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Abstract: Safe, underwater exploration in the ocean is a challenging task due to the complex environ-
ment, which often contains areas with dense coral reefs, uneven terrain, or many obstacles. To address
this issue, an intelligent underwater exploration framework of a biomimetic robot is proposed in
this paper, including an obstacle avoidance model, motion planner, and yaw controller. Firstly, with
the aid of the onboard distance sensors in robotic fish, the obstacle detection model is established.
On this basis, two types of obstacles, i.e., rectangular and circular, are considered, followed by the
obstacle collision model’s construction. Secondly, a deep reinforcement learning method is adopted
to plan the plane motion, and the performances of different training setups are investigated. Thirdly,
a backstepping method is applied to derive the yaw control law, in which a sigmoid function-based
transition method is employed to smooth the planning output. Finally, a series of simulations are
carried out to verify the effectiveness of the proposed method. The obtained results indicate that the
biomimetic robot can not only achieve intelligent motion planning but also accomplish yaw control
with obstacle avoidance, offering a valuable solution for underwater operation in the ocean.

Keywords: biomimetic underwater robot; obstacle avoidance; deep reinforcement learning; backstepping

1. Introduction

The marine environment constitutes a pivotal realm on Earth, endowed with copious
natural resources, including mineral deposits and biological assets of significance. Due
to these valuable resources, it is commonly believed that the 21st century is the century
of the oceans, marking a period where humanity engages in large-scale exploration and
utilization of marine resources. With the deepening development of marine resource
exploitation, tasks such as underwater resource exploration and subsea target search
in complex aquatic environments are placing increasing demands on the precision of
autonomous motion. Therefore, there is an urgent need to advance key technologies in
system design, autonomous motion planning, and control methods for underwater robots,
ensuring their effective adaptation to the dynamically evolving conditions prevalent in the
underwater environment [1,2].

Traditional underwater robots mostly rely on propeller propulsion, benefiting from
its advantages of high thrust and speed. However, they often encounter challenges like
large disturbances, high destructiveness, and poor maneuverability, preventing them
from seamlessly integrating with the natural environment. In recent years, with the
development of biomimetics and robotics, significant progress has been made in underwater
biomimetic robots [3–5]. Drawing inspiration from different marine organisms, various
biomimetic platforms have emerged, such as robotic tuna [6], robotic sharks [7], robotic
manta [8], robotic dolphins [9], and so on [10]. Each type of underwater biomimetic robot
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exhibits characteristics such as high maneuverability, low disturbance, and environmentally
friendly adaptability. Therefore, utilizing underwater biomimetic robots for autonomous
exploration tasks in complex environments holds promise as a paradigm for the future of
underwater robotics.

With the improvement of robot computational performance, intelligent navigation
and obstacle avoidance algorithms are developing rapidly. Existing methods mainly regard
the above problem as a multi-objective optimization process. For the underwater vehicle
path-planning problem, Han et al. designed a comprehensive coverage path-planning
obstacle-avoidance algorithm aimed at achieving complete coverage of entire sea areas [11].
Based on the genetic algorithm, Wen et al. presented a fusion of heuristic algorithms aimed
at accelerating convergence and enhancing feasibility and flexibility [12]. By incorporating
autonomous underwater vehicles (AUVs) into the A-star algorithm, Zhang et al. considered
dynamic constraints with position information to ensure safety and feasibility [13]. The
aforementioned approaches demonstrate global search capabilities; however, they exhibit
poor adaptability to the environment and limited local planning capabilities. In recent
years, learning-based methods have garnered attention due to their robust nonlinear
approximation capabilities. Chen et al. established a dynamic neural network model
and further designed a path-planning algorithm that adapted to strong currents [14].
He et al. introduced the asynchronous multithreading proximal policy optimization-
based path-planning method, and a goal-distance heuristic reward function was employed
to enhance exploration directionality [15]. Yang et al. provided a deep reinforcement
learning-based path-planning algorithm, which included a positive experience screening
mechanism to improve the reuse rate and dynamic stability [16]. Chu et al. utilized an
improved convolutional neural network to construct a deep reinforcement learning method,
thus adapting to different dimensional environments [17]. Compared with traditional
AUVs, biomimetic underwater robots feature underdriven and strongly coupled motion
characteristics. By fully considering their motion constraints, such as maximum steering
angular velocity, turning radius, etc., it is conducive to further guaranteeing the safety and
reliability of the planning process.

