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Abstract

Reconstructing hand-held objects from monocular RGB im-
ages is an appealing yet challenging task. In this task, contacts
between hands and objects provide important cues for recov-
ering the 3D geometry of the hand-held objects. Though re-
cent works have employed implicit functions to achieve im-
pressive progress, they ignore formulating contacts in their
frameworks, which results in producing less realistic object
meshes. In this work, we explore how to model contacts in an
explicit way to benefit the implicit reconstruction of hand-
held objects. Our method consists of two components: ex-
plicit contact prediction and implicit shape reconstruction. In
the first part, we propose a new subtask of directly estimat-
ing 3D hand-object contacts from a single image. The part-
level and vertex-level graph-based transformers are cascaded
and jointly learned in a coarse-to-fine manner for more ac-
curate contact probabilities. In the second part, we introduce
a novel method to diffuse estimated contact states from the
hand mesh surface to nearby 3D space and leverage diffused
contact probabilities to construct the implicit neural represen-
tation for the manipulated object. Benefiting from estimat-
ing the interaction patterns between the hand and the object,
our method can reconstruct more realistic object meshes, es-
pecially for object parts that are in contact with hands. Ex-
tensive experiments on challenging benchmarks show that
the proposed method outperforms the current state of the
arts by a great margin. Our code is publicly available at
https://junxinghu.github.io/projects/hoi.html.

Introduction
Reconstructing human-object interaction from monocular
images is essential to understand the interactions between
humans and the physical world. Toward this goal, recent
progress has been achieved in the individual reconstruction
of the body (Kocabas et al. 2021; Zhang et al. 2020, 2023),
hands (Romero, Tzionas, and Black 2017; Kulon et al. 2020;
Baek, Kim, and Kim 2019; Hampali et al. 2022; Chen et al.
2021; Boukhayma, Bem, and Torr 2019; Li et al. 2022), ob-
jects (Chen and Zhang 2019; Mescheder et al. 2019; Park
et al. 2019; Groueix et al. 2018; Wang et al. 2018; Peng et al.
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Figure 1: Given an RGB image, the proposed method pre-
dicts hand-object contacts and recovers the 3D geometry of
the object. The insight is that the contacts could provide ef-
fective cues for the hand-held object reconstruction.

2021a), and their joint reconstruction (Hasson et al. 2019,
2020; Karunratanakul et al. 2020; Yang et al. 2021; Chen
et al. 2022, 2023b; Ye, Gupta, and Tulsiani 2022). However,
this task remains very challenging due to the complexity of
hand poses and the diversity of interacting objects.

As hand-held objects involve the grasp configuration be-
tween hands and objects, the contacts play essential roles in
modeling their interactions. To improve the interaction, cur-
rent methods model the contact in different representations,
including using contacts to optimize meshes (Hasson et al.
2019), the contact potential field (Yang et al. 2021), or the
grasping field (Karunratanakul et al. 2020). However, these
methods only model contacts as an additional loss function,
which miss the chance to construct and exploit contact priors
to simplify the 3D reconstruction problem.

Our key observation is that the contacts between hands
and objects provide important cues for recovering the hand-
held object. Modeling contacts between them can compen-
sate for the lack of 3D information in monocular images
and makes it easier to infer the shape of the object, es-
pecially for parts that are in contact with hands as shown
in Fig. 1. Though previous methods have included contact
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losses (Hasson et al. 2019; Karunratanakul et al. 2020) or
optimization objectives (Yang et al. 2021; Grady et al. 2021),
they do not consider the usage of contacts as an intermediate
representation to benefit the 3D reconstruction. In this work,
we explore how to construct contact priors from the monoc-
ular RGB image to help recover the 3D object geometry.
Specifically, we first predict contact points explicitly on the
hand mesh surface. To our knowledge, estimating contact
states from a single RGB image is explored only for human
body mesh (Huang et al. 2022; Fieraru et al. 2020, 2021;
Chen et al. 2023a) without focusing on the hand. To this
end, we introduce a novel coarse-to-fine learning framework
to jointly learn part- and vertex-level contact states. In addi-
tion, we utilize the graph-based transformer which combines
graph convolutions with transformers to accumulate relevant
features among adjacent nodes in the hand mesh and obtain
robust contact predictions.

