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Abstract—An increasing number of individuals are turning
to online self-diagnosis by matching their symptoms with po-
tential medical conditions. This process involves two primary
components: symptom inquiry and disease prediction. Existing
works employ two separate modules to learn these tasks in-
dividually. Nevertheless, this intuitive approach encounters low
data efficiency due to the separate learning of each module. In
addition, previous research incorporates symptom statuses solely
as part of the input without any additional modeling. However,
this oversight neglects the importance of symptom status, which
indicates whether the user has experienced the symptom. The
status significantly influences both symptom inquiry strategies
and disease prediction. To address these challenges, we propose
a Status-Aware Mask Prediction Framework for online disease
diagnosis, called SA-MPF. SA-MPF formalizes symptom inquiry
and disease prediction as a single masked token prediction
task, distinguishing them solely through the masked token type.
Furthermore, we introduce a masked status prediction task,
which unifies the prediction of symptom or disease statuses in a
similar manner to masked token prediction, thereby enhancing
the modeling of symptom and disease statuses. We evaluate
SA-MPF on several datasets collected from various sources.
The experimental results demonstrate substantial improvements
achieved by SA-MPF. For example, on the GMD-12 dataset, SA-
MPF demonstrates a noteworthy 5% improvement in diagnostic
accuracy, from 82% to 87%.1

Index Terms—online disease diagnosis, self-diagnosis, symptom
checking

I. INTRODUCTION

With the widespread adoption of internet technology, an
increasing number of users are turning to online searches
to address their health concerns and perform self-diagnosis
[1]. However, traditional search engines often fail to meet
people’s demands for accurate medical information [2]. Given
that many users lack adequate medical knowledge [3], this
compromises the quality of health-related queries, leading to
search results that are diverse and may not offer clear and
professional medical guidance [4]–[6].

In response to the challenge, symptom checkers have been
introduced as an alternative to online self-diagnosis [7]. Promi-
nent among them are tools from Mayo Clinic [8] and WebMD
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TABLE I
AN EXAMPLE OF AUTOMATIC DIAGNOSIS DATA.

Explicit Symptoms: cough: true
fever: true

Implicit Symptoms: listlessness: false
anorexia: true

vomit: true

Disease: upper respiratory tract infection

[9], providing users with more focused and targeted medical
advice. The workflow of a symptom checker typically consists
of three steps [10] : 1) Patients provide their initial symptom
information, named explicit symptoms, and True or False is
called the status, indicating whether a symptom is present, as
shown in Table I; 2) Based on the provided information, the
tool further inquires with a series of related questions to obtain
more symptom information, the symptoms from the inquires
are called implicit symptoms; and 3) The tool gives a possible
diagnosis based on all the provided data. In contrast to search
engines, symptom checkers excel by not demanding users to
create precise health queries, the requirement that users often
find challenging [2], [11]. Furthermore, symptom checkers
boast higher accuracy in disease diagnosis while demanding
less effort and time.

Online disease diagnosis involves two main components:
symptom inquiry and disease prediction. A significant group
of existing research [12]–[17] viewed online disease diagnosis
as a Markov Decision Process (MDP) [18] and employed Re-
inforcement Learning (RL) [19], [20] to address it. However,
RL-based methods have potential drawbacks in online disease
diagnosis. RL requires explicit learning objectives and detailed
rewards, making it challenging to strike a balance between
symptom inquiry and disease classification. In addition, RL
demands a substantial amount of data to perform effectively.
Regrettably, the medical field frequently faces a shortage of
available data [21]. Another approach is through supervised
learning, mainly involving classification methods and gen-
erative methods. Recent Transformer-based [22] generative
methods such as Diaformer [23] and CoAD [24], as well as
classification methods like MTDiag [21], have shown excellent



performance. Nevertheless, even though these methods share
the majority of model parameters, they still treat symptom
inquiry and disease diagnosis as separate tasks, posing a
challenge in terms of data efficiency. Additionally, existing
research overlooks the significance of symptom status, which
indicates whether the user has experienced the symptom. This
status plays a crucial role in both symptom inquiry strategies
and disease prediction. However, current methods merely
incorporate it as part of the input without further modeling.