As a key technique for achieving precise tracking of predefined safe paths, tracking
control has attracted considerable attention and is primarily divided into model-free control
and model-based control. The former has the advantages of simple implementation and
fewer requirements for the system model. Cao et al. derived a line-of-sight guidance law
and achieved plane path tracking by adjusting the joint phase offset of a robotic snake using
a proportional–integral–derivative (PID) motion controller [18]. In conjunction with a sine
gait pattern and a proportional–derivative (PD) heading controller, Kelasidi et al. achieved
steady-state tracking for a robotic snake in the presence of constant irrotational currents of
unknown direction and magnitude [19]. Yu et al. designed a fuzzy PID (FPID) heading
controller for straight-line tracking by an underactuated AUV under different velocity
profiles [20]. Zhang et al. proposed a motion controller for a Dactylopteridae-inspired
biomimetic underwater vehicle with a fuzzy adaptive PID controller, achieving high- and
low-speed stable line cruising [21]. However, model-free tracking controllers often exhibit
suboptimal transient control performance in some complex environments. Therefore,
model-based methods have gradually been applied. Li et al. presented an adaptive path-
tracking controller for a multi-joint snake robot based on an improved serpentine curve,
leading to fast convergence speed and high stability of the position error [22]. With full
consideration of the stochastic disturbances and uncertainties in hydrodynamic parameters,
Mahapatra et al. derived an Hinf tracking controller for AUVs to achieve precise tracking
of planar polyline paths [23]. Regarding the issue of unknown external disturbances and
control input saturation in underwater vehicles, Li et al. developed a robust tracking
controller to guarantee convergence within a specified time and a transient tracking error
within a predefined boundary [24]. Yan et al. provided a two-dimensional trajectory
tracking method for a biomimetic underwater robot subjected to external disturbances,
employing robust nonlinear model predictive control [25]. He et al. proposed a robust
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non-smooth controller to achieve simultaneous tracking of the reference yaw angle and
waypoints, which were validated through simulations for docking tasks and bridge pier
detection tasks [26]. By constructing a dead-zone compensator and a two-layer cascaded
tracking controller, Yu et al. addressed the issue of strong oscillations in torque input and
motion tracking of underwater vehicles caused by the inherent dead zone in the propeller
thrusters [27].

In this paper, we focus on safe exploration tasks in complex underwater environments,
aiming to provide an intelligent motion planning and control framework for biomimetic
underwater robots. The main contributions of this paper can be summarized as follows:

• Aiming to achieve underwater operation in complex environments, an intelligent safe
exploration framework is proposed for a biomimetic underwater robot, including
obstacle avoidance modeling, motion planning, and yaw control.

• Taking into account rectangular and circular obstacles, the sensor detection and obsta-
cle collision models are established, providing accurate information for the planner.

• With regard to intelligent motion planning, a Deep Deterministic Policy Gradient
(DDPG)-based planner is provided with the designed state space, action space, and
reward function. In particular, the performances of different training setups are
investigated. Furthermore, a backstepping-based yaw control law is derived by
combining it with a sigmoid function-based smoothing method. Extensive simulations
are conducted, demonstrating the effectiveness of the proposed methods.

The remainder of this paper is organized as follows. Section 2 provides a simple
explanation of the problem statement and the control framework. Section 3 details the
methodologies of the model, motion planner, and yaw controller design. Furthermore, the
simulation results are presented, followed by a comprehensive analysis. Finally, Section 5
concludes this paper and discusses future work.

2. Problem Statement and Control Framework

Safety obstacle avoidance technology plays a crucial role in autonomous underwa-
ter exploration. It can not only prevent collisions with obstacles but also optimize path
planning to ensure the efficient arrival of underwater robots in the target area. By integrat-
ing advanced sensing technologies, a safety obstacle avoidance system can acquire data
on the underwater environment in real time. By performing environmental perception
and obstacle detection, timely and accurate decisions can be made to ensure the safety of
task execution. Therefore, this paper proposes an autonomous exploration method for
biomimetic underwater robots.

Utilizing a biomimetic robotic fish as a vehicle, we conduct research on autonomous
exploration methods. Figure 1 illustrates the conceptual design of the biomimetic robotic
fish [28]. The safety obstacle avoidance system consists of three ranging sensors oriented
toward the front, left, and right directions. In the air, these sensors can acquire distance
information within a maximum measurable range of 30 m. However, in water, due to
the influence of optical attenuation, the effective measurement range is reduced to 1–2 m.
Additionally, the biomimetic robotic fish features a multi-joint tail propulsion system.
By oscillating the tail, forward thrust and yawing moment can be generated, thereby
accomplishing autonomous underwater locomotion. Further, the designed conceptual
computational modules of the robotic fish can be divided into the top decision level and
bottom control level. Specifically, the top-level decision-making module, which is applied
for deep reinforcement learning planning, employs an NVIDIA Xavier NX edge computing
platform, providing high-performance CPU, GPU, and AI computing capabilities for such
applications as robots. With regard to the bottom level, an STM32F407VGT6 microcontroller
is employed, featuring an ARM Cortex-M4 core capable of meeting various requirements
such as high computational performance and low power consumption.
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Figure 1. The conceptual design of the biomimetic robotic fish.

