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A B S T R A C T

Link prediction is an important problem in dynamic systems, where the goal is to predict future unweighted
or weighted link topologies using historical context. Compared with unweighted links, weighted links can
preferably reveal the nature and strength of the interactions among entities. However, weighted links also
bring greater challenges because they require subtle structural adjustments and numerical variations to be
captured. Existing methods are primarily tailored for unweighted links and most generally suffer from low-
quality performance when applied to Weighted Link Prediction (WLP) task. In this study, we propose a novel
generative framework that adopts conditional Invertible Neural Networks (INNs) to achieve WLP. The proposed
framework leverages the benefits of conditional INNs to exactly optimize the log-likelihood in the latent space
conditioned on the historical context, which can be sensitive to minor replacements in real-world systems and
derive accurate WLPs. Furthermore, to deal with the long-tail statistical phenomenon of edge weights observed
in real life, a tail-adaptive distribution is learned in latent space to capture the tail properties and enhance
the model’s ability. To verify the effectiveness of the proposed method, we conduct extensive experiments on
four datasets from different systems. The experimental results demonstrate that our model achieves impressive
results compared to state-of-the-art competitors.
1. Introduction

Many ubiquitous real-world systems, such as social networks and
communication, are complex in nature and evolve over time [1]. These
dynamic systems typically provide a generalized abstraction of their
behavior through a sequence of temporal snapshots. Each snapshot
delineates the system entities and their interactions at a specific time
step, as represented by a set of nodes and edges. Because of intrinsic
dynamics, the links between nodes change dynamically over time,
rendering them a compelling object of study. As a fundamental task
in mining this type of data, link prediction has been widely utilized
in various practical applications, e.g., social media analysis and user
behavior inference [2–4].

Considerable attention has been paid to the problem of link pre-
diction. Link prediction can be roughly divided into two categories:
unweighted and weighted. Unweighted link prediction aims to identify
the presence or absence of links using observed information. Extensive
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research has been conducted in this field, yielding substantial advance-
ments [5–7]. In contrast, in weighted systems, a weight is attached to
each link, which serves to capture and retain additional information
pertaining to the nature and strength of the interactions among the en-
tities comprising a given system [8–11]. For instance, link weights can
encompass significant information regarding the trustworthiness rating,
flow, signal strength, or distance of network systems. Link weights
play a pivotal role in characterizing the intricate nature of interactions
in complex systems. However, conventional link prediction models,
primarily designed for unweighted systems, inadequately capture the
nuanced relationships embedded in weighted systems, thus prompting
the need to advance predictive modeling for weighted systems. The
motivation is rooted in recognizing that Weighted Link Prediction
(WLP) algorithms explicitly account for edge weights, as they inher-
ently encode crucial information regarding the strength, reliability, or
distance within complex systems. In this scenario, the challenge of
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Fig. 1. Statistical number of weighted links of different values; a large number of
values are concentrated at zero, and the remainder approximately follow a long-tailed
distribution.

employing WLP necessitates not only identifying future links but also
forecasting the accompanying link weights.

Numerous deep neural network-based methods have been devel-
oped for link prediction and achieved excellent performance [5,12,13].
Existing approaches such as DynGEM [5] and DynamicTriad [12] pri-
marily focus on capturing dynamic system evolution variations, making
predictions based on decoded temporal features. To control the length
of the temporal patterns learned, DynRNN and DynAERNN [14] use
Recurrent Neural Networks (RNNs) to learn the temporal transitions.
Evolve-GCN [6] utilizes a combination of Graph Convolutional Net-
works (GCNs) and RNNs to extract features and learn sequences. To
capture the evolution, DyCSC imposes dynamic constraints on the
tendency in the dynamic system [15]. However, the majority of them
are designed for unweighted link prediction task. Although several
studies might own the potential of being applied to predict weighted
links, they still have a significant limitation in that the fine-grained
information contained in edge weights is gruffly overlooked.

To mitigate this issue, recent advances in deep generative models
have led to significant progress in WLP. In general, generative models
can explore the underlying distribution of realistic data and learn latent
representations [16]. They play a crucial role in generating realistic
data, enabling applications in image synthesis, data augmentation, etc.
Currently, Generative Adversarial Networks (GANs) [17] and Varia-
tional Auto-Encoders (VAEs) [18] are widely adopted frameworks that
have achieved remarkable success in high-quality prediction. For in-
stance, GCN–GAN leverages the benefits of GCN and GAN to strengthen
the representation learning for WLP [19]. Along this path, Att-GAN
utilizes an attention-based GAN to solve the nonlinearity and spatial
sparsity [20]. TVAE, a novel VAE-based model, utilizes latent space
representations to describe the evolution of the topology [21]. In fact,
weighted links in a complex system incorporate information with finer
granularity, mainly reflected in the subtle structural adjustments and
numerical variations. Nevertheless, present deep generative methods
cannot well depict these tiny changes in the weighted links. Specif-
ically, likelihood-based methods like VAEs, which optimize a lower
bound on the log-likelihood, inevitably entail information loss [22].
Conventional GANs do not use encoders to infer latent variables [23].
These inherent constraints in the above generative models prompt us to
explore a model which is able to truly acquire and encapsulate nuanced
and granular information.

Fortunately, flow-based methods, as a new family of generative
models, open up a compelling door to learn the underlying distribu-
tion of data [22]. In contrast to other generative models, flow-based
methods are conceptually attractive owing to tractable log-likelihood
and exact latent-variable inference. Notably, they enable the paralleliz-
ability of both training and synthesis via Invertible Neural Networks
(INNs). Owing their invertibility, INNs can prevent information loss
and preserve data details [24]. Notable examples, including NICE [25],
MAF [26], RealNVP [27], Glow [23], and NSF [28], are widely used
in density estimation, image generation, noise modeling, physics, and
2

etc [29]. More recently, efforts such as GraphAF [30] and iGNN [31]
have demonstrated their applicability for graph generation. By har-
nessing these benefits, INNs provide a promising direction to enhance
model sensitivity for minor perturbations, thus allowing the desired
precision in WLP.

Additionally, the WLP task itself has unique characteristics that
require considerations. Among others, as shown in Fig. 1, the long-tail
property of WLP is a crucial problem that deserves our attention. It is
observed that a number of normalized link weights are concentrated at
zero, and the remainder approximately follow a long-tail distribution.
The primary reason behind the long-tail property in real-world applica-
tions is that links with larger weights have a weaker effect on the link
formation than those with lower weights [8–10]. Hence, the model’s
ability to distinguish among lower weights and predict according to
the long-tail distribution is crucial to further enhance the performance.

In this study, we propose a novel framework named CInvNet
(Conditional Invertible neural Network) for WLP to address the afore-
mentioned challenges. In contrast to previous generative models, we
introduce a conditional INN to address inference and generation in
the forward and backward processes within a single model. With this
explicitly invertible structure, our framework can preserve the exact
likelihood in inference, which enforces model sensitivity to minor per-
turbations in a weighted network. Meanwhile, an informative weighted
topology can be generated more finely by simply feeding a latent
vector into the model. To further consider the unique long-tail property
mentioned above, we propose constructing a Student’s t-distribution
rather than the commonly adopted Gaussian distribution in latent space
to match the tail of weighted links in real-world data. In summary, we
highlight our main contributions as follows:

• We propose a novel framework called CInvNet for the WLP task.
CInvNet can prevent information loss and preserve data details,
which can enhance model sensitivity to minor perturbations. Our
framework provides a new paradigm for deep generative-based
WLP. It can generate fine-grained and diverse weighted topology
with high quality.

