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ABSTRACT

Medical Slot Filling (MSF) task aims to convert medical
queries into structured information, playing an essential role
in diagnosis dialogue systems. However, the lack of sufficient
term semantics learning makes existing approaches hard to
capture semantically identical but colloquial expressions of
terms in medical conversations. In this work, we formalize
MSF into a matching problem and propose a Term Seman-
tics Pre-trained Matching Network (TSPMN) that takes both
terms and queries as input to model their semantic inter-
action. To learn term semantics better, we further design
two self-supervised objectives, including Contrastive Term
Discrimination (CTD) and Matching-based Mask Term Mod-
eling (MMTM). CTD determines whether it is the masked
term in the dialogue for each given term, while MMTM di-
rectly predicts the masked ones. Experimental results on two
Chinese benchmarks show that TSPMN outperforms strong
baselines, especially in few-shot settings1.

Index Terms— Medical Dialogues, Spoken Language
Understanding, Slot Filling, Low Resource, Pre-training

1. INTRODUCTION

Medical Slot Filling (MSF), which intends to automatically
convert medical queries into structured information by detect-
ing medical terms, has recently received increased attention
[1–3]. It plays a vital role in diagnosis dialogue systems [4,5] .
Different from conventional slot filling tasks in NLP that label
the explicit words in a given utterance and extract the struc-
tured information (a.k.a slot-value pairs) based on the labeled
words [6–9], MSF exists the non-alignment issue between a
patient query and corresponding provided medical term slots
[2, 3, 10–12]. To be specific, colloquial expressions of terms
in patient queries vary from formal expressions. As shown
in Tabel 1, the slot-value Symptom:Bellyache does not

This work is supported by the Key Programs of Chinese Academy of Sci-
ences (No.ZDBS-SSW-JSC006-2), and the National Natural Science Foun-
dation of China (No.62206294).

1Our codes can be found at https://github.com/FlyingCat-fa/TSPMN.

Patient Query
My stomach feels bad these days, pain in the area
above the navel, poop twice a day, belly bulge,
shapeless, take cefixime currently, what happens?
我这几天肚子感觉难受，肚脐眼上面的位置疼
痛，一天大便两次，肚子胀，不成型，目前在
吃头孢克肟，这是怎么回事呢？
Slot-values Pairs Label
Symptom:Bellyache (腹痛)
Symptom:Diarrhea (稀便)
Symptom:Abdominal Distension (腹胀)
Medicine:Cefixime (头孢克肟)

Table 1. An example of a patient query and the label that
consists of slot-value pairs (e.g, Symptom:Diarrhea).

explicitly appear in any specific spans but is mentioned im-
plicitly in the query. Therefore, MSF requires a deeper un-
derstanding of term semantics with medical knowledge. Be-
sides, medical data is more dependent on expert annotation,
and the annotation is expensive to obtain in practice, which
makes annotation data particularly insufficient.

Recent works [2,3,13] have been proposed to address the
above problems, which can be generally grouped into two
categories: multi-label classification and generative methods.
The first category of methods [2, 3] regards pre-defined slot-
value pairs as different classes. They can utilize unlabeled
patient queries with doctor responses to produce pseudo la-
bels as weak supervision. However, it requires that unlabeled
data map to the limited pre-defined terms, making it challeng-
ing to exploit a larger unlabeled medical conversation corpus.
The second category of methods [13] commonly models MSF
as a response generation task through a dialog prompt. In this
way, MSF benefits from dialogue-style pre-training utilizing
the large unlabeled medical dialogue corpus. However, the
divergence between MSF and the response generation task in-
evitably undermines the performance. Besides, as the model
generates terms in sequential order, the errors accumulated
from previous steps will be propagated to the later steps [14].

Unlike these approaches, we propose a Term Seman-
tics Pre-trained Matching Network (TSPMN) that takes bothIC
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MMTM:

Transformer Layers

Input

Output Layer

Term Token Masking

h[M] h[M] h[M]h[EOT]

True

[CLS] acute gastritis [EOT] diarrhea [EOT] bellyache [EOT] ... [SEP]
 

h[EOT]

False

h[EOT]

TrueCTD:  acute gastritis bellyache

[P] My stomach feels bad these days, pain in the area above the navel, poop ... [SEP]

Pre-trained Model

Input

Output Layer h[EOT]

True

[CLS] Abdominal Distension [EOT] cold [EOT] Cefixime[EOT] ... [SEP]
 

h[EOT]

False

h[EOT]

True

Random Sampling

Pre-training

Fine-tuning Prediction
Symptom: Abdominal Distension
Medicine:  Cefixime
...