In this work, we propose a Status-Aware Mask Prediction
Framework for online disease diagnosis (SA-MPF) to address
above challenges. SA-MPF formalizes symptom inquiry and
disease prediction as a single masked token prediction task.
Specifically, for known symptoms, SA-MPF treats each symp-
tom as an individual token, incorporating its status and a
specialized token type S as the symptom input. Additionally,
a masked token [M ] is introduced as a special input. For
symptom inquiry, S is the token type of [M ], indicating that
the prediction will be a symptom. The status input of [M ] is
either ’True’ or ’False,’ representing two inquiry scenarios:
confirming a specific disease or excluding similar diseases
[25]. For disease prediction, [M ] has the status True and
type D, signifying the prediction of the disease the user
has. By performing the single token prediction task, SA-
MPF facilitates joint learning for symptom inquiry and disease
prediction more effectively.

To enhance SA-MPF’s modeling of symptom and disease
statuses, we introduce a masked status prediction task, aiming
to infer the statuses of symptoms or diseases in a manner sim-
ilar to masked token prediction. The key distinction between
this task and masked token prediction is that, in this task, the
actual token is known, but what needs to be predicted is the
token’s status. Specifically, for masked symptom status pre-
diction, we leverage known symptoms and the actual disease
to infer the status of an unknown symptom related to them.
For masked disease status prediction, we expect the model
to predict the status of a disease based on known symptoms,
indicating whether the user has the disease. Through masked
status prediction, SA-MPF comprehensively learns the status
relationships between diseases and symptoms, thereby further
enhancing its diagnostic accuracy and efficiency. During the
inference phase, we diagnose diseases from both disease status
and token prediction perspectives to further improve diagnostic
accuracy. An overview of SA-MPF is shown in Figure 1.

We conduct experiments on several medical diagnosis
datasets from diverse sources, including online medical web-
sites, offline hospitals, and the knowledge base SymCAT [26].
These datasets vary in terms of data scale, as well as the
number of diseases and symptoms they include. Extensive
experimental results demonstrate that the proposed SA-MPF
attains state-of-the-art performance on these datasets, thereby
highlighting the effectiveness of our approach.

Our primary contributions are as follows:
• We introduce a Status-Aware Mask Prediction Framework

for online disease diagnosis (SA-MPF), which unifies
symptom inquiry and disease prediction into a masked

token prediction task, facilitating joint learning for symp-
tom inquiry and disease prediction more effectively.

• We introduce a masked status prediction task that si-
multaneously addresses masked disease status prediction
and masked symptom status prediction. By incorporating
these tasks into the masked prediction framework, the
model’s ability to capture status information is enhanced.

• In extensive experiments across multiple datasets of vary-
ing sources and scales, the proposed SA-MPF consis-
tently demonstrated state-of-the-art performance, validat-
ing the effectiveness of the mask prediction framework.

II. RELATED WORK

Early studies often viewed automatic diagnosis as sequential
decision process problem and employed reinforcement learn-
ing (RL) to address it. [27] views automatic diagnosis task as
a combination of symptom inquiry and disease classification
and firstly leverages reinforcement learning (RL) to slove
the problem. Subsequent studies focus on enhancing the RL
framework’s efficiency and accuracy [13], [15]–[17], [28],
[29]. The comprehensive review by [20] sheds light on the tra-
jectories and milestones of RL in automated medical diagnosis.
Nonetheless, a recurring criticism has been the inefficiency of
data associated with RL-based techniques. Attaining optimal
results continues to pose a significant challenge, especially
given the data constraints in the medical domain.

To mitigate the challenges associated with exploration and
sparse rewards in RL, many supervised-base works have been
proposed, including generated-based method [23], [24] and
classification-based methods [21], [30]. However, both of these
methods treat symptom inquiry and disease diagnosis as two
separate tasks. This hinders the comprehensive modeling of
symptom inquiry and disease diagnosis, consequently reducing
learn efficiency. Moreover, to our best knowledge, all existing
models, only take the status as the part of input and lack further
status modeling.

III. METHODOLOGY

In this section, we first introduce the proposed mask predic-
tion framework. Subsequently, we introduce the prediction of
masked symptom tokens and masked disease tokens, which
are employed for symptom inquiry and disease prediction,
respectively. Furthermore, we expound on the prediction of
masked symptom status and masked disease status, which
serve to enhance the modeling of status dependencies between
symptom and disease. Lastly, we present the joint prediction
based on masked token and status prediction of the disease
during the inference phase, facilitating disease discrimination.