• For the long-tail property observed in realistic weighted systems,
we propose to push Student’s t-distribution, a tractable density
with known tails, in latent space. With the need for these spe-
cific considerations, CInvNet can capture this unique pattern and
generate weights with similar tail properties to match those in
real-world data.

• We conduct a wide spectrum of experiments that demonstrate the
consistently superior performance of CInvNet over state-of-the-art
methods in WLP tasks.

The remainder of this paper is organized as follows. We cover the
most related works in Section 2. Section 3 provides formal problem
statements of this study and some necessary background context. In
Section 4, the proposed CInvNet is detailed. Section 5 elaborates on
experiments configurations for the evaluation of CInvNet, the experi-
mental results and the corresponding analysis. Finally, Section 6 draws
conclusions and indicates future research directions.

2. Related work

This section presents a concise review of related studies that are
relevant to the main problem addressed in this study. Specifically, the
related works are categorized into three groups: (1) studies focusing on
the WLP task in dynamic systems, (2) widely used generative models
and (3) flow-based models for generation.

2.1. WLP in dynamic systems

The task of link prediction in dynamic systems involves inferring the

potential future topology based on its historical state [1]. This topic has
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attracted significant attention in various fields, and considerable efforts
have been devoted to solving the problems with different motivations.

Generally, capturing the variations during dynamic evolution of a
system is challenging. Existing approaches such as DynGEM [5] and
DynamicTriad [12] can overcome this challenge by simplifying assump-
tions. DynGEM [5] uses learned embedding from previous time step
graphs to initialize the current time step embedding. Although DynGEM
does not explicitly use regularization, such an initialization implicitly
maintains the new embedding close to the previous embedding. Dy-
namicTriad [12] relaxes the temporal smoothness assumption but only
considers patterns spanning two time steps. These pioneering methods
closely consider only the previous time steps and use the pattern over a
short duration (length 2) to predict new links. To control the length of
the temporal patterns learned, in recent studies [14], DynRNN and Dy-
nAERNN further use recurrent layers to learn the temporal transitions.
In recent years, GCNs are gaining fast momentum for link prediction
task in dynamic networks. For example, Evolve-GCN [6] utilities an
RNN to regulate the GCN model (i.e., network parameters) at each time
tep. Recently, DyCSC imposes dynamic constraints on the tendency
n the dynamic system to a given number of clusters to capture the
volution [15]. Readers interested in delving deeper into this topic may
efer to recent survey papers for a comprehensive review of the current
tate of research and an overview of the existing literature [1,32].

The aforementioned methods primarily focus on unweighted sys-
ems, whereas most real-world networks have weighted connections.
everal pioneering studies [8–11] have extended these unweighted
ersions to weighted ones, in which the weights of links are explicitly
aken into consideration. Nevertheless, these traditional methods can-
ot distinguish between small and zero weights, resulting in low-quality
redictions. To obtain high-quality prediction results, several advanced
ethods such as GCN–GAN [19] and NetworkGAN [16] incorporate

dversarial learning in conjunction with error minimization objectives.
nspired by the use of GANs, Tang et al. propose [20] to integrate
CN and temporal self-attention mechanism to generate an accurate

uture weighted structure. The performance evaluation clearly indicates
hat generative models offer a promising avenue for addressing the
hallenge of WLP.

.2. Widely used generative models

More recent trends in the field of dynamic link prediction leverage
enerative models, which aim to directly address the difficulties in
ccurately reflecting the observed behaviors and connectivity patterns
n complex systems. Architecturally, these models proposed a latent
pace model that favors a smooth evolution by inferring the latent
ositions of nodes or the topology of the system [3].

The current generative models for link prediction predominantly fall
nto three categories: Auto-Regressive models (ARs), VAEs, and GANs.
Rs factorize the generation process into a sequence of steps, predicting

he next output based on the previous output in the sequence. More
xplicitly, AR-based methods effectively utilize a mature framework
n which RNNs are leveraged to gain insight into the distribution of
umerous representations of systems that vary with the node order-
ng [33,34]. VAE-based models employ a simple variational distribution
or latent representation vectors [21]. The third category of models
mplicitly learns the empirical distribution, particularly using GAN
rchitecture [16,19]. GANs eschew the assumption of a simple varia-
ional distribution for latent representation vectors and instead adopt a
ore flexible approach to learning the distribution of data. In contrast

o VAEs, GANs are best known for their ability to synthesize high-
idelity data. Nonetheless, they still have several drawbacks, including
lack of reliable latent-space encoders that can hinder interpretability

nd controllability [35]. Moreover, GANs are notoriously difficult to
ptimize and fine-tune, which can lead to unstable training [23].

Among the existing methods for WLP, there is a need to develop
3

ore advanced generative models that can accurately synthesize more
intricate details of realistic data. Our model differs from these previous
methods in the formulation of the entire framework. Unlike VAEs or
GANs, we utilize the flow-based approach to achieve precise likeli-
hood maximization. We believe precise optimization can yield models
that are highly sensitive to minor replacements in real-world systems,
thereby enhancing their accuracy and robustness.

2.3. Flow-based model for generation

In this study, link prediction is formalized as a conditional gener-
ation task using INNs. The INNs approach is a flexible and pleasingly
simple way developed based on a flow-based model. Therefore, a brief
overview of recent flow-based approaches is provided in this section.

Considerable research on flow-based models has focused on pro-
ducing informative targets for a wide range of applications, including
density estimation, image or graph generation, noise modeling, physics,
and etc [22,29]. Additionally, INNs are popular flow-based models,
that work through reversible transformations, enabling tractable log-
determinant calculations. Notable examples include NICE [25], MAF
[26], RealNVP [27], Glow [23], and NSF [28].

For the WLP problem, inspiration can be drawn from the application
of flow-based models used in image or graph generation. In image
generation applications, significant advancements have been made in
utilizing flow-based models to model the image rescaling process.
Recently, SRFlow [36] and HCFlow [37] leverage the invertibility
of flow-based models to generate high-quality images with varying
resolutions. Subsequently, owing to the considerable expressive power
of flow-based models in practical scenarios, some research efforts have
started to explore their application in graph generation. For example,
GraphNVP [38] generates a graph and its atomic features in a one-shot
and sequential manner, respectively. This is followed by other flow-
based molecular graph generation approaches, such as GraphAF [30]
and Moflow [39]. Moreover, iGNN tackles the inverse prediction prob-
lem on graphs by casting it as a conditional generative task [31].
Flow-based models have been shown to offer a promising solution for
graph generation. To date, the application of flow-based models in
graphs is mostly limited to the domain of molecular design in drug
discovery.

Flow-based models for WLP have rarely been studied. As an ex-
tension, we propose flow-based invertible transformations for WLP.
Building on this framework, we enforce validity constraints in the latent
space to address the long-tail problem in WLP.