[P] Stomach is very painful ... [D] It may be acute gastritis . If bellyache persists ... [SEP]

[P] Stomach is very painful ... [D] It may be    [M]      [M]     . If       [M]      persists... [SEP]

Fig. 1. Illustration of Term Semantics Pre-trained Matching Network (TSPMN). The input consists of a term sequence and
a medical dialogue/patient query. [EOT] is the separator for the previous term. [P] and [D] represents patient and doctor,
respectively. TSPMN first learns term semantics through our self-supervised tasks. Then the pre-trained TSPMN is fine-tuned
to match candidate terms and the patient query for MSF. Note that all examples are translated from Chinese, and the example
of fine-tuning is from Table 1.

terms and queries as input. Therefore, the model only needs
to learn how to match between the queries and given terms
rather than map the queries into limited pre-defined labels,
which reduces the data restrictions. Moreover, two self-
supervised tasks are proposed for TSPMN to learn term
semantics better, including Contrastive Term Discrimination
(CTD) and Matching-based Mask Term Modeling (MMTM).
CTD is a matching task close to MSF, while MMTM is an
adaptive Mask language Modeling (MLM) task to predict
masked term tokens better by matching with golden tokens.
In this way, TSPMN can not only use large-scale medical dia-
logue corpora for pre-training, but also reduce the divergence
between the pre-training and fine-tuning phases. Experimen-
tal results on two Chinese benchmarks show that TSPMN
outperforms strong baselines, especially in few-shot settings .

2. PROBLEM STATEMENT

Given a patient query q containing colloquial expressions,
Medical Slot Filling (MSF) task aims at transforming the
query q into the grounded formal representation with discrete
logical forms (slot: value). The candidates of slot
and value are pre-defined according to Medical Knowl-
edge Graphs, where the value is a medical term, and the
slot represents the category of the term (e.g., (Symptom:
Bellyache)). We formulate MSF as a matching problem,
in which we match each term candidate to the patient query q
to determine whether the candidate appears in q.

3. APPROACH

This section presents how Term Semantics Pre-trained Match-
ing Network (TSPMN) models Medical Slot Filling (MSF) by

matching terms and patient queries. Then two term semantics
pre-training tasks for TSPMN will be introduced.

3.1. Matching for MSF

For efficient matching while considering the length limita-
tions of the model input, we first construct multiple term se-
quences by concatenating the terms in the term set T . Each
term sequence is in the following form:

St = (T1,[EOT], . . . , Ti,[EOT], . . . , Tn,[EOT]) , (1)

where n and [EOT] are the term number and the separator
following each term, and Ti represents the tokens of the i-th
term. Given a patient query, we concatenate each term se-
quence with the query as a whole sequence x, and encode x
with a pre-trained language model H such as BERT [15] to
capture semantic information adequately:

(h[CLS], ...,h[EOT], ...,h[SEP]) = H (x) . (2)

We take each hidden state h[EOT] as the hidden state of the
term before [EOT]. Then the probability about whether Ti

appears in the query is predicted as follows:

pi (x; θ) = Softmax (FFN (hTi)) , (3)

where hTi means the hidden state of term i and θ is the model
parameter. We map hTi to the scores of True and False
independently through FFN, which means that term i is men-
tioned in the query (True) or not (False), respectively.
pi(x; θ) ∈ R2 represents the scores normalized by softmax
function. If the normalized score of True is bigger than the
False, we choose the term i to fill the corresponding slot.

The MSF loss function is defined as:

LMSF = −
n∑

i=1

∑
k

yi,k log pi,k, k ∈ {0, 1}, (4)



where n and k denote the number of terms and the index of
True or False, and yi ∈ {[1, 0] , [0, 1]} is the label indicat-
ing whether Ti appears in the patient query.

3.2. Term Sementics Pre-training

Pre-trained language models (PrLMs) show excellent per-
formance in many tasks [15, 16]. There are also numerous
PrLMs for dialogue representation [17–21] or medical do-
main adaptation [22–26]. Inspired by these works, we focus
on spoken understanding in medical dialogues and propose
two self-supervised tasks to better model term semantics,
which can not only use large-scale medical dialogue corpora,
but also narrow the gap between those tasks and MSF as
much as possible. The details are described as follows.