Then, we attempt to exploit predicted contact states to
simplify the 3D reconstruction task. Here, we follow the
previous work (Ye, Gupta, and Tulsiani 2022) to model
hand-held objects with deep implicit functions (Park et al.
2019), which can generate realistic and high-resolution ob-
ject meshes. However, how to make implicit functions take
good advantage of estimated contact states is also challeng-
ing and remains unsolved. The main challenge is that con-
tact points are distributed on the hand surface in the discrete
form, while implicit functions have continuous values in the
whole 3D volume. To tackle the difficulty, we employ sparse
convolutions to diffuse these discrete contact states from the
hand surface to the 3D space. Then, the implicit function can
naturally query corresponding contact features for a given
3D point and improve the neural implicit reconstruction. We
conduct extensive experiments on HO3D (Hampali et al.
2020) and OakInk (Yang et al. 2022b) benchmarks to show
that our method can reconstruct high-quality object meshes
that interact faithfully with hands.

To sum up, the main contributions can be listed as follows:
• We propose to leverage contact priors for better recon-

struction of hand-held objects. To estimate contact states
more accurately, we introduce a novel framework that
jointly improves part-level and vertex-level contact states
in a coarse-to-fine manner.

• To make discrete contact states compatible with continu-
ous implicit shape functions, we propose to diffuse con-
tact features from the hand mesh surface to the whole 3D
volume, which enables the continuous query of contact
features for implicit object reconstruction.

• We conduct extensive experiments on HO3D and OakInk
benchmarks to validate the effectiveness of our method.
Our method can produce more realistic hand-held object
meshes and advance state-of-the-art accuracy.

Related Work
Our work focuses on reconstructing hand-held objects from
monocular RGB images. In this section, we first review re-
lated works in the field of 3D hand-object reconstruction.
Then, we discuss how to leverage contact information to im-
prove the quality of 3D reconstruction.

3D Hand-object Reconstruction. This task aims to re-
construct the 3D geometry of hands and hand-held objects
from images. Existing approaches can be generally classi-
fied into two categories: multi-view and single-view meth-
ods. Multi-view methods (Hampali et al. 2020; Yang et al.
2022b; Chao et al. 2021; Oikonomidis, Kyriazis, and Argy-
ros 2011; Wang et al. 2013) employ multiple cameras posi-
tioned at different viewpoints to infer the 3D structure of the
grasping scenario. Though this type of method can gener-
ate very accurate 3D reconstruction results, they need care-
ful camera calibrations and are inconvenient to deploy in
the wild scene. Single-view methods only need monocular
sensors (Ye, Gupta, and Tulsiani 2022; Hasson et al. 2019,
2020; Yang et al. 2021; Karunratanakul et al. 2020; Chen
et al. 2022, 2023b; Tse et al. 2022a; Zhang et al. 2021; Hu
et al. 2022; Kyriazis and Argyros 2014; Zhao et al. 2022) as
inputs and are flexible to apply in real practice. In this work,
we use the most common monocular RGB images as inputs.
However, given the ill-posed nature, it is quite challenging
to infer the 3D structure only from monocular RGB cues.
To alleviate the difficulty of the hand reconstruction prob-
lem, Hasson et al. (Hasson et al. 2019, 2020) propose to em-
ploy the parametric hand model MANO (Romero, Tzionas,
and Black 2017), which encodes rich hand priors, to pre-
dict the hand mesh. To produce more realistic hand meshes,
recent works (Karunratanakul et al. 2020; Chen et al. 2022,
2023b) employ the neural implicit function (Park et al. 2019)
to model the hand shape and use estimated hand pose pri-
ors (Chen et al. 2022, 2023b) to simplify the hand shape
learning. However, compared with the hand part, hand-held
object reconstruction is even more challenging. Since there
are thousands of manipulated objects in our daily lives, it is
difficult to make a unified object mesh template like MANO
or estimate 6D poses reliably for diverse objects, especially
for symmetric objects. Given its difficulty, some existing
works (Yang et al. 2021; Hasson et al. 2020; Yang et al.
2022a) even make a strong assumption that the perfect object
model is known at test time and only predicts its 6D pose. A
recent work (Ye, Gupta, and Tulsiani 2022) relaxes this as-
sumption and proposes to leverage estimated hand poses to
benefit the model-free reconstruction of hand-held objects.
In this work, we go a step further and argue that contacts
between hands and objects could provide important cues for
3D reconstruction and introduce a novel framework to gen-
erate more realistic object meshes that interact with hands.