Furthermore, Figure 2 illustrates a schematic diagram of an underwater autonomous
exploration task. The biomimetic robotic fish departs from the starting point and moves
toward the target point. φ indicates the current yaw angle. φg represents the angle between
the current heading and the target heading. dg denotes the distance to the target point.
Regarding obstacle measurements, the measuring distance of the three ranging sensors is
set to lrader, which is smaller than the maximum underwater measurement distance of the
utilized sensing devices. Additionally, the installation angles for the left and right ranging
sensors are denoted as φinstall . Regarding obstacles, two obstacle types are designed in this
paper: rectangular obstacles and circular obstacles. Both types of obstacles can be set at
random positions and sizes. Hence, overlapping is permitted to form underwater obstacles
of any shape.

og xg

yg goal

Circular obstacle

Rectangular obstacle

installradarl

g


gd

Figure 2. A schematic diagram of an underwater autonomous exploration task.

Additionally, in order to establish the underwater environment, we employ the sim-
plified kinematic models for the underwater robot, as follows:

ẋ = u cos φ − v sin φ

ẏ = u sin φ + v cos φ

φ̇ = r

(1)
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where p(t) = (x(t), y(t)) represents the position with respect to the inertia frame. (u, v, r)
denotes the linear and angular velocities with respect to the body frame.

Considering that this paper focuses on navigation control tasks in narrow environ-
ments, the biomimetic robotic fish in such conditions exhibits relatively low speed but high
maneuverability. Therefore, this paper assumes a longitudinal velocity of 0, with a given
forward velocity of u = 0.3 m/s. In summary, the dynamic expression in the yaw direction
can be formulated as follows:

ṙ =
1

m33
(τr + (m11 − m22)uv − d33r) (2)

where (m11, m22, m33) and d33 are the mass and damping parameters larger than zero. τr
indicates the yaw moment.

Based on the aforementioned problem description, this paper proposes an autonomous
intelligent exploration framework for biomimetic robotic fish, taking obstacle avoidance
into account, as shown in Figure 3. Firstly, the underwater environment is modeled.
Adopting a sensor design scheme based on biomimetic robotic fish, two types of obstacles,
rectangular and circular, are designed, further establishing the obstacle models and colli-
sion models. This enables real-time interaction between the biomimetic robotic fish and
environmental information. Secondly, using the DDPG method, a neural network based
on multi-layer perceptron (MLP) is constructed to achieve intelligent and safe underwater
motion planning. Considering the characteristics of the task, the state space, action space,
and reward function are designed, and the performances of different training setups are
investigated. Thirdly, based on the obtained motion planning, a heading motion control
method based on the backstepping approach is provided. Specifically, to address sudden
changes in planning quantities, we adopt a smooth transition method based on a smooth
step function to enhance tracking stability. In this process, due to the higher real-time
requirements of yaw control compared to motion planning, different time periods are
applied to the planning layer and control layer.

DDPG-based planner

Actor Critic

Optimizer

Online network

Target network

Optimizer

Online network

Target network

Experience buffer pool

st, rt, at, st+1

Sample

Environment model

Motion control

Map

Circular 

obstacle

Rectangular 

obstacle

Obstacle collision model

Motion model Backstepping-based controller

Figure 3. The control framework of autonomous intelligent exploration.
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3. The Methodology of Intelligent Safe Exploration
3.1. Obstacle Collision Model

Real-time interaction with the underwater environment is a crucial aspect of robot mo-
tion planning and control, especially in underwater environments with complex obstacles.
This paper introduces two types of obstacles in the environment: rectangular obstacles
and circular obstacles. For rectangular obstacles, the defining variables include the center
position, length, width, and rotation angle. Similarly, each circular obstacle is characterized
by the center position and radius. By calculating the distance between the biomimetic
robotic fish and the obstacles, the state inputs are provided for deep reinforcement learning.
Next, we offer a detailed explanation of the collision model.

Firstly, the detection model for three ranging sensors is established, as illustrated in
Figure 4. According to the aforementioned description, the ranging sensors are oriented
in different directions with varying installation angles. The choice of this angle directly
influences the range of detection. Therefore, a well-designed installation angle contributes
to maximizing the efficiency of the safety system, ensuring stable and comprehensive
distance data provision in various scenarios. Furthermore, since the utilized ranging
sensors belong to single-line lidar, their detection models can be described by geometric
line segments. The starting point of the line-segment models for these three sensors is the
real-time position of the biomimetic robotic fish, and the detection distance is denoted as
lrader. Consequently, the end positions of these line segments can be derived as follows:

Ps =
(

x + l̃rader ∗ cos(φ), y + l̃rader ∗ sin(φ)
)

Pl = (x + lrader ∗ cos(φ + φinstall), y + lrader ∗ sin(φ + φinstall))

Pr = (x + lrader ∗ cos(φ − φinstall), y + lrader ∗ sin(φ − φinstall))