3. Preliminaries

Our framework formulates WLP as a deep generative model learning
task. Therefore, in this section, we provide formal problem statements
and review critical concepts to familiarize readers with the notation
used throughout this paper.

3.1. Problem definition

WLP is of great significance in numerous applications. This paper
focuses on predicting the weighted links within a system and only
considers undirected ones whose scale will remain constant. We assume
that the nodes are not attributed and focus solely on the structure. The
weighted system is represented by the graph 𝑡 = ( , 𝑡,𝐀𝑡) at time
slice 𝑡, in which  = {𝑣1, 𝑣2,… , 𝑣𝑁} is the node set, 𝑡 represents the
set of links among the nodes, and 𝐀𝑡 ∈ R𝑁×𝑁 is the adjacency matrix
containing the structure of the system. To further clarify, if there is a
link between nodes 𝑣𝑖 and 𝑣𝑗 , the value of (𝐀𝑡)𝑖,𝑗 ∈ (0, 1] represents the
weight of the link; otherwise, (𝐀𝑡)𝑖,𝑗 = 0. A value of (𝐀𝑡)𝑖,𝑗 close to 1
indicates a strong relationship between the nodes.

Unlike previous prediction models that learn the mapping relation-
ship directly from past snapshots to the next moment, we view WLP

as a structure generation task. The goal is to learn the distribution
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Fig. 2. Problem definition in the generative model. 𝐗𝑡, 𝐀𝑡 and 𝐙𝑡 denote  in previous
snapshots, predictive weighted link of  and the latent variable, respectively.

of future states and generate a diverse and realistic future structure.
Specifically, a simple generative model comprises two parts: inference
and generation, as illustrated in Fig. 2(a) and (b).

Since prediction is based on past snapshots, conditional generation
is further considered as the framework. The transformation between the
predicted weighted links in 𝐀𝑡 and the latent variable 𝐙𝑡 is conditional
on the previous snapshots 𝐗𝑡 = 𝐀(<𝑡). For the sake of brevity, we omit
the subscript 𝑡 from the variables when the value of 𝑡 is clarified and the
subscript remains the same in a given representation. Thus, 𝐗 is syn-
onymous with 𝐗𝑡, 𝐀 is synonymous with 𝐀𝑡, and 𝐙 is synonymous with
𝐙𝑡. Specifically, in the inference stage (a), with conditional generation,
link embedding can be derived by inferring the posterior distribution
of 𝐙 :

𝐙 = 𝐹 (𝐀;𝐗) (1)

where 𝐹 (⋅) is a learned function in the inference. In the generative
procedure (b), both 𝐗 and 𝐙 are considered as network inputs. The
predicted weighted structure 𝐀 can then be reconstructed from the
latent encoding. Generative models are interested in learning the latent
variable 𝐙 which can be characterized by (1) revealing the histori-
cal evolutionary trend of  in previous snapshots, (2) being highly
indicative of weighted links in the future.

3.2. Invertible Neural Networks (INNs)

The core concept of INNs is that they are guaranteed to be invertible
and can be used to parameterize 𝐹 in Eq. (1). Samples from INNs
can be drawn by first sampling 𝐙 with a simple tractable distribution
𝐙 ∼ 𝑝(𝐙) (e.g., multivariate Gaussian distribution), and then computing
in conditional generation setting as follows:

𝐀 = 𝐹−1(𝐙;𝐗) (2)

INNs aim to learn a bijective mapping between the target space and
the latent space as shown in Fig. 2(c), where 𝐀 is transformed to
𝐙, Conversely, 𝐙 can be used to recover 𝐀. Concretely, the function
𝐹 (⋅) is constructed to be bijective, efficiently invertible, and with a
tractable Jacobian determinant. We focus on functions 𝐹 composed
4

of a sequence of transformations: 𝐹 = 𝑓1◦𝑓2◦⋯◦𝑓𝐾 . Therefore, the
relationship between 𝐀 and 𝐙 can be expressed as follows:

𝐀
𝑓1
⟷ 𝐡1

𝑓2
⟷ 𝐡2 ⋯

𝑓𝐾
⟷ 𝐙 (3)

conditioned on input 𝐗. This sequence of invertible transformations is
also called a normalizing flow [40]. In this study, we consider four
types of transformations and extend them to WLP in the next section.

According to the change in the variable formula and the chain rule,
the logarithmic probability log(𝐀) can be exactly calculated as follows:

log (𝑝 (𝐀|𝐗)) = log (𝑝 (𝐹 (𝐀;𝐗)))

+
𝐾
∑

𝑘=1
log

|

|

|

|

det
𝜕𝑓𝑘
𝜕𝐡𝑘−1

(

𝐡𝑘−1; 𝑔(𝐗)
)|

|

|

|

(4)

where log ||
|

det 𝜕𝑓𝑘
𝜕𝐡𝑘−1

(

𝐡𝑘−1; 𝑔(𝐗)
)

|

|

|

is the logarithm of the absolute value
of the determinant of the Jacobian of 𝑓𝑘 at 𝐡𝑘−1. 𝑔(𝐗) encodes the
conditional input using a deep network that extracts a rich represen-
tation suitable for conditioning for following normalizing flow layers.
INNs can thus be optimized by minimizing the Negative Log-Likelihood
(NLL) loss.

4. The proposed model framework

In this section, we present a novel framework for WLP called CIn-
vNet. The overall architecture is shown in Fig. 3. We propose a unified
framework that uses INNs for inference and generation. Algorithmi-
cally, our objective is to address both the inference and generation
processes through a single model that operates in the forward and
backward directions. This framework aims to learn a latent space
conditioned on the previous state of the system, to predict the weighted
link that occurs at a later stage. Hence, we first explain the learning of
the latent space through inference. Then, we describe the long-tailed
distribution in the latent space. Finally, we introduce how to generate
the predicted weighted links in our proposed unified framework.

4.1. Learning the latent space in the inference

Many generative methods introduce latent variables to explain the
observed data. Let 𝐙 ∈ R𝑁×𝑁 be latent variables that are also random
variables with a known and tractable probability density function. In
the training phase, 𝐹 maps a pairwise input (𝐀,𝐗) to a latent variable
𝐙. Eq. (4) allows the network be trained to force the latent variables to
obey this simple distribution.

As illustrated in Fig. 3, the proposed CInvNet consists of (1) a
feature extractor and (2) INN blocks. Thus, following most condi-
tional INNs, we first encode the previous structure using a shared
feature extractor 𝑔(𝐗), which extracts a rich representation suitable for
conditioning at all layers.