Contacts in Object Reconstruction and Manipulation.
Learning to model and reconstruct the 3D geometry of ob-
jects from monocular images has been a crown jewel in the
field of computer vision (Roberts 1963; Mundy 2006). Pre-
vious works usually represent the 3D object using explicit
representations (e.g., meshes (Groueix et al. 2018; Wang
et al. 2018), point clouds (Qi et al. 2017a,b) or voxels (Choy
et al. 2016; Riegler, Ulusoy, and Geiger 2017; Pavlakos et al.
2017)) and use deep neural networks to predict them. In
recent years, neural implicit functions (Park et al. 2019;
Mescheder et al. 2019; Chen and Zhang 2019) have grad-
ually become a popular paradigm for 3D reconstruction. It
is seamlessly compatible with neural networks and can the-
oretically reconstruct objects at unlimited resolution. How-
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Figure 2: The overview of learning explicit contact for implicit reconstruction. First, the method estimates hand contact regions
given a monocular RGB image. Based on the template hand mesh, part- and vertex-level graph-based transformers are cascaded
for accurate predictions. Second, the estimated contact is used to construct the implicit neural representation. An off-the-shelf
module is utilized to produce the camera parameters, hand mesh, and initial features. Then, the structured contact codes are
generated by anchoring contact probabilities to the hand mesh surface. After sparse convolutions, the contact states on the hand
surface are diffused to its nearby 3D space, which facilitates the perception and reconstruction of the manipulated object.

ever, the implicit function itself does not contain object sur-
face priors, which makes it hard to fit diverse object sur-
faces. In this work, we construct a surface prior using con-
tacts between hands and objects and simplify the learning
problem. Actually, some works in robotics (Bicchi and Ku-
mar 2000; Li et al. 2020; Buescher et al. 2015; Yin et al.
2023; Tse et al. 2022b) have shown that contacts could pro-
vide rich cues about the object shape and how to manipulate
the given object. Some recent systems (Yin et al. 2023; Jain
et al. 2019) can successfully manipulate different objects by
using contact sensors. However, how to use contacts to ben-
efit hand-held reconstruction is under-explored in our task.
Previous works only use contact information in an implicit
way. Methods using explicit object representations (Hasson
et al. 2019; Yang et al. 2021; Grady et al. 2021) introduce
contact loss terms to encourage objects to be close to recon-
structed hand meshes. Some recent efforts (Karunratanakul
et al. 2020; Ye, Gupta, and Tulsiani 2022) also introduce
contact loss terms in the context of neural implicit represen-
tation. Different from them, we model and predict contact
states explicitly and successfully leverage volume encod-
ing (Peng et al. 2021b; Kwon et al. 2021; Choi et al. 2022)
to diffuse contact information from hand surfaces to the 3D
space for the hand-held object reconstruction.

Method
In this section, we describe the technical details of the pro-
posed method. As shown in Fig. 2, our method consists of
two stages: explicit contact prediction and implicit shape re-

construction. In the first stage, we propose to predict part-
level and vertex-level hand contact states in a coarse-to-fine
manner. A graph-based transformer model is introduced to
estimate contact probabilities more accurately. In the second
stage, we present a novel method to leverage estimated con-
tact states to improve the neural implicit reconstruction of
hand-held objects.

Explicit Contact Prediction
Given a single RGB image I , our method first predicts
the contact regions between the hands and objects. Specifi-
cally, we estimate contact probabilities within [0, 1] on hand
meshes to measure the likelihood of the region touching the
object. In our method, the contact probabilities are predicted
from coarse to fine and denoted as Cp = {cpi ∈ [0, 1]}Np

i=1

and Cv = {cvi ∈ [0, 1]}Nv
i=1 for the part-level and vertex-

level contacts, where Np and Nv are the number of the hand
parts and hand mesh vertices, respectively.