, (3)

where l̃rader = lrader cos(φinstall). The purpose of this configuration is to ensure that the
endpoints of the three ranging sensors align in a straight line. Since the forward sensor’s
detection direction corresponds to the swimming direction of the robotic fish, if the detec-
tion distance is set the same as that of the sensors on both sides, the effectiveness of the
side sensors for detecting obstacles in the forward direction may be limited. Consider a
scenario where the biomimetic robotic fish traverses the bottom-right corner of a rectan-
gular obstacle. When the only forward sensor obtains collision information, the robot’s
movement direction is determined by the current heading angle, potentially resulting in a
left or right turn. However, a leftward movement may result in ongoing collisions with
the obstacle. Conversely, by aligning the endpoints of the three sensors’ detection points,
simultaneous detection of the obstacle can be ensured by both the left and forward sensors.
In such a scenario, the robot opts to move right to circumvent the obstacle.

Furthermore, for the three ranging sensors, the line-segment detection model can be
expressed as follows:

PoPs,l,r → {x, y, lrader, φ, φinstall}. (4)

Next, a brief description of the modeling process for rectangular obstacles is presented.
In Figure 4, the center point of rectangular obstacle i is denoted as Oi

rec =
(
xi

orec, yi
orec
)
, with

the length and width represented by leni
orec and widi

orec, respectively. Consequently, the
coordinates of the four corners of rectangular obstacle i can be derived as follows:

Ai =
(

xi
orec-A, yi

orec-A
)
=

(
xi

orec −
leni

orec
2

, yi
orec +

widi
orec

2

)
Bi =

(
xi

orec-B, yi
orec-B

)
=

(
xi

orec −
leni

orec
2

, yi
orec −

widi
orec

2

)
Ci =

(
xi

orec-C, yi
orec-C

)
=

(
xi

orec +
leni

orec
2

, yi
orec −

widi
orec

2

)
Di =

(
xi

orec-D, yi
orec-D

)
=

(
xi

orec +
leni

orec
2

, yi
orec +

widi
orec

2

)
. (5)
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Further, considering rectangular obstacles with different attitudes, four corner points
can be rotated. Taking corner point A as an example, the coordinate position of the rotated
point can be derived as follows:

A′ =

 xi
orec-A

′

yi
orec-A

′

 =

( (
xi

orec-A − xi
orec
)

cos(α)−
(
yi

orec-A − yi
orec
)

sin(α) + xi
orec(

xi
orec-A − xi

orec
)

sin(α) +
(
yi

orec-A − yi
orec
)

cos(α) + yi
orec

)
, (6)

where α is the rotation angle. Therefore, based on the aforementioned description, the four
sides of the rectangle can be modeled. Each side can be represented by a triplet, including
the starting point of the line segment, the length of the line segment, and the angle of the
line segment, as follows:

AB →
{

A, widi
orec,−90◦ + α

}
AD →

{
A, leni

orec, α
}

CB →
{

C, leni
orec,−180◦ + α

}
CD →

{
C, widi

orec, 90◦ + α
}

. (7)

The circular obstacle can be described by its algebraic equation as follows:(
x − xi

ocir

)2
+
(

y − yi
ocir

)2
= ri

ocir
2
. (8)

Finally, collision detection modeling is conducted based on the distance sensor detec-
tion model and the obstacle models. Algorithm 1 provides the detailed process for collision
modeling. The input comprises the detection model and obstacle model, and the output
consists of real-time feedback distance information from three distance sensors. Specifi-
cally, for rectangular obstacles, the algorithm calculates the intersection points between
the line-segment models of the three distance sensors and the edge line-segment model
of the rectangular obstacle. This process yields the distances between the robot and each
intersection point. Next, by sorting the distances, the minimum value is chosen as the input
for the sensor data. The same methodology is applied to circular obstacles.

 ,i i
cir ocir ocirO x y

i
ocirr

A

C

i
oreclen

i
orecwid

B

D

lP

 ,i i
rec orec orecO x y

 ,oP x y

sP
rP

iPr -obs
obsPi

l -

Figure 4. An illustration of the obstacle detection model.
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Algorithm 1 Obstacle collision model

Input:
(

xi
orec, yi

orec
)
, leni

orec, widi
orec, α,

(
xi

ocir, yi
ocir
)
, ri

ocir
Output: The distances measured by the three distance sensors to the nearest obstacles ds,

dl , dr.
1: Obtain the line-segment model of the range sensors and the line-segment model of each

obstacle {PoPs}, {PoPl}, {PoPr}.
2: For rectangular obstacles i, the set of boundary models is

{
AiBi, AiDi, CiBi, CiDi},

whose slope and intercept are ki
j and ci

j, j = AB, AD, CB, CD.

