on the literature
eviewed above. This framework is versatile, accommodating dif-
erent robotic roles, diverse end effectors, and varying capabil-
ties. Moreover, it can be flexibly scaled up based on the dis-
inct requirements of differing tasks. Subsequently, leveraging
his framework, we implement and verify a human–robot object
andover system by anthropomorphic hand robot. Our frame-
ork can expedite the design of methods for human–robot in-
eraction and collaboration for researchers and developers.

.1. Generic framework

We pay special attention to [35–40,43], by virtue of achieving
eneralizability to grasp diverse objects under the premise of sim-
le system hardware requirements, and enabling the robot arm
o execute safe and smooth movement. Although these works all
olve the H2R object handover problem, their methods and ideas
an be extended to more general human–robot object handovers.
ig. 7 illustrates a generic human–robot object handover method
ramework that we abstract from these studies.

The framework is composed of four modules, and each mod-
le can be flexibly expanded as per the needs of the task. We
rgue that visual information is still the dominant perceptual
nput in human–robot object handover tasks, so the basic input
odule is commonly completed by an RGB-D camera. The scene
nderstanding module takes the visual information obtained by
7

upstream as input to extract information of interest in different
tasks. The above work apply different methods (human body key
point detection, hand-object detection, or point cloud segmenta-
tion) to extract point clouds of human hands and objects. This
idea generalizes to R2H object handover. The grasp generation
module feeds the object point cloud into the point-based grasp
network to predict dense grasp candidates. The motion planning
module allows the robot to reactively execute object handover.

Based on this framework, researchers and developers can
freely integrate more customized modules to serve the needs of
their human–robot collaboration systems. Our proposed frame-
work does not place any restrictions on the form and function
of the robot, and can fuse multiple modes of perception such
as force, touch or audio, thereby reducing the complexity of
designing object handover approaches.

7.2. Object handover system implementation for anthropomorphic
hand

Combining the method framework elucidated in Section 7.1,
we reproduce the H2R object handover approach proposed in
[43]. As shown in Fig. 8, our handover platform consists of a 6-
DOF UR5 collaborative robot arm, a 9-DOF Schunk SVH Hand and
an Azure Kinect RGB-D camera. AHG-Net based on PointNet++ is
adopted as the backbone to generate dense grasp configurations
by taking single-view object points as input. The predicted hand
joints are remapped from HIT-DLR II Hand to Schunk SVH Hand.

In the experiment, we select 30 novel objects and keep the
same criteria as in [43] to determine the success of handover.
Each object is delivered 10 times with random poses and human
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Fig. 9. The qualitative results of our implemented human-to-robot object handover system.
hand occlusion. We only ask the human giver complete the test
on the frontal position. The handover time, success rate and num-
ber of attempts for each object are listed in Table 1. Overall, our
implemented system obtain average success rate of 73.3%. The
decrease in success rate is expected because our system only uses
a low-precision RGB-D camera to capture the scene, and the joint
remapping method is applied to transfer different hand grasp
configurations, rather than training a new grasp network with
new dataset from scratch. The qualitative results are described in
Fig. 9. The robot can not only adapt to diverse objects with various
shapes, but also generalize to unpredictable poses of delivered
objects occluded by human hands.

Experiment results demonstrate the effectiveness of
abstracted framework in Section 7.1, which allow researchers and
developers quickly build a human–robot collaboration system by
implementing each module with existing methods.

8. Future direction

In this section, we first review some work that does not
fall within the scope of proposed method taxonomy. These in-
clude robot–robot object handovers, object handover datasets,
8

and those oriented towards the physical handover phase. Inspired
by the methodological ideas and implementation approaches of
studies after 2021, we put forward some possible future research
and development directions.

8.1. Other works

In the field of human–robot object handover, numerous ca-
pabilities contribute to the success of this interaction. While
research primarily emphasizes improving two abilities in pre-
handover stage, there are other aspects that also play a crucial
role in enhancing the performance of object handover systems.

One such aspect is robot-to-robot handover (R2R), which ex-
plores the transfer of objects between different robot arms or
within a single robot hands. Additionally, the creation of com-
prehensive datasets is essential for advancing human–robot han-
dover research. These datasets provide a valuable resource for
training data-driven models and improving the generalization
capabilities of handover systems. Furthermore, the physical han-
dover stage, which involves force perception, error handling,
and human intention understanding, is another critical aspect.
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Table 1
Real-robot experimental results for human-to-robot handover.
Object ID Times (s) Success rate Number of attempts