A. Mask Prediction Framework

Figure 1 illustrates the mask prediction framework. In this
framework, we utilize a series of stacked Transformer encoder
blocks to model online disease diagnosis via mask prediction.
Each Transformer block consists of a feed-forward layer and
a multi-head attention layer, where the parameters are shared
among all input tokens through self-attention [22].
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Fig. 1. The Overview of proposed status-aware mask prediction framework. sym and Dis are short forms for symptom and disease, with S and D representing
the types of symptom and disease, respectively.

1) Input Representation: As shown in Figure 1, known
symptoms are transformed into specific tokens, which we refer
to as the part 1 of our input. Correspondingly, we design
distinct part 2 of the input for different sub-tasks. Differing
from the original Transformer [22], we have omitted positional
encoding. In addition to symptoms as inputs, diseases may also
serve as inputs. To differentiate between diseases and symp-
toms, we introduce type embedding, where D and S indicate
disease and symptom types, respectively. Furthermore, status
information is incorporated through status embedding. Here,
True and False indicate whether a patient exhibits a specific
symptom or has a disease. Both status embedding and type
embedding are added to the token embedding. Additionally,
we design a special token M for masked inputs.

2) Mask Prediction: After multiple layers of Transformer-
based attention modeling, we obtain the representation of
the final layer for the masked token, denoted as h[M ]. This
representation serves as the input for our tailored mask predic-
tion tasks, encompassing masked token prediction and masked
status prediction. Specifically, masked token prediction encom-
passes both masked symptom token prediction and masked
disease token prediction, differing only in their input, yet
sharing the same model parameters entirely. Similarly, masked
status prediction comprises masked symptom status prediction
and masked disease status prediction, also differing in input
but sharing all model parameters. Notably, the sole difference
between masked token prediction and masked status prediction
lies in the parameters of their respective task heads. To map
the hidden state h[M ]to probabilities across the corresponding
vocabularies, we employ two task heads, each composed of a
feed forward network and a softmax function:

pT ← Token Head(h[M ]),

pS ← Status Head(h[M ]),
(1)

The token vocabulary includes symptom tokens and disease
tokens, while the status vocabulary consists of True and
Flase. We utilize the negative log-likelihood loss for the two
tasks, denoted LT and LS . The final loss is the sum of these
two losses:

L = LT + LS (2)

During the inference phase, the framework initiates a symptom
inquiry, leveraging masked symptom token prediction. Once
the symptom inquiry phase is completed, disease prediction
is carried out, relying on the gathered symptoms. Additional
details will be elaborated in the following sections.

B. Masked Symptom Token Prediction
In this section, we reformulate symptom inquiry into a

masked symptom token prediction task. Formally, within a
dataset for automatic diagnosis, each example has explicit
symptoms denoted as Sexp = {es1, ..., esn}, implicit symp-
toms as Simp = {is1, ..., ism}, and a corresponding disease
tag, Dis. Initially, only the explicit symptoms obtained from
a patient’s self-report are available. During each symptom
inquiry, the patient simulator responds with True or False
for a positive or negative symptom, and ”not sure” for
symptoms not appear in the user goal Sexp ∪ Simp. The
objective of symptom inquiry is to maximize the likelihood
P (Simp|Sexp). We denoted the symptoms obtained through
inquiries as Sim known ⊆ Simp, while those not acquired
as Sim unknown = Simp − Sim known.Taking into account
the disorderliness of symptoms in the datasets, the learning
objective can be formalized as follows:∏

Sim known⊆Simp

P (Sim unknown | Sexp, Sim known) (3)

To reformulate the multi-step reasoning of symptom inquiry
into token prediction, we decompose the multi-turn diagnostic



dialogue into multiple independent one-step token prediction
data examples, covering all possible cases in the dialogue.
To maximize the p(Simp|Sexp), we could maximize each
P (Sim unknown | Sexp, Sim known), which corresponds to an
intermediate state before a dialogue inquiry: given explicit
symptoms Sexp and known implicit symptoms Sim known,
the objective is to predict the remaining implicit symptoms
Sim unknown. Since Sim unknown may contain multiple symp-
toms, we treat each symptom as a label, and construct inde-
pendent training examples for each symptom label to perform
masked symptom token prediction.