3: Determine whether {PoPs} and
{

AiBi, AiDi, CiBi, CiDi} are parallel.
4: if parallel then
5: It indicates no intersection points.
6: else

7: Calculate the intersection point (xc, yc) =

 ci
j − cl

kl − ki
j
,

kl

(
ci

j − cl

)
kl − ki

j
+ cl

, and obtain

the distance dl .
8: end if
9: Sequentially verify whether the intersection point lies on the two intersecting line

segments simultaneously.
10: if True then
11: Output dl .
12: else
13: It indicates safety.
14: end if
15: For circular obstacle i,
16: if ∥PlOcir∥ > ri

ocir then
17: It indicates safety.
18: else
19: Compute the intersection points between the line and the circle and determine the

one closer to the robot as the obstacle intersection point. Next, obtain the distance dl .
20: end if
21: Verify whether the intersection point lies on the line segment.
22: if True then
23: Output dl .
24: else
25: It indicates safety.
26: end if
27: For the forward and right sensors, use the same steps as the left sensor.

3.2. DDPG-Based Motion Planner

Based on the above obstacle collision model, we conduct motion planning in this
section. Taking into account the safety, smoothness, and shortest path of the motion,
we design the DDPG algorithm to achieve autonomous obstacle avoidance motion in a
multi-obstacle environment. Firstly, the autonomous obstacle avoidance motion can be
regarded as a Markov decision process, as well as a multi-objective optimization problem.
In recent years, deep reinforcement learning algorithms have gained widespread attention
for their powerful nonlinear optimization capabilities and have gradually been applied
to robot control tasks. The DDPG algorithm has demonstrated its superiority in handling
high-dimensional, continuous action spaces. In detail, the actor network is responsible for
outputting actions, whereas the critic network evaluates the value of these actions. Through
the collaborative work of the actor and critic, DDPG can more effectively learn policies in
complex environments, achieving optimization in continuous action spaces. Therefore, this
paper adopts the DDPG method to conduct motion planning, allowing the robot to learn
appropriate actions in a multi-obstacle environment. Next, based on the above algorithm,
the training framework for a fully connected neural network using MLP is constructed by
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designing the multi-variable state space, action space, and reward function. By judiciously
selecting the number of layers and nodes of the fully connected neural network, a balance
between the expressive power of the model and computational efficiency can be achieved.
Additionally, we construct the multi-layer perceptron considering a lightweight network
architecture. There are just two hidden layers, in which the numbers of neural nodes are
400 and 300, respectively.

3.2.1. State Space

The reasonable design of the state space is crucial for network training in reinforcement
learning. Based on the defined task, this paper introduces five state variables, as follows:

• dg represents the Euclidean distance between the current position of the robot and
the target point, which aims to guide the robot toward motion planning along the
shortest distance. Additionally, the maximum value of this distance is determined by
the distance between the starting point and the target point.

• φg represents the difference between the current heading of the robot and the target
heading, which primarily guides the robot to move optimally in the desired direction.
Therefore, the range of this value is [−180◦, 180◦].

• ds represents the real-time obstacle measurement information from the forward sensor.
• dl represents the real-time obstacle measurement information from the left sensor.
• dr represents the real-time obstacle measurement information from the right sensor.

Furthermore, we normalize and scale the aforementioned state variables to accommo-
date different initial and target values.

3.2.2. Action Space

Based on the kinematic model of biomimetic robotic fish, we consider the yaw angle
increment ∆φ as the output value of the neural network. The determination of the output
range is derived from the yaw angular velocity of the biomimetic robotic fish. Given a
motion planning period of Tp = 0.2 s, the network output η rad at a specific moment
implies that the turning angular velocity should reach η/Tp rad/s.

In conjunction with our prior works, considering the dual factors of obstacle avoidance
and protection of the drive mechanism in narrow environments, the turning angular
velocity of the biomimetic robotic shark is approximately 50◦/s. Therefore, we set the
range of the action space as ∆φ ∈ [−10◦, 10◦]. Nevertheless, based on the aforementioned
rationale, it seems that the yaw angular velocity is also another reasonable network output.
There are two reasons for selecting the yaw angle increment rather than the angular velocity
as the output. On one hand, the yaw angular velocity is susceptible to disturbances and
data instability in practical applications. Utilizing it as the input for subsequent controllers
may lead to system instability. Filters are often applied in practical scenarios, introducing
new issues related to signal lag. On the other hand, utilizing the yaw angle as the input
allows for smoother processing in subsequent controllers, facilitating control law design.

3.2.3. Reward Function

The formulation of the reward function directly influences the strategies learned by the
agent, guiding the robot toward optimization across multiple objectives. By incorporating a
balanced consideration of reward weights for different objectives, a multi-objective reward
function is designed, which can be summarized as follows:

• r1 = −dg: The value of the distance variable in the state space is employed as the first
reward term, aiming to achieve the characteristic of the shortest path.