4.1.1. Feature extractor
Since 𝑔(𝐗) does not need to be invertible, it is allowed to be any

differentiable architecture. Based on the above, we have two consid-
erations to take into account. First, it is preferable for the encoder
𝑔(𝐗) to be compatible with subsequent INNs as described previously. In
addition, the previous structure 𝐗 serves as the input to the encoder,
which is consistent with the image data format. Building upon the
existing mature made in conditional INNs [36,37], we draw inspiration
to employ the Residual-in-Residual Dense Blocks (RRDB) [41] as our
encoder as depicted in Fig. 3(1). RRDB contains residual structures at
different levels and employs dense skip connections without any batch
normalization layers. Specifically, the dense block which combines
Convolution (Conv) and Rectified Linear Unit (ReLU) is used in the
main path as shown in Fig. 4. Concretely, the input channels are formed
by stacking historical snapshots, and we utilize three individual three-
block RRDB networks for feature extraction. The capacity of CInvNet
is thus increased, benefiting from conditioned historical context.
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Fig. 3. Overview of our proposed framework called CInvNet. CInvNet consists of (1) a feature extractor and (2) INN blocks. The networks and parameters within CInvNet are the
same for both (a) inference and (b) generation. (a) In the inference stage, the input pair [𝐀,𝐗] is first delivered into the feature extractor. Next, the forward INN blocks project
𝐀 to the latent space under the conditioned feature extracted from 𝐗. The outcome component 𝐙 is assumed to obey a simple tractable distribution by a loss function. Our NLL
loss replaces the often-used MAE loss. Conversely, (b) in the generative procedure: first, noise 𝐙 is sampled from the latent space and 𝑔(𝐗) is encoded by the feature extractor.
Next, both are taken into the reversed backward INN blocks. Finally, the revealed prediction �̂� is recovered by drawing 𝐙 from the target distribution.
Fig. 4. Residual-in-Residual Dense Block (RRDB): the architecture combines residual
network and dense connections.

4.1.2. INNs
The feature extractor can capture a richer representation of the

temporal contexts, followed by the main INNs architecture. the main
INNs architecture, as shown in Fig. 5, is organized into L levels, with
each level containing K flow steps. Owing to the important properties
of INNs that allow for the composability of invertible and differentiable
transformations, four distinct transformations are executed sequentially
at each flow step. As shown on the right of Fig. 5(a), Actnorm is
applied first, followed by the Permutation. Next, we apply the Affine
Injector followed by the Conditional Affine Coupling. Similar to most
INN architectures [23,36], CInvNet does not maintain fixed dimensions
of the channel (edge) throughout the architecture for the sake of
computational cost. After K flow steps, the split operation is applied to
evenly split off 50% of the channel dimensions (𝑁×𝑁×𝐶 to 𝑁×𝑁× 𝐶

2 )
before proceeding to the next level. Here, 𝐶 is the channel dimension.
In the following, each of the four transformations will be detailed.
Actnorm. We use an actnorm layer [23] to normalize the dimensions in
each channel (edge) over a batch by an affine transformation, which is
similar to batch normalization. The actnorm layer performs through a
learned scaling 𝐬 and bias 𝐛: 𝐡𝑘+1𝑖,𝑗 = 𝐬 ⊙ 𝐡𝑘𝑖,𝑗 + 𝐛, where ⊙ represents
element-wise multiplication. 𝐬 and 𝐛 are initialized with zero mean
and unit variance and regraded as regular trainable parameters of the
network. It can thus be inferred that the log-Jacobin determinant of
each channel dimension is formulated as:

log
|

|

|

|

|

|

|

det
𝜕
(

𝐬⊙ 𝐡𝑘𝑖,𝑗 + 𝐛
)

𝜕𝐡𝑘𝑖,𝑗

|

|

|

|

|

|

|

=
∑

log |𝐬| (5)

Permutation. The importance of the permutation operation in INNs
lies in its ability to shuffle the input dimensions deterministically.
Through the shuffling process, information is mixed more fully, ul-
timately resulting in a lower loss. In this work, Invertible 1 × 1
Convolution [23] serves as the surrogate of the permutation. Invert-
ible 1 × 1 Convolution provides a learned permutation matrix that
5

acts on each channel independently: 𝐡𝑘+1𝑖,𝑗 = 𝑊 𝐡𝑘𝑖,𝑗 . The log-Jacobin
determinant is computed as follows:

log
|

|

|

|

|

|

|

det
𝜕
(

𝑊 𝐡𝑘𝑖,𝑗
)

𝜕𝐡𝑘𝑖,𝑗

|

|

|

|

|

|

|

= log |det (𝑊 )| (6)

Affine Injector. The affine injector layer [36] facilitates the transfer of
additional information from the conditioning temporal context to the
main branch of the INNs. The conditioning temporal context 𝐮 = 𝑔(𝐗) if
obtained, and the affine injector layer is achieved as 𝐡𝑘+1 = exp

(

𝑓 s
𝑘 (𝐮)

)

⋅
𝐡𝑘+𝑓b

𝑘 (𝐮), where 𝑓 s
𝑘 and 𝑓b

𝑘 can be any network. In our implementation,
both are applied as two convolutional layers incorporating ReLU. The
log-determinant of this transformation can be conveniently computed
using ∑

𝑖,𝑗,𝑘 𝑓
s
𝑘 (𝐮)𝑖,𝑗,𝑘, which is consistent with [36].

Conditional Affine Coupling. To achieve more conditional informa-
tion in the main branch of INNs, we add the conditional affine coupling
layer which is a conditional extension of the affine coupling layer [23].
In contrast to the affine injector layer, the conditional affine coupling
layer splits the channel dimension: 𝐡𝑘 = (𝐡𝑘𝐴,𝐡

𝑘
𝐵). For one partition,

𝐡𝑘+1𝐴 = exp
(

𝑓 s
𝑘
(

𝐡𝑘𝐵 ;𝐮
))

⋅ 𝐡𝑘𝐴 + 𝑓b
𝑘
(

𝐡𝑘𝐵 ;𝐮
)

is implemented. For the other
partition, 𝐡𝑘+1𝐵 = 𝐡𝑘𝐵 is simply implemented. Its log-determinant is
similar to that of the affine injector layer.

4.1.3. Long-tail distribution in the latent space
In contrast to most studies that consider a simple Gaussian distribu-

tion as the underlying distribution in the latent space, we posit that a
long-tail distribution is more suitable for modeling tail events. Specifi-
cally, we propose to model the underlying distribution using a standard
Student’s t-distribution, denoted as  (0, 1, 𝜈), where 𝜈 represents the
degrees of freedom. Here, 𝜈 ∈ (1,+∞) is a learnable parameter for each
edge. Long-tail distribution-based methods provide a means of pro-
ducing tail anisotropy for modeling real-world weighted link datasets.
As shown in Fig. 3, our framework learns the long-tail distribution
of sequence embedding instead of the isotropic Gaussian distribution
used in other flow-based methods. Moreover, as the degrees of freedom
parameter, 𝜈, increases, the probability distribution,  (0, 1, 𝜈), exhibits
a decrease in its tail heaviness, it approaches a standard Gaussian
distribution as 𝜈 → +∞. This simple probability distribution of our INNs
remains tractable, allowing the transformations of INNs and degrees of
freedom, 𝜈, to be learned by maximizing the likelihood of the target
long-tail distribution in the latent space.

Note that this work reinforces the view that high-quality genera-
tive models can be trained using the maximum likelihood loss alone.
Therefore, by utilizing the Student’s t-distribution, the NLL objective in
Eq. (4) can be expressed as follows:

 = − log
(

𝑝 (0,1,𝜈) (𝐙)
)

−
𝐾
∑

log
|

|

|

det
𝜕𝑓𝑘
𝑘−1

(

𝐡𝑘−1; 𝑔(𝐗)
)|

|

|

(7)
𝑘=1 |
𝜕𝐡

|
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Fig. 5. (a) INNs blocks: the overall architecture consists of L levels. Each level contains K number of flow steps. At each flow step, four distinct transformations are executed in
sequence; (b) The function of four transformations and (c) their reverses.
Here, the sum ranges over all log-Jacobin determinants of the flow steps
in the INNs. During the inference stage, we only need to calculate the
likelihood loss. This work studies the tail properties of the target density
by requiring to push a tractable density in the latent space with known
tails to the desired target density.