Specifically, we take Sexp and Sim known as the part 1 of
the token input, and incorporate the corresponding symptom
status and S as the status and type of tokens. For the part
2 of the input, we use a special token, [M ], as the token
input. Since we know the masked token is a symptom, S
is input as the token type. Regarding the status input, we
incorporate both True and False to inquire about the pres-
ence or absence of symptoms among the unknown implicit
symptoms, respectively. This approach mirrors the logic of
medical inquiry, where during the diagnosis process, certain
symptoms are inquired about to increase the confidence in
diagnosing a specific disease, while the absence of symptoms
is queried to eliminate the possibility of similar diseases. The
problem can be converted to the masked token prediction:

Input(Sexp ∪ Sim known, part2)
predict−−−→ Label(Sym),

part2 = {[M ], Status, S}
(4)

where part2 represents the part 2 of the input. [M ], Status
and S denote the masked token, the status and type. The
status can be either True or False, and Label(Sym) ∈
Sim unknown corresponds the symptoms associated with the
specific status. For the cases where a specific status corre-
sponds to multiple symptoms, we create multiple training
examples, with each example corresponding to a specific
symptom label. We partially demonstrate the construction of
training data based on the example in Table 1. When only
explicit symptoms are known, we can obtain three training
data samples shown in the upper part of Table II. When
”anorexia” is added as a new known symptom, we can obtain
two additional training data samples in the lower part of Table
II. For a dialogue with k implicit symptoms, where for each
of the i known implicit symptoms, there are

(
k
i

)
cases, and

each case have k − i unknown implicit symptoms, a total of∑k
i=0(k − i) ∗

(
k
i

)
training samples can be constructed. This

also increases the scale of the training data, alleviating the
issue of data sparsity in the medical field.

We follow the multi-turn setting to imitate the medical
dialogue scenario during the inference. Taking the part 1 and
part 2 as inputs in each turn, we obtain the corresponding
probabilities for all symptom inquiries of ”true” and ”false”,
separately. We then choose, based on the highest probability,
whether to inquire about ”true” or ”false,” as well as which
symptom to inquire about. If the patient responds with ”True”
or ”False”, the symptom and the corresponding status will

TABLE II
A DECOMPOSING DEMONSTRATION OF A MULTI-TURN DIALOGUE

EXAMPLE FROM TABLE I INTO MASKED TOKEN PREDICTION.

Part 1 Part 2 Label

cough, fever [M], True, S anorexia
cough, fever [M], True, S vomit
cough, fever [M], False, S listlessness

cough, fever, anorexia [M], True, S vomit
cough, fever, anorexia [M], False, S listlessness

be added to the known implicit symptoms Sim known. The
part 1 and Sim unknown will also be updated. Otherwise,
the next probability symptom will be the inquired symptom
until finding a symptom in Sim unknown or stopping. A
stop threshold δ ∈ (0, 1) serves as the minimum probability
boundary. After the symptom inquiry is finished, all obtained
symptoms Sexp and Sim known will be utilized for disease
prediction.

C. Masked Disease Token Prediction

Masked disease token prediction is similar to masked symp-
tom token prediction but focuses on modeling disease diagno-
sis. We primarily design the input for masked disease token
prediction in a specific manner. The part 1 of input consists
of explicit symptoms and all implicit symptoms Sexp ∪ Simp,
rather than explicit symptoms and known implicit symptoms
Sexp ∪ Sim known, where Sim known ⊆ Simp. It helps to
avoid extra noise and performance degradation resulting from
predicting diseases solely based on a partial set of symptoms.
We also take [M ] as the token input for part 2. To distinguish
it from symptom prediction, we use D as the type input,
indicating that what needs to be predicted is a disease. The
input for the status is simply True , as we are concerned with
which disease the patient has been diagnosed with. Masked
disease token prediction can be formulated as follows:

Input(Sexp ∪ Simp, part2)
predict−−−→ Label(Dis),

part2 = {[M ], T rue,D}
(5)

where Label(Dis) corresponds the disease label.
In this way, symptom inquiry and disease diagnosis are

effectively unified as a single masked token prediction task,
allowing them to mutually enhance each other more com-
prehensively. During the inference, we set all the predicted
symptom token probabilities to 0, considering only the disease
probabilities for disease prediction. A similar approach is
employed for symptom prediction as well.