Multi-level Contact Graphs. For more accurate predic-
tions of the contact probabilities, multi-level contact graphs
are leveraged to process the surface regions in the part and
vertex levels such that the contact can be jointly learned from
coarse to fine. Considering that the hand mesh can be nat-
urally represented as a graph, we build the contact graphs
based on the template MANO mesh (Romero, Tzionas, and
Black 2017). Specifically, the part-level graph Gp with Np

nodes is generated relying on a coarse division of the hand
regions. According to statistical contact frequency, the hand
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surface is divided into Np subregions, including (Np − 1)
subregions on the hand palm and one subregion on the back
side of the hand. When building graph Gp, the center point
of each part of the MANO template is taken as a graph node.
For each graph node, its features are the concatenation of
the image-based feature and its 3D coordinates. As shown
in the first stage in Fig. 2, an image feature f ∈ RD with the
length of D is extracted from I by using an HRNet back-
bone (Wang et al. 2020). Therefore, each part-level graph
node feature of Gp is gi

p ∈ RD+3, i = {1, 2, . . . , Np} and
the adjacency matrix is encoded as the physical contact rela-
tionship between nodes. On the other hand, the vertex-level
graph Gv is generated based on the Nv mesh vertices with
an adjacency matrix from the MANO template. In addition
to the image feature, the vertex-level node features of Gv

also include the part-level contact probability Cp, resulting
in the node feature gi

v ∈ RD+Np+3, i = {1, 2, . . . , Nv}.

Graph-based Transformer for Contact Prediction. In
hand-object interaction, the contact area is usually oc-
cluded by hands or objects, which requires the network
to perceive local details and global information. Following
Graphormer (Lin, Wang, and Liu 2021), our contact esti-
mators are designed as graph-based transformers that incor-
porate the graph convolution (Kipf and Welling 2017) into
the transformer block (Vaswani et al. 2017). In this way, the
graph convolution focuses on fine-grained local interactions,
while the latter encodes the global relationships of the whole
hand regions. As the contacts are predicted at the part and
vertex levels, the architectures of the coarse and fine con-
tact estimators are also built upon the graphs Gp and Gv ,
respectively. Specifically, the coarse and fine contact esti-
mators have Np and Nv input tokens, which correspond to
the same number of nodes in the graphs. Moreover, the two
contact estimators have different hidden sizes in their trans-
former blocks. In practice, we find that a hidden size of 256
is sufficient for the part-level contact estimation, and the
three blocks with hidden sizes of 1024, 256, and 64 work
well for the vertex-level contact estimator.

For both the two contact estimators, the size of the output
token is set to one. Similar to the settings in BSTRO (Huang
et al. 2022), a sigmoid function is used to convert output
tokens to contact probabilities in the range of [0, 1], and we
extract contact points with probabilities greater than 0.5.

Explicit Contact for Implicit Object
Reconstruction
As shown in the second stage in Fig. 2, given the explicit
contact prediction Cp and Cv with the hand mesh, our
method first builds structured contact codes in a normalized
3D space. Then, they are fed into a sparse convolutional net-
work to generate the contact code volumes V at different
resolutions. This operation diffuses the contact states on the
hand surface to the nearby 3D space and can be sampled
continuously as additional conditions for the implicit recon-
struction of objects.

Initial Prediction. Given an RGB image, an off-the-shelf
module from IHOI (Ye, Gupta, and Tulsiani 2022) is used to

generate the camera parameters, the hand mesh, and initial
features f0 including visual and articulation embeddings. By
using the camera parameters, sampled 3D query points on
the object surface are transformed into a normalized coordi-
nate system around the hand wrist, which serve as the inputs
for the subsequent structured contact codes.

Structured Contact Codes. The predicted contact states
Cv ∈ RNv are utilized to construct structured contact codes,
which act as intermediate contact features. In the context
of implicit reconstruction, we perform trilinear interpolation
on estimated contact probabilities according to the contact
point’s position. In addition, to facilitate the network learn-
ing, each contact code civ ∈ R1 is mapped to a higher di-
mensional space by using the positional encoding (Milden-
hall et al. 2022).