4.2. Predicting the weighted link in the generation

Once the latent variable is forced to obey the long-tail distribution
during the inference stage, our framework is amenable to predicting
the weighted link in the generative procedure. During the generation
visualized in Figs. 3 and 5, the model converts noise (sampled from
the multivariate long-tail distribution in latent space) into the desired
target distributions (𝐙 → 𝐀).

The inverse of the inference process is the generation process.
As shown in Fig. 3(b), predicted weighted links can be constructed
progressively along the direction of the arrow. CInvNet generates a
high-quality weighted link from a random variable sampled from the
latent space using the conditioned historical context from the feature
extractor. The feature extractor is consistent with that in the infer-
ence process. Hence, we focus on the reversed INNs in the generative
procedure. The reverses of the four main components of our pro-
posed framework can be trivially obtained as shown in Fig. 5(c). The
reverse functions of the corresponding transformation are computation-
ally efficient. Note that the sequence of transformations entered is also
reversed.

With the well-trained framework, future weighted links are grad-
ually constructed through a series of invertible operations. As our
framework can be seen to model distribution in predictive space, it
possesses great flexibility by capturing a variety of possible predictions.
This enables the exploration of diverse predictions by incorporating
supplementary guidance and stochastic sampling techniques.

5. Experimental results and analysis

In this section, we detail the datasets used to evaluate the per-
formance of the dynamic WLP task, the evaluation metrics and the
experimental results.

5.1. Datasets

In this work, we perform our proposed CInvNet on four differ-
ent datasets to demonstrate its effectiveness. For each dataset, we
pre-process the dynamic system into a series of successive structure
snapshots. The details of the datasets are listed in Table 1.
6

Table 1
A summary of datasets in our experiments. The number of nodes, snapshot and system
type are provided for each dataset.

Name #Node #Snapshot Type

UCSB 38 1000 Wireless Mesh Network
KAIST 92 500 Human Mobility Position
NumFabric 128 350 Simulation data center flow
BJ-Taxi 256 565 Vehicle Mobility Position

• UCSB [42]: This is a popular dataset for link quality in wireless
mesh networks. The nodes of the dynamic systems are the hosts
in the network. Moreover, the link weights represent communi-
cation quality or flow between the corresponding pair of hosts in
a snapshot.

• KAIST [43]: The KAIST dataset represents a human mobility
system located on the campus of KAIST University. Specifically,
each node in the dataset corresponds to a user, and the weight of
each link represents the distance between any two users.

• NumFabric [44]: This is a widely used flow dataset designed
to simulate dynamic workloads in a data center. The flow size
between two hosts (nodes) is normalized to the link weights
within a certain period of time.

• BJ-Taxi [45]: BJ-Taxi is the position dataset of a vehicle mobility
network in Beijing. We construct a dynamic system based on the
distances between 256 taxis, using GPS trajectories recorded on
2008-02-03. Moreover, the distances are quantified into weighted
links that represent the distances between corresponding pairs of
taxis.

Given that the four aforementioned datasets have been widely
adopted in state-of-the-art methods for WLP, we maintain uniformity
in our methodology by adhering to the same pre-processing as that
adopted by these methods [19,20] to ensure a fair comparison. In the
experiments, the first 70% of the sequences are used for training, the
last 20% are used for testing and the remaining 10% are used for
validation.

5.2. Comparative methods

To demonstrate the effectiveness of the proposed method, two
groups of state-of-the-art models for temporal link prediction are con-
sidered.
Deep NN-Based Models: The development of deep learning has pro-
duced numerous prediction approaches owing to its powerful per-
formance. Therefore, various outstanding deep NN-based models are
considered as competitors.
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Table 2
Average WLP results of four data sets based on the MAE and RMSE.

Methods UCSB KAIST NumFabric BJ-Taxi

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

DynRNN [14] 0.0487 0.0322 0.0694 0.0329 0.0240 0.0031 0.1387 0.0541
DynAERNN [14] 0.0452 0.0301 0.0593 0.0287 0.0249 0.0031 0.1512 0.0594
DynGEM [5] 0.0471 0.0263 0.1378 0.0574 0.0076 0.0016 0.1366 0.0598
DySAT [7] 0.0541 0.0480 0.1422 0.1814 0.0081 0.0067 0.2177 0.2384
EnvolveGCN-O [6] 0.0466 0.0151 0.0822 0.0176 0.0063 0.0016 0.1798 0.0528
EnvolveGCN-H [6] 0.0451 0.0132 0.0781 0.0190 0.0055 0.0016 0.1831 0.0554

GCN–GAN [19] 0.0342 0.0194 0.1288 0.0535 0.0045 0.0016 0.1711 0.0576
SIVGRNN [2] 0.0464 0.0425 0.0753 0.0512 0.0041 0.0021 0.1255 0.0646
TVAE [21] 0.0348 0.0264 0.0494 0.0277 0.0052 0.0016 0.1044 0.0459
CInvNet (ours) 0.0177 0.0102 0.0106 0.0022 0.0031 0.0015 0.0459 0.0190

The best results are in boldface. Italic with underlined ones represent the second-best results.
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• DynRNN: DynRNN is a variation of the deep learning model
proposed in dyngraph2vec [14] that uses Long Short Term Mem-
ory (LSTM) to handle long-term dependency problems in system
evolution. DynRNN reduces reconstruction loss and generates
node embedding predictions for the next snapshot.

• DynAERNN: Dyngraph2vec [14] also proposes a variation called
DynAERNN, which utilizes fully connected layers to encode the
representation of nodes instead of directly passing their vectors.

• DynGEM [5]: DynGEM is an efficient algorithm that uses deep
auto-encoders to generate latent embedding of a dynamic system
incrementally.

• Evolve-GCN-O: Evolve-GCN-O is a version proposed in
EvolveGCN [6] that employs RNN to facilitate learning the weights
of GCN instead of directly applying recurrent layers to refine the
embeddings. In Evolve-GCN-O, the recurrent architecture uses
GCN parameters as inputs/outputs.

• Evolve-GCN-H: Evolve-GCN-H is another version proposed based
on EvolveGCN [6]. In Evolve-GCN-H, the GCN parameters are
treated as hidden states of a recurrent architecture that takes node
embeddings as input.

• DySAT [7]: DySAT is a dynamic self-attention network that learns
node representations to capture the dynamic structural evolution
of a system. DySAT has a clear architecture, consisting of two
main blocks: a structural attention block and a temporal attention
block.

idely Used Generative Models: Generative models provide a new
aradigm for applying neural networks in WLP problems. In this study,
e thoroughly investigate the application of generative methods, focus-

ng specifically on the prominent models.