1 19.11 ± 5.02 80% 1.2
2 19.28 ± 6.89 90% 1.7
3 18.52 ± 7.31 60% 2.0
4 18.90 ± 4.67 70% 1.3
5 20.03 ± 9.46 80% 1.9
6 18.43 ± 4.46 60% 1.6
7 19.89 ± 4.29 70% 1.4
8 18.97 ± 3.69 80% 2.0
9 18.78 ± 3.92 50% 1.1
10 19.66 ± 3.37 90% 1.5
11 18.85 ± 4.88 80% 1.8
12 19.22 ± 2.01 70% 1.3
13 19.15 ± 6.45 60% 2.0
14 19.46 ± 4.51 80% 1.6
15 20.46 ± 7.96 90% 1.4
16 18.91 ± 5.14 70% 1.6
17 19.33 ± 6.12 60% 1.2
18 18.23 ± 7.65 80% 1.8
19 18.83 ± 5.38 70% 1.0
20 19.96 ± 10.48 60% 1.8
21 18.39 ± 4.89 80% 1.6
22 19.78 ± 4.22 90% 1.9
23 18.92 ± 3.54 60% 1.3
24 18.68 ± 3.86 70% 1.7
25 19.58 ± 3.25 80% 1.5
26 18.76 ± 4.18 60% 1.4
27 19.27 ± 1.92 70% 1.9
28 19.18 ± 6.32 80% 1.2
29 19.54 ± 4.77 90% 1.6
30 20.52 ± 7.62 70% 1.5

By considering these different aspects, researchers aim to en-
hance the adaptability, coordination, and overall performance of
human–robot object handover systems.

8.1.1. Robot-to-robot handover (R2R)
Broadly speaking, robot-to-robot object handover includes not

nly system settings in which objects are transferred between
ifferent robot arms, but also scenarios in which a single agent
asses an object from one hand to another, known as self-
andover. Most research focuses on the scenario where two robot
rms cooperate with each other, but the task of self-handover
s rarely investigated. This is because the multi-robot arm setup
s more in line with the needs of current industrial scenarios,
nd the low probability of self-collision also reduces the difficulty
f algorithm design and development. [73,82–84] evaluate their
pproaches on two Franka Emika Panda robot arms. [82] equips
wo eye-in-hand cameras to complete three different industrial
arts handover. [73] learns to generate reasonable trajectories
rom temporal image input. [83] takes attempts to multi-object
earrangement task. [84] tackles the dynamic handover of one
obot arm throwing object and another catching it precisely. [81]
onducts a hammer self-handover in the experiment. However,
he adaptability and coordination capabilities of the robot still
eed to be improved.

.1.2. Dataset
Compared with methods based on optimization and analysis,

ata-driven methods have better generalization capabilities and
an effectively handle more corner cases. Data-driven methods
ypically require large-scale datasets to train a powerful model,
nd some researchers are committed to building such datasets
o promote the progress of related studies. [85] presents H2O, a
ataset of 18k video clips involving human-to-human (H2H) ob-
ect handovers, which is proven to be effective for robot imitation
earning on the handover task. Similarly, [86] adopts a markerless
pproach to capture natural real-world motions and clothing, and
9

employs a multi-camera setup to collect skeletons, fused point
clouds, grasp type and handedness labels, object, giver hand, and
receiver hand 2D and 3D segmentation, giver and receiver com-
fort ratings. [87] records bimanual human–human handover with
annotation of three handover phase: reach, transfer and retreat.
Human preferences are a crucial factor in handover process is
considered by [88]. Their dataset contains comfort and transfer
point satisfaction ratings. Some other literature generate their
datasets for the specific scenarios. [89] arranges three agents
(self, other, cobot) to manipulate objects in the kitchen, and
investigates how human perceive danger under different situa-
tions. [90] constructs a naturalistic collaboration scenario, where
a mobile manipulator robot assists a person during a crafting
session by providing and retrieving objects used for wooden piece
assembly (functional activities) and painting (creative activities).
Similar to [32,91] proposes an audio-vision-based dataset and
challenge, which estimates object physical properties in five tasks
with assorted difficulty levels. [92] continues the cup transferring
task in [30,31] and collects the dataset from human–human in-
teraction [93] with eye, head and hand motion data to classify
cups with three levels of liquid: empty, half-full, and full of
water. [94] discusses how to release grip properly based on the
force detection. In addition, [95] proposes a handover benchmark
based on PyBullet [96] simulator.