Contact Code Volume. There are two disadvantages of
directly extracting features from structured contact codes.
First, the contact information is only limited to the mesh
surface and cannot cover the surrounding space of the hand
where the object is located. Second, the vertices are too
sparse in 3D space to provide enough contact informa-
tion as most extracted features are zero vectors. Since the
implicit functions have continuous values in the 3D vol-
ume, the sparse convolutions (Graham, Engelcke, and Van
Der Maaten 2018) are utilized to diffuse the discrete contact
states to the continuous space. Specifically, the structured
contact codes are first scaled into the initial volume V0 as the
input. Then, a sparse convolutional network is used to pro-
cess the contact code volumes V = {Vi}Li=1 at L different
resolutions inspired by Neural Body (Peng et al. 2021b). As
a result, the contact code volumes are not limited to contact
states at the hand mesh surface and contain diffused contact
features for nearby 3D space, which is compatible with the
continuous implicit functions.

Implicit Decoding. Contact code volumes of different res-
olutions are first normalized to the same scale [-1, 1]. Then,
the contact feature fci is extracted by interpolation accord-
ing to the query point x from each contact code volume Vi.
The final contact feature fc is obtained as the concatenation
of features extracted from volumes of different resolutions:

fc =
⊕

(fc1, fc2, · · · , fcL) (1)

where
⊕

(·) is a concatenation operation. After that, the SDF
value s on the query point x can be computed via an implicit
functionF given the conditions of the contact feature fc and
the initial features f0:

s = F(x, fc, f0) (2)
Similar to other methods (Ye, Gupta, and Tulsiani 2022;
Chen et al. 2022), the implicit function F is implemented
as a decoder network similar to DeepSDF (Park et al. 2019),
which composes of eight fully connected layers with a skip
connection at the fourth layer.

Training Details
Contact Prediction. In the first stage, the framework is
trained in an end-to-end fashion to estimate the contact re-
gion from a single image. During training, the loss LContact
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(a) Part-level Contact (b) Vertex-level Contact 0.1

1.0

Figure 3: Visualization of contact frequency for different
hand regions on OakInk (Yang et al. 2022b). (a) Part-level
contact. (b) Vertex-level contact.

is used as follows:

LContact = λpLpart + λvLvertex + λvsLvertex sub (3)

where λp, λv , and λvs are balancing weights. Lpart,
Lvertex, and Lvertex sub are weighted binary cross entropy
(BCE) losses between the ground truth and the predicted
contact probabilities. The first one corresponds to the part-
level contact. For multi-scale perception and computational
efficiency, the template MANO mesh is downsampled to a
sub-mesh with 195 vertices for graph generation. Processed
by graphormer encoders, the coarse contact prediction is
generated to compute the Lvertex sub. Then, the coarse pre-
diction is upsampled back to 778-dimensional refined results
for Lvertex. Fig. 3 illustrates the contact frequency on dif-
ferent hand regions by analyzing statistics on a large hand-
object interaction dataset OakInk (Yang et al. 2022b). It can
be observed that the frequencies of different regions vary
greatly. Therefore, we normalize these frequencies to [0.1, 1]
and use them as weight priors to compute the weighted BCE
losses.

Implicit Reconstruction. In the second stage, the off-the-
shelf module from IHOI (Ye, Gupta, and Tulsiani 2022) is
trained together with the proposed method. Similar to IHOI,
the object model is provided to guide query point sampling
during training, where 95% of the points are sampled around
the model surface and others uniformly in the normalized
space as shown in Fig. 2. It should be noted that at test time,
query points are uniformly sampled in space since the ob-
ject model is agnostic. In this part, the reconstruction loss
LRecon is calculated as follows:

LRecon = Lobj+Lhoi = ‖s− ŝ‖1+
1

Nc

Nc∑
i=1

(civ · |sih|) (4)

where Lobj is an L1 loss function between the ground truth
ŝ and the predicted SDF value s of the object similar to other
approaches (Ye, Gupta, and Tulsiani 2022; Chen et al. 2022,
2023b). Lhoi is related to Nc vertices on the hand mesh
that are in contact with the object (i.e., the contact proba-
bility civ > 0.5). sih is the SDF value calculated in Equa-
tion 2 of the hand contact vertices. Taking civ as the weight,
Lhoi is the weighted average sum of the SDF values. This
term serves as a regularization term to penalize hand contact
points that penetrate or are far from the object.