• r2 = −
∣∣φg
∣∣: The difference in the target heading is utilized as the second reward term,

with the intention of directing the robot toward the target heading.
• r3 = −

∣∣φg
′∣∣: The derivative of the difference in the target heading is employed as the

third reward term, facilitating the smoothing of the heading output angle, thereby
obtaining a smooth trajectory.
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• r4 = −
(

1
ds

+
1
dl

+
1
dr

)
: The summation of the reciprocals of the real-time distances

between the robot and the nearest obstacle, measured by three sensors, is employed
as the fourth reward term. The aim is to encourage the robot to maintain a certain
distance from obstacles as much as possible during its motion.

• r5 = f (x, y): This term represents the terminal reward, providing a relatively large
positive reward when the robot reaches the goal point. The definition is as follows:

f (x, y) =

{
1 i f

√(
x − xg

)2
+
(
y − yg

)2
< 0.1

0 otherwise
. (9)

By linearly summing the aforementioned reward terms with appropriate weights, the
overall designed reward can be expressed as follows:

R =
5

∑
i

κiri, (10)

where κi denotes the weight coefficients, which are also normalized.
Based on the previous setup, a deep reinforcement learning framework can be de-

veloped for network training. To expedite training, a training environment based on
line-segment obstacles is employed. Considering the single-line distance measurement
characteristic of the sensors, specific point information can be collected. Hence, obstacles
are represented as line segments rather than actual rectangles or circles during network
training. This design offers two advantages. Firstly, adopting the form of line-segment
obstacles can reduce training complexity to some extent, thereby enhancing training speed.
In comparison with the utilization of real rectangular or circular obstacles, the geometric
simplicity of line-segment obstacles streamlines the training process, rendering it more
efficient. Secondly, line-segment obstacles can be set at arbitrary angles, allowing for sub-
stantial intersection among these segments. Consequently, with a sufficient number of line
segments, the theoretical complexity of the obstacle environment surpasses that of regular
shapes (rectangles or circles). To a certain extent, this setup facilitates the reinforcement
learning network in acquiring obstacle avoidance strategies more accurately in practical
environments, thereby improving its generalization performance in real-world scenarios.

Building upon this foundation, we delve into various training environment configura-
tions, with a primary focus on whether the position of obstacles changes during a single
training iteration. Specifically, two training strategies are explored. Firstly, a strategy is
employed where the positions of obstacles remain fixed throughout the entire training
process. Theoretically, this strategy is anticipated to yield relatively stable training out-
comes due to the uniqueness of the optimal path. Secondly, a dynamic configuration is
introduced, incorporating a triggering variable to initiate changes in obstacle positions.
Specifically, the initial obstacle configuration is set, and training commences. Within a
single episode, when the robot reaches the target point, the triggering variable increments.
Upon the triggering variable surpassing a predefined threshold M, the obstacle positions
are reconfigured. In this paper, we investigate the training outcomes for different values of
M, specifically M = 1, 20, and 50. Such a design allows for a comprehensive exploration of
the impact of diverse training environments on model performance.

3.3. Backstepping-Based Yaw Controller

Based on the motion planner, we can obtain the incremental value ∆φ(t) of the target
yaw angle, thus acquiring the target yaw angle φd(t) = φd(t − 1)−∆φ(t) at time t. For ease
of expression, φd is used hereafter to refer to the target yaw angle. As described in the action
space design, the obtained target heading angle may exhibit significant discontinuities,
posing higher demands on the controller’s design. Therefore, to achieve smoother changes
in the target heading signal, this paper proposes a smoothing method for handling step
changes in control targets.
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The sigmoid function, characterized by its smooth continuity, is a type of S-shaped
function that performs exceptionally well in processing step signals. By adjusting the
parameters of the sigmoid function, the smoothness of the step signal can be flexibly
controlled to meet the requirements of different control systems. Thus, this paper adopts
the sigmoid function as a smoothing term, aiming to reduce the rate of change of the target
heading signal by introducing weight coefficients. This smoothing step method contributes
to alleviating the system’s abrupt load, enhancing the stability and performance of the
controller. The expression of the smoothing process is as follows:

φ̂d(t) = (φd − φ̃d) · fs(t) + φ̃d, (11)

where
fs(t) =

1
1 + e−λt

t ∈ [0, Tc]
, (12)

where φ̃d indicates the primeval yaw angle based on the action output of the planner. λ
denotes the coefficient.