• GCN–GAN [19]: This model combines the strengths of the GCN
[46], LSTM and GAN to strengthen the representation learning of
the network data and generate a high-quality structure snapshot
in the next time slice.

• SIVGRNN [2]: SIVGRNN is a hierarchical variational model that
uses a graph RNN to capture changes both in node attributes and
topology in dynamic systems. Besides, with flexible non-Gaussian
latent representations, SIVGRNN can boost expressive power in
dynamic graph analytic tasks.

• TVAE [21]: Based on the VAE framework, this temporal net-
work embedding utilizes method latent space representations to
describe the evolution of the network topology.

As the WLP task on dynamic systems aims to predict possible
uture states using historical topology, 10 historical snapshots are
elivered to all the methods for a fair comparison. For the comparative
ethods, we use their official public codes and select the parame-

ers based on the recommended parameter settings. For our model,
grid-search algorithm is applied to automatically select the hyper-

arameters. Specifically, the number of epochs is set to 500 for UCSB
nd 100 for the others, and an early stop strategy is used to alleviate
7

f

odel overfitting. The learning rate in training process is set to 5𝑒− 4.
Our main INNs architecture is organized into two levels. Each level
contains three flow steps for all the datasets. Our experiments are
implemented by PyTorch 3.7.3. All of the models are executed on a
server with four NVIDIA Titan X GPU cards.

5.3. Evaluation criteria

Following the common procedure in WLP, four evaluation metrics
are used: the Mean Absolute Error (MAE), the Root Mean Square Error
(RMSE), the Edge-wise KL-divergence (EKL) and the Mismatch Rate
(MR).

Given a ground-truth 𝐀 and prediction �̂� for the test set, the MAE
nd RMSE are defined as follows:

AE =
|

|

|

𝐀 − �̂�||
|

𝑁 ×𝑁
(8)

MSE =
∥ 𝐀 − �̂� ∥2𝐹
𝑁 ×𝑁

(9)

In fact, MAE and MSE may be sensitive to large weights and struggle
to distinguish the difference in magnitude that is important for small
weights. the EKL can alleviate this issue by taking the magnitude
difference of link weights into account. Formally, EKL is defined as
follows:

EKL =
𝑁
∑

𝑖,𝑗=1
KL

(

𝐏𝑖,𝑗 ,𝐐𝑖,𝑗
)

(10)

𝑖,𝑗 =
(𝐀)𝑖,𝑗

∑𝑁
𝑖,𝑗=1 (𝐀)𝑖,𝑗

, 𝐐𝑖,𝑗 =

(

�̂�
)

𝑖,𝑗
∑𝑁

𝑖,𝑗=1

(

�̂�
)

𝑖,𝑗

(11)

here KL is the standard form of the KL-divergence. Besides, the
parsity issue in the weighted dynamic network is typically significant.
hus, the following two cases are considered: (1) (𝐀)𝑖,𝑗 = 0, whereas
�̂�
)

𝑖,𝑗
> 0; (2) (𝐀)𝑖,𝑗 > 0, whereas

(

�̂�
)

𝑖,𝑗
= 0. Then, the frequency at the

bove two situations occur in the predicted network is computed as MR.
R represents the proportion of such mismatched edges in predictions,

s an additional evaluation metric.

.4. Comparisons with competitive methods

We compare our proposed CInvNet with the competitive methods
escribed in Section 5.2, ranging from deep NN-based models to widely
sed generative models on the WLP task. The MAE and RMSE results
re listed in Table 2. EKL and MR results are summarized in Table 3.

The results show that the prevailing deep NN-based models cannot
chieve satisfactory performance on all datasets. Compared to the cur-
ent deep NN-based models, the generative models generally perform
etter. Perhaps, this is due to the fact that generative models can learn
eal-world models and meaningful features of the input [23]. This con-

irms our initial intuition that the insight of generative model leads us
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Table 3
Average WLP results of four data sets based on the KL and MR.

Methods UCSB KAIST NumFabric BJ-Taxi

EKL MR EKL MR EKL MR EKL MR

DynRNN [14] 0.0235 0.4182 0.0061 0.3701 0.0024 0.1429 0.0126 0.4878
DynAERNN [14] 0.0132 0.3833 0.0031 0.2562 0.0024 0.1349 0.0128 0.4628
DynGEM [5] 0.0189 0.4064 0.0124 0.4442 0.0048 0.1406 0.0365 0.4271
DySAT [7] 0.2215 0.3935 0.4798 0.4693 0.0127 0.1584 0.0476 0.4919
EnvolveGCN-O [6] 0.0279 0.4214 0.0242 0.4471 0.0159 0.1975 0.0549 0.6384
EnvolveGCN-H [6] 0.0280 0.4642 0.0106 0.5464 0.0168 0.1975 0.0448 0.6443

GCN–GAN [19] 0.0319 0.2147 0.0735 0.4309 0.0018 0.1033 0.1857 0.6743
SIVGRNN [2] 0.0218 0.2676 0.0077 0.1458 0.0021 0.0279 0.0727 0.3227
TVAE [21] 0.0527 0.4916 0.0127 0.4946 0.0064 0.1496 0.0429 0.4980
CInvNet (ours) 0.0187 0.2257 0.0012 0.0141 0.0002 0.0265 0.0096 0.0911

The best results are in boldface. Italic with underlined ones represent the second-best results.
o generation and prediction and we aim to improve upon state-of-the-
rt generative models. Among the generative models, TVAE performs
etter performance in terms of MAE and RMSE. As the likelihood-
ased model, TVAE is able to infer approximately the values of the
atent variables that correspond to the data by optimizing the lower
ound but can be comparatively challenging to optimize. SIVGRNN
an outperform TVAE sightly in terms of EKL and MR. SIVGRNN is
apable of inferring more flexible posteriors and better modeling of
parse dynamic systems, which makes better MR results achieved on
ost datasets compared with other models. It should be noted that

lthough our proposed method does not achieve the best performance
n the UCSB in Table 3, it still yields the second-best performance. In
ater experiments, we observed that by employing different distribu-
ions for the latent space within our conditional INNs framework, the
erformance of EKL and MR can be further improved compared to the
urrent results. Furthermore, the proposed model outperforms all of the
ther methods on the remaining datasets.

Based on the above results, it can be observed that our proposals
ignificantly improve the generalization performance of the competi-
ive methods. More specifically, we find that our base proposal CInvNet
utperforms the second-best comparative model by 48.25% MAE on
CSB (GCN–GAN vs. CInvNet), 78.54% MAE on KAIST (TVAE vs.
InvNet), 24.39% MAE on NumFabric (SIVGRNN vs. CInvNet) and
6.03% MAE on BJ-Taxi (TVAE vs. CInvNet). These results demonstrate
hat the link prediction data allows more powerful architectures to be
rained more precisely and to achieve better performance. As expected,
he flow-based generative models can learn better features to represent
uture links for prediction in the latent space.