Experiments
Implementation Details
In this work, the size of the hand-object centered image is
224 × 224. The number of graph nodes are Np = 18 and
Nv = 778. The length of the image feature is D = 2048.
The shapes of contact code volumes (L = 4) are V0 =
[64, 64, 64], V1 = [32, 32, 32], V2 = [16, 16, 16], V3 =
[8, 8, 8], V4 = [4, 4, 4], and their code dimensions are
d0 = 16, d1 = 32, d2 = 64, d3 = d4 = 128. The bal-
ancing weights are λp = 1, λv = λvs = 0.5. The model
is implemented by PyTorch (Paszke et al. 2019) and the
HRNet backbone (Wang et al. 2020) is pre-trained on Im-
ageNet (Wang et al. 2020). The learning rate is set to 1e-
4, and the Adam optimizer (Kingma and Ba 2015) is used.
Each model is trained for 200 epochs on the RTX3090 GPU.

Datasets and Setup
The proposed method is evaluated on two challenging
real-world datasets: OakInk (Yang et al. 2022b) and
HO3D (Hampali, Sarkar, and Lepetit 2021). To our knowl-
edge, they are two of the few benchmarks that provide of-
ficial contact annotations and corresponding RGB images.
OakInk is one of the latest and largest hand-object interac-
tion datasets. It contains 230K images, capturing the single-
hand interactions of 12 subjects with 100 objects from 32
categories. HO3D is a widely used dataset consisting of
103k images. The dataset captures 10 subjects interacting
with 10 YCB objects (Calli et al. 2015). More detailed
dataset settings are provided in the supplementary material.

Evaluation Metrics
For contact prediction, detection metrics such as precision,
recall, and F1-score are adopted. For object reconstruction,
the chamfer distance (CD, mm), F-score at 5mm and 10mm
thresholds are reported. To evaluate the quality of the rela-
tion between objects and hands, the penetration depth (PD,
cm) and intersection volume (IV, cm3) are computed.

Experimental Results for Contact Prediction
Since there is no specific method focused on predicting hand
contact regions from monocular images, we first conduct ab-
lation experiments on model settings, then compare and vali-
date the effectiveness of the multi-level graphormer. Finally,
we evaluate different levels of contact prediction.

Ablation Study. Table 1 illustrates the quantitative ab-
lation results for vertex-level contact predictions on the
OakInk dataset. M1 is designed to estimate the hand mesh
and vertex-level contact at the same time. It yields the over-
all lowest detection scores. Compared with M1, M2 further
uses the loss Lvertex sub calculated on the sub-mesh pro-
posed in Training Details. The precision, recall, and F1-
score are improved by 5.6%, 11.4%, and 11.1%, respec-
tively, proving the effectiveness of multi-scale features ag-
gregation based on the hand model in this task. Different
from M2, M3 does not reconstruct the hand mesh and only
performs hand contact prediction. Although the recall drops
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Method Lvs OPC WL Precision Recall F1

M1 % % % 0.270 0.176 0.189
M2 " % % 0.285 0.196 0.210
M3 " " % 0.309 0.192 0.213
M4 " " " 0.332 0.245 0.262

Table 1: Ablation study for vertex-level contact predictions
on the OakInk dataset. From left to right are whether to use
Lvertex sub (Lvs), whether to only predict contact (OPC,
otherwise reconstruct the hand mesh at the same time), and
whether to use the weighted loss (WL).