8.1.3. Physical handover
As described in Section 6, the robot ability in the pre-handover

stage is indeed the most significant factor related to whether
the object handover can be successfully executed. However, in
the physical handover stage, the robot force perception and er-
ror handling capabilities are undervalued but effective to more
precise handover. [97–99] integrate various sensory information
to realize reasonable grip-release methods. [93,100–103] concen-
trate on human intention understanding to enable the robot to
execute actions expected by human in advance. The aforemen-
tioned methods primarily rely on visual cues to infer human
intentions, which are effective when human actions involve sig-
nificant movement. However, they face challenges in quickly
perceiving subtle changes at a finer level. In contrast, electroen-
cephalography (EEG) [104] and electromyography (EMG) [105]
offer an alternative perspective for understanding human inten-
tion during object handover [106,107]. EEG measures the electri-
cal activity of the brain, while EMG records the electrical signals
generated by muscle contractions. These biological signals pos-
sess certain advantages that can complement the visual-based ap-
proaches mentioned earlier. A handover scenario in which a robot
dynamically transfers objects is implemented by [108]. [109]
performs an experiment in virtual reality (VR) where a simulated
robot offers tools with different degrees of visual occlusion. [110]
proposes a method for learning human-to-human handovers ob-
served from motion capture data. Based on multimodal percep-
tion, [111] introduces a methodology for fostering collaboration
between humans and robots, employing human action recogni-
tion, hand gesture recognition, tactile feedback handovers and
user personalization. [112] delves into how to cultivate robot to
behave and operate in concordance with human user preferences,
work habits and task constraints. [113–115] consider psycholog-
ical and ethical aspects in human–robot handovers, which aim
to enhance trust and delight mood for human partner in the
collaborative process. [116,117] explore realizing handover not
reliant on visual information. Specifically, [116,117] use vibrotac-
tile stimulus and voice respectively. [118] evaluates the handover

in aerial case.
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.2. Future directions

We believe that the field of human–robot object handover
ill gradually develop into a research and application paradigm
hat is mainly data-driven and supplemented by model guidance.
his paradigm shift is expected to become increasingly evident
ue to the advantages of combining data-driven approaches with
odel-guided approaches.
The data-driven approach is able to learn from a large num-

er of real handover cases and adapt to a wide variety of ob-
ects, human users and environments. This enables robots to
rovide a more natural and smooth handover experience in future
uman–robot interactions. In addition, data-driven methods can
lso improve the accuracy of predictions, allowing robots to more
ccurately predict and understand the behavior and needs of
uman users. However, data-driven approaches also have limi-
ations, such as the need for large amounts of high-quality data
nd performance issues when the data is sparse or unseen. In
his case, model-guided approaches can play an important role.
odel-guided methods are usually constructed based on phys-

cal principles or human behavior patterns and can provide a
ore general, theoretical understanding. This method can help

obots make reasonable predictions and decisions when there is
nsufficient data or the data cannot be covered.

Taken together, human–robot object handover that is mainly
ata-driven and supplemented by model guidance will be the
ain direction of future development, which will bring higher
fficiency and better user experience to human–robot interaction.
he potential future directions combined with recent trends are
isted as follows.

Large Language Model (LLM). With the emergence of Chat-
PT, LLM has also attracted the attention of more researchers
ut of the field of natural language processing [119]. [120,121]
uccessfully accomplish basic human–robot interaction tasks us-
ng LLM. However, it is evident that the robot performance is
ot on par with that of RT-2 [122], Palm-E [123], and other
imilar systems, which are capable of independently completing
asks within the workspace. This disparity in performance can
e attributed to the presence of human partners during the
nteraction. Integrating LLM’s advanced semantic understanding
nd inference capabilities, and taking human factors into con-
ideration to build a safe and natural human-in-the-loop system
or robots can effectively realize more complex object handover
asks.

Multi-finger Hand. Demonstrated by Fig. 5, object handover
ith multi-finger hands is rarely explored. Combined with Fig. 6,
e suggest that researchers should attempt to improve the grasp
bility of multi-finger hands.
Long-sequence Task. At present, the vast majority of lit-

rature is devoted to the object handover task itself. Even if
ome researchers outline their methods as a spatial–temporal
ased paradigm, which is essentially a short-sequence task. How
o introduce the ability of object handover into complex long-
equence human–robot collaboration tasks remains an open chal-
enge.

. Conclusions

This paper provides an in-depth review and analysis of recent
evelopments in human–robot object handover, a fundamental
nd challenging aspect of human–robot collaboration. We explore
his important area from multiple dimensions, including the role,
nd-effector and ability of robots.
To further contribute to this field, we propose a generic frame-

ork for human–robot object handover based on the methods
eviewed in this paper, and implemented a handover system
10
for an anthropomorphic hand. Our experiments not only verifies
the effectiveness of the proposed framework but also highlight
potential directions for future research, such as combining with
LLM, focusing on multi-finger hand and long-sequence tasks.

As robots continue to be employed in human production and
life, the importance of efficient and intuitive human–robot ob-
ject handover will inevitably increase. We hope this review and
our proposed framework will serve as valuable resources for
researchers and developers in designing and implementing their
own human–robot collaboration systems. As we move forward
in this exciting field, we anticipate that further innovations will
bridge the gap between human and robot collaboration, trans-
forming the way we live and work.
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