D. Masked Symptom Status Prediction

Masked symptom status prediction focuses on modeling
the status relationships between diseases and symptoms from
the perspective of symptom reasoning. After training on this
task, we aim for the model to learn how to infer the corre-
sponding status of unknown implicit symptoms Sim unknown

when given known symptoms Sexp ∪ Sim known and in-
formed the disease label. For a multi-turn dialogue with k



implicit symptoms, we decompose it into
∑k

i=0

(
k
i

)
indepen-

dent one-step cases, and get corresponding Sexp, Sim known

and Sim unknown tuples, as described in Section III-B. The
part 1 of the input for masked symptom status prediction
is Sexp ∪ Sim known, identical to that of masked symptom
token prediction. The part 2 has two tokens, including the
disease label and a unknown implicit symptom Label(Sym) ∈
Sim unknown. We take True and D as the status and type of
the disease input. Label(Sym) is input as a token, we input
[M ] and S as the status and type of the symptom token. Based
on this input, the model predicts the corresponding state for
a given symptom from unknown implicit symptoms. Masked
symptom status prediction can be formulated as follows:

Input(Sexp ∪ Sim known, part2)
predict−−−→ Label(Status),

part2 = {Label(Dis), T rue,D} ∪ {Label(Sym), [M ], S}
(6)

where Label(Sym) is a unknown implict symptom,
Label(Status) and [M ] denote the actual status and the status
input of Label(Sym).

E. Masked Disease Status Prediction

Masked disease status prediction focuses on modeling the
status relationships between diseases and symptoms from the
perspective of disease reasoning. This task aims for the model
to learn whether the patient may have a disease when given
known symptoms Sexp ∪ Sim known. Here True and False
indicate that the patient may have or must not have a disease,
respectively.

For the labeled disease, given Sexp ∪ Sim known, we can
know the status is true. However, there are some unknown
implicit symptoms, it is possible that some diseases cannot
be ruled out. But we can determine that when all implicit
symptoms are known, the patient cannot have any diseases
other than the labeled one. Therefore, for disease labels, the
task can be formulated as follows:

Input(Sexp ∪ Sim x, part2)
predict−−−→ Label(Status). (7)

we can construct the training examples of the disease label:

Sim x = Sim known,

part2 = {Label(Dis), [M ], D},
Label(Status) = True.

(8)

The training examples of the non-labeled disease can be
constructed as follows:

Sim x = Simp,

part2 = {Other(Dis), [M ], D},
Label(Status) = False,

(9)

where Other(Dis) denotes a non-labeled disease.

TABLE III
STATISTICS OF EXPERIMENTAL DATASETS.

Dataset Type Disease Symptom Train Test

Dxy Web 5 41 423 104
Muzhi Web 4 66 568 142

GMD-12 Hospital 12 118 2151 239

SymCAT-90 Synthetic 90 266 24000 6000
SymCAT-200 Synthetic 200 328 20000 10000
SymCAT-300 Synthetic 300 349 20000 10000
SymCAT-400 Synthetic 400 355 20000 10000

F. Joint Token and Status Disease Inference

Given that masked disease token prediction and masked
disease status prediction contribute to disease reasoning from
both token and status perspectives, we integrate them during
inference for disease prediction. Initially, we derive the prob-
ability distribution of diseases through masked disease token
prediction. Subsequently, we select the top-k diseases and
obtain their statuses through masked disease status prediction.
Diseases with a predicted status of False are eliminated.
Finally, we choose the disease with the highest remaining
probability as the ultimate diagnostic disease.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We evaluate our method on Dxy [15], Muzhi
[12], GMD-12 [25] and the synthetic SymCAT datasets in-
cluding four versions. Both Dxy and Muzhi are obtained from
online medical websites. GMD-12 is constructed from hospital
medical records. [16] constructed a synthetic dataset based on
a symptom-disease database known as SymCAT, referred to
as SymCAT-90. [14] created three more versions of SymCAT,
namely SymCAT-200, SymCAT-300, and SymCAT-400. The
characteristics of these datasets are shown in Table III.