.5. Ablation experiments

To thoroughly evaluate the ideas proposed in this paper, we be-
in with an extensive ablation study on all datasets. Our goal is to
lucidate the contributions of each component of our novel network
rchitecture, including the effects of latent space learning and the long-
ail distribution. Hence, we compare our overall model (CInvNet) with
he following variants: (1) without (w/o) latent space learning, which
liminates the process of learning in the latent space; (2) w/o long-tail
istribution, which only replaces the long-tail distribution with Gaus-
ian distribution. Overall, the results of the ablation experiments are
resented in Tables 4–7. The most important insights from the results of
he ablation study are also summarized below. In the following section,
e discuss each experiment in detail.
ffect of the proposed latent space learning method. Our ablation
tudy results show that latent space learning plays an essential role in
he network, as it tends to yield a useful latent space for downstream
asks. Without such latent space learning, performance can actually
egrade (row 3). We find that the latent space learning with the
ase Gaussian distribution (w/o long-tail distribution) outperforms w/o
atent space learning by 30.69%, 83.50%, 2.94%, 53.76% MAE (refer to
ows 2 vs. 3 in Tables 4, 5, 6 and 7), respectively. This is analogous to
8

Table 4
Ablation study on UCSB.

Methods MAE RMSE EKL MR

CInvNet 0.0177 0.0102 0.0187 0.2257
w/o long-tail distribution 0.0201 0.0103 0.0191 0.2092
w/o latent space learning 0.0290 0.0201 0.0421 0.2272

The best results are in boldface.

Table 5
Ablation study on KAIST.

Methods MAE RMSE EKL MR

CInvNet 0.0106 0.0022 0.0012 0.0141
w/o long-tail distribution 0.0119 0.0023 0.0026 0.0184
w/o latent space learning 0.0721 0.0487 0.0046 0.1424

The best results are in boldface.

Table 6
Ablation study on NumFabric.

Methods MAE RMSE EKL MR

CInvNet 0.0031 0.0015 0.0002 0.0265
w/o long-tail distribution 0.0033 0.0016 0.0006 0.0722
w/o latent space learning 0.0034 0.0017 0.0012 0.0969

The best results are in boldface.

Table 7
Ablation study on BJ-Taxi.

Methods MAE RMSE EKL MR

CInvNet 0.0459 0.0190 0.0096 0.0911
w/o long-tail distribution 0.0547 0.0175 0.0248 0.1777
w/o latent space learning 0.1183 0.0660 0.1700 0.2894

The best results are in boldface.

the insight from generative models such as GANs [17] and VAEs [47].
On this basis, reversible generative models are able to infer exactly
without approximation, leading to the exact log-likelihood of the data,
instead of a lower bound.
Effect of the long-tail distribution. The results in the tables show
that latent space learning with the long-tail distribution accounts for
11.94%, 10.92%, 6.06% and 16.09% improvements in MAE, respec-
tively (rows 1 vs. 2 in four tables), justified primarily by long-tail
learning ability in the overall network. Similar performance gains are
also observed for the other evaluation criteria. The four datasets exhibit
superior fits after allowing for long tails, with a further improved
fit using a long-tail distribution. We find that adding the long-tail
distribution to the latent space learning improves the performance
somewhat, but the extent of this improvement is limited compared with
the effect of the proposed latent space learning method. In fact, to fully
capture the properties of the data, long-tail behavior should not be

ignored, necessitating a method such as CInvNet.
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Table 8
Performance of the original model and models improved with the latent space learning method module on four datasets.

Dataset UCSB KAIST

Methods/Metrics MAE MSE EKL MR MAE MSE EKL MR

EnvolveGCN 0.0451 0.0132 0.0280 0.4642 0.0781 0.0190 0.0106 0.5464
EnvolveGCN+LSL 0.0295 0.0195 0.0265 0.2312 0.0599 0.0229 0.0408 0.1563

GCN–GAN 0.0342 0.0194 0.0319 0.2147 0.1288 0.0535 0.0735 0.4309
GCN–GAN+LSL 0.0287 0.0164 0.0188 0.2126 0.1245 0.0530 0.0513 0.3515

DySAT 0.0541 0.0480 0.2215 0.3935 0.1422 0.1814 0.4798 0.469
DySAT+LSL 0.0511 0.0474 0.0360 0.2931 0.0737 0.0441 0.0690 0.1074

Encoder 0.0290 0.0201 0.0421 0.2272 0.0721 0.0487 0.0046 0.1424
CInvNet 0.0201 0.0103 0.0191 0.2092 0.0119 0.0023 0.0026 0.0184

Dataset NumFabric BJ-Taxi

Methods/Metrics MAE MSE EKL MR MAE MSE EKL MR

EnvolveGCN 0.0055 0.0016 0.0168 0.1975 0.1831 0.0554 0.0448 0.6443
EnvolveGCN+LSL 0.0052 0.0016 0.0001 0.0534 0.1165 0.0373 0.0374 0.3726

GCN–GAN 0.0045 0.0016 0.0018 0.1033 0.1711 0.0576 0.1857 0.6743
GCN–GAN+LS 0.0043 0.0015 0.0003 0.0535 0.1523 0.0563 0.0952 0.5794

DySAT 0.0081 0.0067 0.0127 0.1584 0.2177 0.2384 0.0476 0.4919
DySAT+LS 0.0092 0.0040 0.0003 0.0629 0.1696 0.1092 0.1194 0.2370

Encoder 0.0034 0.0017 0.0012 0.0969 0.1183 0.0660 0.170 0.2894
CInvNet 0.0033 0.0016 0.0006 0.0722 0.0547 0.0175 0.0248 0.1777

The best results are highlighted in bold.
5.6. Analytic experiment

We further conduct several necessary experiments to pursue deeper
insight into our model. To empirically demonstrate the key components
of CInvNet from different perspectives, we propose three research
questions to guide the following experiments:

RQ1: Can the proposed latent space learning method be effectively
adapted to other basic encoding models?

RQ2: How do different types of distribution influence the performance
of latent space learning?

RQ3: Does our proposed model achieve fast convergence in practice?

5.6.1. Latent space learning analysis (RQ1)
As stated previously, the function 𝑔(𝐗) is designed to accommodate

various architectures for conditioned historical contexts. Therefore, we
explore different architectures for feature extraction and ensure their
compatibility with subsequent INNs. To demonstrate that our proposed
latent space learning method can still improve performance with other
backbone feature extractors, we extensively conduct experiments on all
datasets using various basic encoding models as our feature extractors
which learn link representations from mature methods. First, we con-
sider three link representations in EnvolveGCN, GCN–GAN and DySAT
as our basic encoding model, 𝑔(𝐗). These three basic feature extractors
are selected since they have been widely used in evaluating the quality
of dynamic node representations to predict the temporal evolution of
system structures. We reimplement these three encoding models and
then leverage their link representations as inputs for our proposed
Latent Space Learning (LSL). Second, for comparison purposes, we
also decouple the encoder from our overall network. Then the LSL is
replaced with two feed-forward layers for prediction.

Table 8 summarizes the evaluation scores for the LSL analysis on
the four datasets. Detailly, we find that methods with LSL are com-
petitive with EnvolveGCN and GCN–GAN on KAIST in terms of MSE.
A similar observation is made for NumFabric in terms of MAE when
compared with DySAT. Apart from that, experimental results in Table 8
clearly indicate that all methods with LSL achieve better scores than
the original link representations in most cases, which is reasonable
since the base models take advantage from our proposed LSL. Overall,
the experimental results confirm that our LSL module has a certain
generalization ability, which is applicable not only for our proposed
encoder network but also for other basic models.
9

Fig. 6. The test MAE score of different types of distribution for our proposals on UCSB,
KAIST, NumFabric and BJ-Taxi.