Furthermore, the yaw controller is designed based on the backstepping method [29].
First, define the yaw error as follows:

eφ = φ − φ̂d

ėφ = φ̇ − ˙̂φd = r − ˙̂φd = ξ + er − ˙̂φd
. (13)

Next, define the Lyapunov function V1 for eφ, and derive its derivative as follows:

V1 =
1
2

e2
φ

V̇1 = eφ ėφ = eφ

(
r − ˙̂φd

)
= eφ

(
ξ + er − ˙̂φd

) . (14)

Further, in order to achieve eφ → 0, we can design the following:

ξ = ˙̂φd − k1eφ, (15)

where k1 represents the coefficient. Hence, the derivative can be formed as follows:

V̇1 = −k1e2
φ + eφer. (16)

Then, define the Lyapunov function V2 for er, and derive its derivative as follows:

V2 = V1 +
1
2

e2
r

V̇2 = V̇1 + er ėr = V̇1 + er(ėr) = er
(
ṙ − ξ̇

) . (17)

Based on the dynamic model, ṙ can be expressed as ṙ = (τr + (m11 − m22)uv − d33r)/m33.
Therefore, we can design the control law as follows:

τr = (m22 − m11)uv + d33r + m33
(
ξ̇ − k2er − eφ

)
. (18)

Consequently, we can obtain the following:

V̇2 = −k1e2
φ − k2e2

r . (19)

Obviously, ∀eφ ̸= 0, er ̸= 0, V2 < 0, indicating that the yaw control system is asymp-
totically stable.
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4. Simulation and Analysis

In this section, we carry out extensive simulations to validate the effectiveness of the
proposed planner and controller. Firstly, a simulated pool environment is established, along
with the network training and testing environment. Further, a multi-layer perceptron based
on a fully connected network is constructed with two hidden layers. Additionally, two
distinct time intervals are employed in this paper: the planning period Tp and the control
period Tc. The key parameters of the planning and control systems can be seen in Table 1.
The other parameters, such as the model and training setup of the network parameters, can
be found in our previous work [30].

Table 1. The parameters of the planner and controller.

Item κ1 κ2 κ3 κ4 k1 k2 λ Tc Ts φinstall lrader

Value 0.4 0.4 0.05 0.15 2 2 30 200 ms 20 ms 45◦ 0.8 m

4.1. Results and Analysis of the Planner

Figure 5 presents the training results under a fixed obstacle configuration, including a
reward and two types of losses. The shaded region in the figure represents the standard
error of the data annotated based on the training results. The results indicate that the
proposed deep reinforcement learning planning method achieved rapid convergence.
Although there is some instability in the first 500 steps, the subsequent curves demonstrate
relatively stable performance.
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Figure 5. The training results of the DDPG-based planner.

Furthermore, we investigated the relationship between the partial state variables and
output actions. Taking dg and φg as examples, Figure 6 indicates the mapping relationship
between them. Since the forward velocity was set to a fixed value and the lateral velocity
was neglected, theoretically, there was a stronger correlation between the output actions
and yaw angle. The training results demonstrate that in terms of the overall trend, the
output actions generally changed with the variation of the yaw angles. Additionally, dg
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also played a role in some aspects. For instance, when dg was relatively large under the
same yaw angle error, the output action tended to be more gradual. The main reason might
be that when the distance to the target point was considerable, the learned strategy not
only pursued the target yaw direction but also considered the smoothness of the path.

8
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4
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0

2
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6

8

Figure 6. The relationship between the partial state variables and output actions.

In addition, to thoroughly investigate the network’s performance under different
training conditions, we conducted tests with different values of M. The specific definition of
M is as follows. During the network training process, if the robotic fish successfully reaches
the target point in each episode within the same obstacle environment, it is recorded as one
success, and M represents the total number of successful attempts. Therefore, by fixing the
obstacle environment and setting M =1, 20, 50, four agents can be obtained. Subsequently,
multiple tests were conducted for each training network. By employing the control variable
method, we set up eight sets of identical obstacle environments for each agent, enabling the
robotic fish to perform motion planning, and recording the cumulative reward. Figure 7
shows the corresponding results, illustrating the maximum and minimum rewards obtained
by the four training environments in the eight test environments. Additionally, we also
calculated the median, mean, and standard deviation for the four sets of data, as tabulated
in Table 2. From the perspectives of the median, minimum, mean, and standard deviation,
the network performance obtained from training in a static obstacle environment was
optimal. As the value of M increased, the performance gradually decreased, which was
also validated from the viewpoints of the mean, standard deviation, and minimum values.
The plus sign + in figure indicates that the value is automatically marked as an outlier
due to the large difference from the median. The reasons for the above phenomenon are
mainly twofold. Firstly, when changing the environment, the positions of the obstacles
were randomly generated, leading to situations where obstacles were either too simple or
complex in certain trials. Secondly, theoretically, the static obstacle environment, equivalent
to M → ∞, resulted in a relatively unique optimal solution in that environment, facilitating
the learning of the optimal strategy. Certainly, due to the total episode number being set
at 3000, with a maximum of 300 steps per episode, the limitation on sample quantity may
also have influenced the results.
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Figure 7. The results of testing different training setups.

Table 2. Results analysis of different training environments.