2) Baselines: We initially choose the widely used tradi-
tional classifier SVM [31] as a baseline. SVM-ex&im utilizes
both explicit and implicit symptoms for disease prediction.
The RL-based baseline models consist of Basic DQN [12],
REFUEL [14], PPO [32], HRL [16], KR-DS [15], and BR-
Agent [25]. Several Transformer-based supervised learning
baselines include Diaformer [23], CoAD [24], and MTDiag
[21]. We also consider existing methods tailored for extensive
disease spaces, such as BSODA [33], GAMP [28], MMF-AC
[29], and V-IP [30].

3) Metrics.: Following previous settings [12], [21], [23],
we use disease diagnosis accuracy, implicit symptom recall,
and average inquiry turns as evaluation metrics for Dxy,
Muzhi, GMD-12, and SymCAT-90. Accuracy was the primary
metric for disease diagnosis, while recall and average turns
served as indicators of inquiry efficiency. For SymCAT-200,
SymCAT-300, and SymCAT-400, we employed accuracy met-
rics for the top 1, top 3, and top 5 predictions, along with
the average inquiry turns for disease diagnosis, following the
settings of previous works [14], [33].



TABLE IV
RESULTS ON DXY, MUZHI, GMD-12 AND SYMCAT-90 DATASETS.

Dxy MuZhi GMD-12 SymCAT-90

DAcc SRec ATurn DAcc SRec ATurn DAcc SRec ATurn DAcc SRec ATurn

SVM-ex&im 77.9 - - 71.0 - - - - - 73.2 - -
Basic DQN 73.1 32.2 2.9 65.0 30.1 3.1 62.0 5.0 - 35.6 2.0 2.0

HRL 69.5 16.1 2.4 69.4 27.6 3.5 - - - 49.6 33.8 8.4
KR-DS 74.0 - 3.4 73.0 - 3.4 69.0 21.0 - - - -
GAMP 76.9 - 3.3 73.0 - 6.3 - - - - - -

PPO 74.6 - 3.3 73.2 - 6.3 - - - 61.8 - 12.6
Diaformer 82.9 82.7 13.1 74.2 75.2 15.3 - - - 73.3 90.6 13.7
BR-Agent 84.6 48.6 - 76.0 67.0 - 82.0 50.0 - - - -

CoAD 85.0 93.0 10.5 75.0 83.0 13.4 - - - - - -
MTDiag 85.4 91.3 12.5 75.9 79.4 17.9 - - - 75.4 90.7 15.1

SA-MPF 87.5 91.3 16.2 77.5 85.0 19.3 87.0 89.0 15.4 77.8 93.8 15.4

TABLE V
RESULTS ON SYMCAT-200, SYMCAT-300 AND SYMCAT-400 DATASETS.

SymCAT-200 SymCAT-300 SymCAT-400

Top1 Top3 Top5 ATurn Top1 Top3 Top5 ATurn Top1 Top3 Top5 ATurn

REFUEL 53.76 73.12 79.53 8.24 47.65 66.22 71.79 8.39 43.01 59.65 68.89 8.92
BSODA 55.65 80.71 89.32 12.02 48.23 73.82 84.21 13.10 44.63 69.22 79.54 14.42

V-IP 68.10 - - - 59.90 - - - 51.30 - - -
MMF-AC 59.00 84.66 92.45 12.54 51.91 78.24 87.55 13.80 45.80 72.14 82.43 14.73

SA-MPF 86.55 96.41 97.82 12.14 84.77 94.64 96.74 12.79 82.50 93.33 95.95 13.14

4) Implementation Details: The main differences in model
configurations among the various datasets are primarily related
to the number of transformer layers and the hidden size.
Specifically, for Dxy, MuZhi, GMD-12, and SymCAT, SA-
MPF has 4, 4, 6, and 6 transformer layers, respectively, with
hidden sizes of 512, 512, 512, and 768, respectively. We
employ the AdamW optimizer with a learning rate of 3e-
5, a weight decay of 0.01, and warm up step to 20. We
set the stop threshold δ to 0.009, and follow previous works
[21], [23], [24] in limiting the maximum number of dialogue
turns to 20. During the inference, Top-k is set to Top-20 for
disease prediction. diseases is selected after masked disease
token prediction during the inference. In the synthetic datasets
from SymCAT, since there is no dialogue, the examples only
include symptoms with the True status. Consequently, we do
not perform masked status prediction within the these datasets.