5.6.2. Comparison of different types of distributions (RQ2)
Since the distribution in latent space plays a critical role in for-

mulating flow-based generative models, we conducted an exploratory
analysis to elucidate the influence of different types of distributions on
the performance of learning in latent space.

First, it is common to set the base distribution as the standard
Gaussian distribution (i.e., 𝐳 ∼  (0, 𝐼)). Second, we further explore
an alternative long-tail distribution, the Cauchy distribution, in latent
space learning. The Cauchy distribution has a heavier tail than the
Student’s t-distribution and has been proposed to deal with fat tails
in variational inference in the recent literature [48]. For convenience,
we use the naming convention StudentT to denote the Student’s t-
distribution. Fig. 6 shows the experimental results of the different
types of distributions involved in the Gaussian, StudentT and Cauchy
distributions on all datasets.

Using a long-tail distribution (StudentT or Cauchy distribution), we
observe that one or the other of the two performs compares favorably
with the standard Gaussian distribution in Fig. 6. From the results, there
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Fig. 7. Convergence analysis of different types of distribution on UCSB, KAIST, NumFabric and BJ-Taxi.
Fig. 8. Visualization of WLP generated by comparative methods and ours on UCSB (a) and BJ-Taxi (b).
is no clear winner between CInvNet with the Student’s t-distribution or
the Cauchy distribution, as each of these combinations performs better
than the other on different datasets. This may be because different
datasets exhibit different degrees of tailing effects. Note that when
the tailed distribution is not suitable for the property of data, the
model obviously harms prediction compared with the simple distri-
bution. The Student’s t-distribution distribution can address heavy-tail
flows and the Cauchy distribution is able to accurately model fat-tail
structure [48]. Hence, distribution should be selected appropriately in
practice.

5.6.3. Convergence analysis (RQ3)
To evaluate the convergence of our proposed model, we present

the MAE values for four datasets during training, as shown in Fig. 7.
The results reveal that utilizing a long-tail distribution in latent space
learning is effective in reducing errors. However, the observed improve-
ments are less significant for the first two datasets, as also highlighted
in RQ2. This might be attributed to the intrinsic properties of these
datasets. For example, the non-Gaussian tail in the first two datasets is
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not obvious. Therefore, there is a small gap among the distributions. In
contrast, NumFabric and BJ-Taxi may be more sensitive to the different
degrees of tailed effects. We note that the Gaussian distribution has
some defects such as a low convergence speed and falling into local
minima. With a tailed distribution, the model converges faster and
achieves lower MAE scores.

5.7. Visualization of WLP

For qualitative results, Fig. 8 further shows the advantageous prop-
erties of CInvNet (Ours) compared with the other methods. Here, we
use heat maps to visualize the WLP generated by comparative methods
and our method. Fig. 8 example cases on the smallest and the largest
datasets. As expected from the results presented in Tables 2 and 3, our
proposal performs particularly well on different cases.

In both cases, the following similar conclusions can be drawn. Intu-
itively, most comparative methods fail to predict the heavily weighted
links on both datasets. Specifically, it can be observed that both DySAT
and SIVGRNN suffer from underforecasting, since predicted values
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Table 9
Average WLP results of DSBM1000 and DSBM2000.

Methods DSBM1000 DSBM2000

MAE RMSE EKL MR MAE RMSE EKL MR

DynRNN [14] 0.0171 0.0119 0.0003 0.2775 0.0132 0.0067 0.0018 0.3202
DynAERNN [14] 0.0193 0.0121 0.0001 0.2129 0.0188 0.0074 0.0027 0.2641
DynGEM [5] 0.0170 0.0120 0.0001 0.2183 0.0143 0.0076 0.0012 0.2750
EnvolveGCN-O [6] 0.0289 0.0116 0.0586 0.8493 0.0443 0.0120 0.0057 0.6124
EnvolveGCN-H [6] 0.0297 0.0119 0.0574 0.8467 0.0364 0.0129 0.0069 0.6124
SIVGRNN [2] 0.0169 0.0120 0.0010 0.2111 0.0134 0.0072 0.0030 0.3576
TVAE [21] 0.0167 0.0116 0.0001 0.4994 0.0127 0.0068 0.0018 0.1997
CInvNet (ours) 0.0127 0.0089 0.0007 0.2085 0.0098 0.0055 0.0023 0.1587

The best results are in boldface. Italic with underlined ones represent the second-best results.
are low. DynRNN, DynAERN, DynGEM and TVAE result in similar
predictions, which are denser than ground-truth and blurry. The per-
formances of GCN–GAN and EvolveGCN are relatively satisfactory.
Our proposal could generate outstanding adjacency matrices which are
similar to the ground-truths.

5.8. Experiments on larger dynamic networks

The effectiveness of CInvNet was demonstrated through the exper-
iments in the previous sections. In this section, we also evaluate it on
larger dynamic systems.

Two widely used larger datasets of the dynamic networks (i.e.,
DSBM1000 and DSBM2000) [6,14,21] are considered to test our link
prediction model. DSBM1000 and DSBM2000 follow the ones in [14,
21], which are generated from a dynamic stochastic block model with
1000 and 2000 nodes for simulating dynamic network structures and
evolutions. For both datasets, four communities are set and a total of
100 snapshots are generated. In order to test the performance of the
WLP model, 10–50 nodes of each community continuously increase
their connection strength with other nodes.

We compare the performances of methods that can be directly
used on larger datasets. The results on two larger datasets are listed
in Table 9. Owing to limited computational resources, we made a
trade-off between algorithm performance and runtime efficiency. To
achieve this, community partition is employed to preprocess larger
data. Once split into sub-communities, the proposed approach can
perform efficient operations within each sub-community. From the
results, we observe that SIVGRNN and TVAE generally obtain better
results than the other comparative methods, whereas the proposed
CInvNet achieves the best results in terms of almost all evaluation
metrics. The current observations resemble the results from previous
experiments. Meanwhile, the inferiority of CInvNet in EKL is demon-
strated. For larger dynamic networks, this inferiority may arise because
the community division operation of the model results in independent
communities that lack weak continuity between communities. Per-
haps, a running mode that operates directly on large-scale graphs may
still be required to solve the problem of predicting community-level
relationships.

6. Conclusions and future work

In conclusion, a new framework called CInvNet (Conditional
Invertible neural Network) is proposed for WLP in this study. This
framework gains advantages from flow-based generative models that
can generate fine-grained and diverse weighted topology data with
high realism. Meanwhile, CInvNet explores pushing a tractable density
with known tails instead of normal Gaussian base distribution in the
latent space a pattern similar to that in a realistic weighted system.
Our proposal was applied to four real-world WLP datasets. The results
confirm that CInvNet substantially outperforms competing methods.

The use of conditional invertible neural networks for WLP is still in
its initial stages, and many possible improvements should be explored.
11

Future research will include the following: (1) a more sophisticated
approach to deal with evolution in dynamic systems; (2) task-specific
invertible transformations to further enhance the performance; (3)
consideration of the sparseness of realistic data.
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