Data Static-Env Dynamic-Env-1 Dynamic-Env-20 Dynamic-Env-50

Median value −32.385 −36.945 −34.425 −41.13
Mean value −34.243 −38.460 −40.161 −44.553

Standard error 5.940 8.125 13.668 13.834

4.2. Results and Analysis of Obstacles Avoidance in Complex Environment

In this section, we select the network trained in a fixed obstacle environment for
autonomous motion testing. Firstly, by randomly setting obstacle modeling data, a complex
obstacle environment was generated. Secondly, the starting point (1.5, 1.5), the target
point (6.5, 6.5), and the initial posture of 45◦ were defined. Subsequently, the DDPG-based
planner and backstepping-based controller were applied. The results of the snapshot
sequences are shown in Figure 8, indicating that the robotic fish successfully detected and
correctly avoided each obstacle during the movement toward the target point. Figure 9
illustrates the real-time variation trends of the five state variables. Specifically, we divided
the motion process shown in the figure into three stages based on obstacle avoidance
behavior, represented by obstacles of different colors. In the first stage, the biomimetic
robotic fish’s left and forward sensors detected obstacles, prompting a right turn based on
network output. Since obstacles still existed on the right, the right and forward sensors
received information, leading to a left turn. At this point, the robotic fish’s position was
between two obstacles, with only the forward sensor having no data, yet the robotic
fish chose to move straight ahead. The obstacle avoidance task in the second stage was
relatively simple. When the left sensor detected an obstacle, a slight right turn led to
successful avoidance. The third stage was similar to the first stage. However, the yaw
angle error state variable in Figure 9 exhibited an approximately 5◦ steady-state error at
the initial stage. The main reason might be the presence of a certain sudden change in
control torque at the beginning of motion, leading to instability. In the later control stages,
despite encountering multiple obstacles, the trained network continued to navigate toward
the target.
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Figure 8. The snapshot sequences of intelligent safe exploration.
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Figure 9. The real-time variation trends of the five state variables.

Additionally, Figure 10 depicts the planning and control output variables during the
autonomous exploration process. Regarding the planning output, the results indicated that
the trained network tended to adopt relatively strong actions when facing complex narrow
environments. However, taking values at the boundaries of the action space may lead to
some step changes. Fortunately, the employed smooth transition method alleviated this
issue to some extent. As shown in Figure 10, it can be observed that when the planning
output underwent a step-like change, the proposed method enabled a smooth transition,



Biomimetics 2024, 9, 126 16 of 18

thereby improving the stability of the control input to a certain extent. In terms of the
control output, it is evident that during the obstacle avoidance stage, there was a noticeable
change in the control output, allowing the robot to instantly output a large yaw moment to
complete turning actions. In summary, the above process thoroughly demonstrates that
the proposed method can successfully achieve autonomous, safe, and intelligent motion
planning and control in narrow and multi-obstacle environments.
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Figure 10. The output results of the planning and control variables.

4.3. Discussion

With the aid of high maneuverability, a robotic fish has the ability to move in a
complex and narrow environment that is full of obstacles. Hence, an autonomous intelligent
planning and control framework for a biomimetic robotic fish is proposed for autonomous
exploration tasks in complex multi-obstacle environments. Considering two common types
of obstacles, i.e., rectangular and circular, we establish an obstacle collision model with
three distance sensors installed on a robotic fish. On this basis, we design a motion planner
and yaw controller based on deep reinforcement learning and backstepping methods,
successfully achieving intelligent safe exploration.

Despite successfully achieving autonomous obstacle avoidance for intelligent ex-
ploration, there are some aspects that still require improvement. Firstly, we regard the
biomimetic robotic fish as a point, without considering its shape and size information.
Therefore, shape modeling of the biomimetic robotic fish is part of our ongoing work.
Secondly, DDPG faces the issue of easily becoming stuck in extreme action regions and
easily learns strategies at the edges of the action space. To address this problem, consider-
ing a new network architecture or incorporating concepts from other deep reinforcement
learning algorithms should be considered.

5. Conclusions and Future Work

In this paper, we have developed an intelligent safe exploration framework for
biomimetic robotic fish, which includes an obstacle avoidance model, DDPG-based motion
planner, and backstepping-based yaw controller. With regard to the obstacle avoidance
model, an obstacle detection model was established using three onboard distance sensors.
Next, a collision model considering rectangular and circular obstacles was constructed,
further obtaining the distances to the nearest obstacle. Utilizing these distances as the input
states, a DDPG-based motion planner was designed to output the target yaw motion, with
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obstacle avoidance considered in the reward design. Using the action output, a sigmoid
function-based smooth method was applied to generate the stable target yaw angle. Further,
a backstepping-based method was employed to achieve yaw control. Finally, extensive
simulations were carried out, demonstrating the effectiveness of the proposed method.

In the future, we will develop a prototype of the robotic fish, including the sensor
system, top decision-level module, and bottom control-level module, and conduct aquatic
experiments to further verify the effectiveness of the proposed methods. Additionally,
we will focus on underwater stereoscopic vision to identify obstacles, thereby obtaining
more abundant environmental information. Further, a vision-based navigation algorithm
is another area worthy of study.
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