3.2.1. Matching for Pre-training

We use three public unlabeled medical dialogue datasets
MedDialog [27], KaMed [28], and ReMeDi-large [29], as
pre-training corpora, which contain over 3.5M dialogues in
more than 100 medical departments. The public sougoupinyin
medical dictionary2 and the medical dictionary THUOCL [30]
are merged as a large medical terminology Tlarge. The terms
in the knowledge base of the pre-training corpora are also
added to Tlarge. Based on Tlarge, we retrieve the terms
in each medical dialogue by string matching and construct
dialogue-terms pairs for pre-training. Similar to the matching
for MSF in section 3.1, we construct multiple term sequences
by concatenating the terms and the dialogue as the input.
Specifically, each term sequence consists of the sampled pos-
itive terms from the current dialogue and negative terms that
are not in the current dialogue. The difference from MSF is
that we only mask the sampled positive terms. In this way,
the model can learn term semantics from dialogue contexts
rather than just focus on string matching. We denote the input
as xmask and encode it in the same way as equation 2:

(h[CLS], ...,h[EOT], ...,h[M], ...,h[SEP]) = H(xmask), (5)

where M means a masked token of terms. The hidden states
are used for our two self-supervised tasks. The two tasks
share the same input and encourage the pre-trained model
to capture different aspects of semantics through multi-task
learning. We define the total pre-training loss as the summa-
tion of two aforementioned losses:

Lpretrain = λLCTD + (1− λ)LMMTM , (6)

where λ is a tunable weight used to adjust the contribution of
different losses, LCTD and LMMTM are the losses of CTD
and MMTM, respectively. The details of those two tasks are
introduced in the following subsection.

2https://pinyin.sogou.com/dict/detail/index/
15125, updated to October 13, 2017.

3.2.2. Self-supervised Tasks

Contrastive Term Discrimination. For each term in the term
sequence, CTD aims to determine whether it belongs to the
current dialogue. Similar to MSF in section 3.1, we use hid-
den states of [EOT](hTi

= h[EOT]i
) to represent the front

term after matching with the patient query. The operation is
the same as equations 3 and 4.
Matching-based Mask Term Modeling. This task is mo-
tivated by masked language modeling (MLM) [15] with two
improvements to match MSF: 1) MMTM only masks medical
terms, 2) The masked always appears in the Tlarge. There-
fore, the model can not only learn semantics from the dia-
logue context but also more fully model the semantic interac-
tions of the term and the dialogue. h[M] is used to predict the
mask. We compute the same cross-entropy loss as MLM.

4. EXPERIMENTS

4.1. Datasets and Evaluation Metrics

Dataset Train Dev Test Slot Value(Term)
MSL 1152 500 1000 1 29

MedDG 50965 6956 3645 4 155

Table 2. Data statistics of MSL and MedDG datasets.

We evaluate our method on two Chinese medical datasets:
MSL [2] and MedDG [1]. MedDG was initially constructed
for the medical dialogue system and labeled with the medical
slots, which can be used for Medical Slot Filling (MSF). The
statistics of the datasets are shown in Table 2. For evaluation,
we follow the MSL guidance [2] for all individual metrics:
Precision, Recall, Micro F1, Macro F1 and Accuracy.

4.2. Implementation Details

We initialize our model with Chinese BERT-base [15]. Dur-
ing the pre-training phase, the batch size is 48, and 1-bit
Adam [31] is used as the optimizer. We set the learning rate
and pre-training epoch as 3 × 10−5 and 5, respectively. And
λ is set to 0.9. During the fine-tuning phase, AdamW [32] is
used as our optimizer with an initial learning rate of 1×10−5.
The batch size is 8 for MedDG and 32 for MSL. We set the
term number n of each term sequence to 20, 15 and 20 for
pre-training, fine-tuning on MSL and MedDG, respectively.

4.3. Main Results

Full Training Evaluation. From Table 3 we can see that our
model achieves new state-of-the-art results. The improve-
ments of all metrics over baselines are statistically significant
where p < 0.05 from significance testing. Compared with
the classification method BERT+TST and the generative-
based method PromptGen, which are enhanced or pre-trained



Model MSL MedDG

P R mi-F1 ma-F1 Acc P R mi-F1 ma-F1 Acc

DRNN [2]† 83.43 67.85 74.83 65.17 52.5 96.55 97.34 96.95 82.8 73.39
DRNN+A [2]† 82.11 70.86 76.07 67.42 51.9 98.53 96.69 97.6 83.62 75.25
DRNN+A+WS [2]‡ 82.94 79.44 81.15 76.95 58.3 - - - - -
TextCNN-Raw [3]† 90.37 64.31 75.14 64.28 51.6 97.5 95.65 96.57 80.64 72.57
BERT-Raw [3]† 89.78 88.63 89.2 87.03 70.9 99.3 99.38 99.34 84.82 74.15
BERT+TST [3]‡ 90.95 90.81 90.88 89.28 72.9 - - - - -
PromptGen [13]§ 89.11 87.57 88.34 87.75 79.6 - - - - -

TSPMN-MedBERT 90.91 91.11 91.01 90.45 81.4 99.38 99.5 99.44 86.51 98.44
TSPMN 92.33 90.66 91.49 90.62 83.4 99.61 99.43 99.52 86.55 98.77

w/o MMTM 91.14 90.66 90.90 89.74 82.80 99.45 99.43 99.44 86.34 98.44
w/o Pre-train 85.76 88.40 87.06 86.36 74.50 99.21 99.28 99.25 86.00 97.86

Table 3. Full training evaluation on MSL and MedDG datasets. †: we cite the results of these models on MSL from the original
papers [2,3], and obtain the results on MedDG based on their released codes. ‡: the models require homologous unlabeled data.
§: as the authors did not release their code, we cite the results of PromptGen on MSL from the original paper [13].