B. Results

We report the results of baselines from previous works
if available. Table IV presents experimental results for Dxy,
Muzhi, GMD-12 and SymCAT-90. Overall, our proposed SA-
MPF achieves superior or competitive performance in diag-
nostic accuracy and symptom recall.

Compared to the competitive RL-based approach, BR-
Agent, we achieve superior results in diagnostic accuracy,
such as an absolute improvement of over 5% on the GMD-
12. Furthermore, SA-MPF demonstrates significantly higher
symptom recall, which constitutes a key factor contribut-
ing to our advantage in diagnostic accuracy over RL-based

approaches. Compared to the classification-based approach,
MTDiag, SA-MPF demonstrates significant performance im-
provements, achieving better diagnostic accuracy, such as an
absolute improvement of 2.1% on the Dxy dataset. Addition-
ally, SA-MPF achieves superior symptom recalls except on
the Dxy dataset, where SA-MPF and MTDiag exhibit the
same symptom recalls. We attribute these improvements to our
unified modeling of symptom inquiry and disease diagnosis as
a single masked token prediction task, which enables more ef-
fective mutual learning between symptom inquiry and disease
prediction, while MTDiag requires handling them with two
separate task heads. Our proposed status modeling tasks also
contribute to these advantages, which will be further analyzed
in Section IV-C. We observed that, although CoAD achieves
high symptom recalls, such as 93% on the Dxy dataset, its
disease diagnosis accuracy falls behind our SA-MPF. This is
likely due to CoAD’s sequence modeling introducing symptom
order, which interferes with disease diagnosis, a problem not
present in SA-MPF.

Additionally, we observed that our method tends to have
slightly more dialogue turns. This is pragmatic and justifiable
in real-world scenarios since having access to more symptoms
can significantly help the doctor make precise diagnoses.
Further analysis about symptom inquiry efficiency will be
discussed in Section IV-D.

Table V presents the results for datasets with a larger
number of diseases. Several baselines, including the non-
RL method BSODA and the RL-based method MMF-AC,
have been enhanced to improve diagnostic performance in a



TABLE VI
ABLATION STUDY OF STATUS MODELING.

Dxy GMD-12

DAcc SRec ATurn DAcc SRec ATurn

SA-MPF 87.5 91.3 16.2 87 89 15.4
w/o status train 85.6 92.3 16.7 86.6 89.9 16.2

w/o-sym status train 86.5 92.9 16.9 86.2 90.4 16.3
w/o-dis status infer 86.5 91.3 16.2 85.8 89.7 16.6

larger disease space. Compared to these baselines, our SA-
MPF achieves significant performance improvements. the top-
1 diagnostic accuracy of SA-MPF even surpasses the top-3
prediction accuracy of the baselines. For instance, SA-MPF
achieves a top-1 accuracy of 86.55% on the SymCAT-200
dataset, while MMF-AC’s top-3 accuracy is only 84.66%.
Furthermore, as the disease scale increases, SA-MPF’s perfor-
mance decline is slower compared to the baselines, resulting
in a more significant performance advantage. This indicates
that SA-MPF can effectively adapt to larger disease spaces.
Additionally, the average turns of SA-MPF are similar to or
even lower than those of BSODA and MMF-AC. This suggests
that SA-MPF maintains high efficiency of symptom inquiry in
large disease spaces.

C. Ablation Study

In this study, we introduce masked symptom status predic-
tion and masked disease status prediction to model symptom
and disease statuses during the training phase. During infer-
ence, we used masked disease status prediction to exclude
certain unreasonable diseases. As a result, we established three
model variants for comparison , as shown in Table VI.

”w/o status train” indicates the exclusion of all masked
status predictions, relying solely on masked token prediction.
When comparing the results of ”w/o status train” with the
baselines in Table IV, we observe that SA-MPF outperforms
all baselines in diagnostic accuracy using only masked to-
ken prediction. This validates the effectiveness of unifying
symptom inquiry and disease prediction into masked token
prediction. From Table VI, we can observe that SA-MPF
achieves not only higher diagnostic accuracy but also re-
quires fewer average dialogue turns compared to ”w/o status
train”. This demonstrates that status modeling can further
enhance diagnostic accuracy and efficiency of masked token
prediction. ”w/o-sym status train” means the exclusion of
masked symptom status prediction. Without the modeling
of symptom status, ”w/o-sym status train” necessitates more
dialogue turns to gather additional symptoms. However, its
diagnostic accuracy experiences a slight decrease. This implies
that masked symptom status prediction can also aid in model-
ing the relationship between symptoms and diseases statuses,
thereby improving the diagnostic accuracy of SA-MPF. ”w/o-
dis status infer” means the removal of masked disease status
prediction for disease exclusion during the inference phase,
relying solely on masked disease token prediction to obtain
the final disease prediction. Experimental results indicate that

TABLE VII
RESULTS WITH SMALLER DIFFERENT LIMITED TURNS.