Method OakInk HO3D

P R F1 P R F1

Single-Vertex 0.332 0.245 0.262 0.476 0.422 0.416
Multi-Vertex 0.342 0.244 0.262 0.510 0.441 0.436
Single-Part 0.770 0.753 0.728 0.710 0.723 0.672
Multi-Part 0.790 0.767 0.747 0.722 0.741 0.685

Table 2: Comparison of different network architectures on
OakInk and HO3D datasets. ‘P’ is precision and ‘R’ is recall.

slightly, its precision improves by 8.4%, showing that focus-
ing on a single task could make the network learn more ef-
fectively. Finally, compared withM3,M4 uses weight priors
for BCE losses in Equation 2 and achieves a huge boost on
all metrics (e.g., 27.6% on recall and 23.0% on F1), show-
ing that the weight priors of contacts introduced in Training
Details can provide useful guidance for the model.

Effectiveness of Multi-level Graphormer. In this work,
three network architectures are trained and evaluated on
OakInk and HO3D benchmarks, respectively. As shown in
Table 2, in addition to the multi-level graphormer encoders,
we also use the single-level model in Fig. 2 for contact pre-
diction. The outputs of the multi-level method are compared
with corresponding single-level outputs. Although a single
vertex-level model yields slightly better recall on OakInk,
the multi-level one can improve the precision from 0.332
to 0.342 benefiting from using the part-level output to re-
fine features for vertices. Regarding the part-level output, the
coarse-to-fine model outperforms the single-level one on all
evaluation metrics. The multi-level model also achieves su-
perior performance on HO3D for all metrics, which demon-
strates the advantage of using the proposed coarse-to-fine
learning framework. Fig. 4 further illustrates the qualitative
results of the proposed method on two benchmarks. Benefit-
ing from accumulating both global contexts and local details
by using the graph-based transformer, the proposed method
is robust to input images with hand or object occlusions.

Part-level vs. Vertex-level Prediction. In Table 2, the
vertex-level predictions are worse than the part-level results,
showing that the dense vertex-level prediction is more dif-
ficult than the sparse one. For the single-level architecture,

Figure 4: Visualizations of contact prediction on OakInk
(Rows 1, 3) and HO3D (Rows 2, 4) datasets. Since the
method only estimates contact, the result is rendered on the
ground truth hand mesh. For samples whose contact regions
are occluded by hands, hand meshes are rotated 180 degrees
for clear visualization. The proposed method is robust to
both hand and object occlusions.

Method SPC ESC MSV F@5mm↑ F@10mm↑ CD↓

N1 % " " 0.261 0.475 1.110
N2 " % " 0.361 0.592 0.848
N3 " " % 0.371 0.614 0.680
N4 " " " 0.393 0.633 0.646

Table 3: Ablation study for contact modeling in object re-
construction on HO3D. From left to right are whether to
use the sparse convolution (SPC, otherwise nearest neighbor
diffusion), whether to use the estimated contact (ESC, oth-
erwise an all-one contact vector), and whether to use multi-
scale contact code volumes (MSV, otherwise only V3 + V4).

the F1 score of the vertex-level method on OakInk is only
0.262, while the single part-level model achieves 0.728. On
the HO3D dataset, we can observe a similar performance
gap between the part-level and vertex-level accuracy. Fig. 4
illustrates that part-level predictions are closer to the ground
truth than vertex-level predictions. Therefore, part-level pre-
dictions are converted to vertex-level ones according to the
fixed correspondence and then propagated to hand mesh ver-
tices for subsequent experiments. More details and compar-
isons are provided in the appendix.

Experimental Results on Object Reconstruction
Ablation Study. Table 3 illustrates the ablations for con-
tact modeling in object reconstruction on HO3D and N4 is
our final method. The ground truth hand meshes are adopted
to ignore the influence of the hand pose. N1 is designed
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Method F@5mm F@10mm CD PD↓ IV↓
HO 0.110 0.220 4.190 - -
GF 0.120 0.240 4.960 - -
IHOI 0.280 0.500 1.530 - -
Ours 0.313 0.542 1.081 1.02 5.11
IHOI* 0.351 0.600 0.656 0.90 4.10
Ours* 0.393 0.633 0.646 0.67 2.91

Table 4: Comparison with state-of-the-art methods on
HO3D. ‘*’ denotes using the ground truth hand mesh.