Model
1-shot 2-shot 5-shot

mi-F1 ma-F1 Acc mi-F1 ma-F1 Acc mi-F1 ma-F1 Acc

DRNN+A 20.66±3.32 11.63±3.15 7.16±1.88 33.69±3.38 27.96±4.89 11.74±1.15 52.83±4.84 50.24±5.3 23.74±3.56
DRNN+A+WS 70.55±1.62 64.18±4.06 42.08±1.51 71.14±1.09 64.84±0.67 42.96±2.06 75.11±0.87 70.56±1.36 46.74±0.87
BERT-Raw 14.74±4.44 6.93±3.78 4.56±1.99 41.76±13.71 31.25±17.21 17.84±6.29 73.62±1.8 68.3±2.93 46.8±2.14
BERT+TST 71.68±3.19 62.5±5.68 49.76±2.56 72.76±1.06 62.55±3.51 51.46±1.9 77.55±0.68 71.08±1.16 55.66±1.63

TSPMN-MedBERT 78.19±0.86 77.81±0.25 53.32±1.6 79.34±0.93 79.1±1.43 55.76±2.14 83.34±1.04 83.27±1.13 64.08±1.96
TSPMN 78.52±2.65 79.32±1.19 55.78±4.61 81.87±1.21 81.93±1.56 60.5±2.18 84.74±0.83 83.96±0.59 67.28±1.79

w/o MMTM 77.82±2.32 78.24±1.47 55.68±3.63 81.37±1.2 81.49±0.59 61.2±1.86 84.22±0.83 84±0.91 66.08±1.84
w/o Pre-train 75.12±1.3 74.69±0.77 48.78±2.45 77.59±0.45 76.87±0.48 53.86±0.98 81.61±1.64 81.64±1.46 60.78±3.13

Table 4. Few-shot evaluation on MSL. The means and standard deviations over five runs are reported.

on medical corpora, our TSPMN shows consistent improve-
ments, which we attribute to TSPMN utilizing both large-
scale unlabeled medical dialogue corpora and narrowing the
discrepancy between the pre-training and fine-tuning phases.
For further analysis, we remove the MMTM objective and
then remove both MMTM and CTD, denoted as TSPMN w/o
MMTM and TSPMN w/o Pre-train. We further replace our
self-supervised objectives with the original BERT objectives,
denote it as TSPMN-MedBERT. From the perspective of pre-
training corpora, TSPMN and TSPMN-MedBERT perform
better than TSPMN w/o Pre-train, illustrating the importance
of continuous pre-training on large-scale medical dialogue
corpora. From the perspective of pre-training tasks, the com-
parison of TSPMN and TSPMN-MedBERT indicates that
the closer pre-training tasks get to the target task, the more
performance gain can be achieved. The ablation experiments
also verify the effectiveness of CTD and MMTM.
Few-shot Evaluation. We further evaluate our method in
more challenging few-shot settings. In the k-shot setting, we
select k training examples from the original training set for
each term to form the training dataset. The initial validation
and test data are still used for the few-shot evaluation. As
shown in Table 4, TSPMN achieves more performance gains
than baselines in few-shot settings. Further, we find that

TSPMN outperforms baselines on most measures even with-
out pre-training, which validates the excellence of the novel
matching paradigm of TSPMN in low resource scenarios.
As shown in Table 3 and Table 4, compared with TSPMN-
MedBERT, TSPMN achieves more relative improvement in
few-shot settings than full training settings, which indicates
that the smaller discrepancy between pre-training and fine-
tuning phases is more significant in low resource scenarios.

5. CONCLUSION

The variation of terminology complexity between patients
and formal providers requires a deeper and richer semantics
understanding, which has been a headache in Medical Slot
Filling (MSF) task. To learn term semantics thoroughly, this
paper proposes Term Semantics Pre-trained Matching Net-
work (TSPMN) with two self-supervised objectives, includ-
ing Contrastive Term Discrimination (CTD) and Matching-
based Mask Term Modeling (MMTM). We reveal the ex-
cellence of TSPMN and the proposed training objectives
through detailed experiments. The limitation of this paper is
that the value of medical slots only consider as terms, which
ignores the possible status corresponding to terms in more
complicated scenarios, and we leave it to our future work.
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