Turn Model
Dxy SymCAT-90

DAcc SRec ATurn DAcc SRec ATurn

5

Basic DQN 64.7 31.1 2.5 35.6 2.0 2.0
HRL 70.2 15.2 1.9 44.3 2.4 4.3

Diaformer 76.6 54.5 4.8 49.4 46.1 4.9
MTDiag 76.1 58.1 5.0 51.1 44.1 5.0
SA-MPF 78.8 57.4 5.0 51.4 45.8 5.0

10

Basic DQN 71.5 32.2 2.7 35.6 2.0 2.0
HRL 71.8 15.9 2.3 48.8 30.7 7.4

Diaformer 80.6 77.8 9.6 63.2 73.6 9.6
MTDiag 81.9 82.7 9.6 63.6 72.5 10.0
SA-MPF 84.6 78.7 10.0 65.6 74.3 9.9

15

Basic DQN 71.2 32.0 2.7 35.6 2.0 2.0
HRL 71.8 15.9 2.3 49.9 32.2 8.3

Diaformer 82.8 82.6 12.4 71.1 86.6 12.6
MTDiag 85.4 89.8 11.9 73.3 87.9 14.0
SA-MPF 86.5 90.2 14.8 74.3 88.5 13.6

0.00 0.02 0.04 0.06 0.08 0.10
threshold δ

70

75

80

85

90

95

100

Dis
ea

se
 Ac

cu
rac

y Dxy
Gmd-12

0.00 0.02 0.04 0.06 0.08 0.10
threshold δ

50

60

70

80

90

100

Sy
mp

tom
 Re

ca
ll

Dxy
Gmd-12

Fig. 2. The effect of the threshold δ.

the combination of both status and token predictions for
disease during inference results in higher diagnostic accuracy
compared to token prediction alone.

D. Further Analysis

1) Effect of Smaller Different Limited Turns: As depicted in
Table VII, our experiments involve a maximum of 5/10/15 di-
alogue turns. In comparison to RL-based methods, supervised
learning approaches like the generative method Diaformer, the
classification method MTDiag, and our SA-MPF tend to en-
gage in more turns to achieve higher symptom recall. Despite
this, SA-MPF still attains the highest diagnostic accuracy and
competitive symptom recall within a limited number of turns.
This underscores the capability of the proposed SA-MPF to
deliver satisfactory performance in scenarios with a restricted
number of dialogue turns.



2) Effect of Stopping Criterion Threshold δ: In Figure 2, the
threshold value δ in SA-MPF is crucial for achieving a balance
between diagnostic accuracy and efficiency. We observe that as
the threshold δ increases, the recall of implicit symptoms tends
to decrease, resulting in a reduction in diagnostic accuracy.
This aligns with our intuition, as a higher threshold leads
to an earlier termination of the inquiry process, potentially
missing important implicit symptoms. However, it’s important
to note that the decrease in recall is more significant than
the decrease in diagnostic accuracy, implying that our method
prioritizes inquiring about key implicit symptoms in the early
stages of the dialogue. In practical applications, the selection
of the threshold δ should be guided by the desired trade-off
between accuracy and efficiency.

V. CONCLUSION

In this paper, we propose SA-MPF, a masked prediction
framework for automatic medical diagnosis. We reformulate
symptom inquiry and disease prediction into a single masked
token prediction task, with the primary difference being the
input. It facilitates mutual learning between symptom inquiry
and disease prediction, and alleviates the data scarcity is-
sue simultaneously. Moreover, we introduce a masked status
prediction task for disease status prediction and symptom
status prediction, to enhance the modeling of status between
symptoms and diseases. The experimental results on multiple
datasets confirmed the effectiveness of SA-MPF.
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