Method F@5mm F@10mm CD PD IV

IHOI 0.432 0.658 0.491 0.75 4.36
Ours w/o Lhoi 0.447 0.716 0.274 0.66 3.03
Ours 0.459 0.718 0.260 0.62 2.67

Table 5: Comparison on the OakInk benchmark.

to diffuse the contact information by using a simple near-
est neighbor method like LoopReg (Bhatnagar et al. 2020).
It is slower and much worse than N4 since the contact in-
formation is not fully learned like sparse convolution, which
may even bring negative effects.N3 only combines two con-
tact code volumes (i.e., V3 + V4) and performs worse than
N4 with four scales, indicating the effectiveness of the full
multi-scale contact code volumes. In addition, N2 removes
the contact estimation module and takes an all-one contact
vector for a fair comparison. Its results (e.g., F@5mm =
0.361) are worse than that of N4 (e.g., F@5mm = 0.393),
showing that the estimated contacts could provide flexible
and efficient guidance for object reconstruction. More abla-
tion results can be found in the supplementary material.

Quantitative Comparison on HO3D. Since most prior
methods require the object template during inference, the
methods most relevant to ours are HO (Hasson et al. 2019),
GF (Karunratanakul et al. 2020), and IHOI (Ye, Gupta, and
Tulsiani 2022). For a fair comparison, we use the same pre-
dicted hands from (Rong, Shiratori, and Joo 2020) as IHOI
and the estimated contact states from our multi-level model.
As shown in Table 4, when our model uses predicted hand
meshes, we observe that our method can improve F@5mm
and F@10mm by 11.8% and 8.4% and greatly reduce the
chamfer distance by 29.3%. When the hand mesh is perfect,
our method also shows an obvious advantage and consis-
tently outperforms IHOI across all metrics. It largely im-
proves F@5mm by 12.0% and reduces the intersection vol-
ume by 29.0%, demonstrating the superiority of our method
in model-free object reconstruction.

Quantitative Comparison on OakInk. To show that our
model can work well for unseen objects, we split the dataset
to make sure that testing objects do not exist in the training
set. As shown in Table 5, when our model is not trained to-
gether with Lhoi, it can still outperform IHOI on all metrics.
Our final model, which is learned with Lhoi, achieves even
better results on different metrics. Compared with IHOI,

Figure 5: Qualitative comparison with the state-of-the-art
method on the HO3D and OakInk datasets. Our method can
reconstruct more realistic objects, especially for parts that
are in contact with hands.

our method can largely improve F@5mm and F@10mm by
6.3% and 9.1%, respectively. At the same time, it reduces
the penetration depth and intersection volume by 17.3% and
38.8%, which suggests our model can reconstruct more re-
alistic objects that naturally interact with hands.

Qualitative Comparison. Fig. 5 illustrates qualitative
comparisons on the HO3D and OakInk datasets. Compared
with the state-of-the-art IHOI (Ye, Gupta, and Tulsiani 2022)
(red dotted box), our method shows a clear advantage in the
reconstruction of object parts that are in contact with the
hand. It can be seen that the predicted hand contacts (yel-
low dashed box) provide effective guidance to recover cor-
responding object parts (green dashed box). We also observe
that our method is robust to occlusions. As illustrated in the
first, second, and fourth rows in Fig. 5, our model can still
work well when objects are occluded by hands. For unseen
objects with complex structures (e.g., camera) in OakInk,
our model can also obtain realistic results. More qualitative
results can be found in the supplementary material.

Conclusion
This paper introduces a novel representation of explicit con-
tacts for implicit reconstruction of hand-held objects. First,
the multi-level graph-based transformer encoders are cas-
caded to estimate accurate 3D hand-object contacts from a
single RGB image. Then, the predicted contact states are an-
chored to the hand surface and diffused to the nearby space
to construct the implicit neural representation for the manip-
ulated object. Extensive experiments on HO3D and OakInk
datasets indicate that our method can pay more attention to
the object parts that are in contact with hands and recon-
struct more realistic object meshes. The proposed method
currently focuses on hand-held object reconstruction. In fu-
ture work, we attempt to integrate the hand reconstruction
module for better hand-object interaction reconstruction and
leverage object category priors to improve generalization.
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