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KG-augmented models usually endow existing models with external knowledge graphs, which 
achieve promising performance in various knowledge-intensive tasks, such as commonsense 
reasoning. Existing methods mainly first exploited heuristic ways for retrieving the relevant 
knowledge subgraphs according to the input, and then utilized some effective encoders, such as 
GNNs, to encode the symbolic knowledge into the neural reasoning networks. However, whether 
the whole retrieved knowledge subgraphs are really relevant or useful for the reasoning process 
was seldom considered. Actually, according to our observations and analysis, most retrieved 
knowledge is noisy and useless to the reasoning models, which would hurt the final performance. 
To remedy this, this paper proposes information bottleneck based knowledge selection (IBKS), 
which is able to select useful knowledge from the retrieved knowledge subgraph. Expectedly, 
the selected knowledge could better improve the commonsense reasoning ability of the model. 
Moreover, IBKS is model-agnostic and could be plugged into any existing KG-augmented model. 
Extensive experimental results show that IBKS could effectively improve commonsense reasoning 
performance.

1. Introduction

Knowledge underpins reasoning. To verify such ability, researchers recently proposed the task of commonsense reasoning [15,30,

21,39] and designed various knowledge graph (KG) augmented models to solve this task [16,6,40]. They usually leverage external 
commonsense knowledge from existing KGs to empower existing neural reasoning models with enough knowledge background [45].

The basic architecture of existing KG-augmented models, as illustrated in Fig. 1, follows a 3-step injection paradigm for incorpo-

rating external knowledge into the neural models [45]. 1) Knowledge Retrieving: they usually attempted to design heuristic methods 
[16] to retrieve a knowledge subgraph that is relevant to the original textual input. 2) Knowledge Encoding: they utilized encoders 
like graph neural networks (GNNs) to encode the retrieved knowledge subgraph to obtain the knowledge representations. 3) Knowl-
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Fig. 1. Existing KG-augmented models could be summarized as this architecture. Step 1 finds relevant knowledge according to the text. Step 2 encodes the knowledge 
subgraph to obtain the knowledge representations and step 3 fuses the knowledge representations and text representations. And we show the part of the obtained 
knowledge using MHGRN [6].

Table 1

Annotation results of the 50 samples. Total concept refers to the number of introduced concepts of existing 
heuristic methods. Useful concept denotes the number of annotated potentially useful concepts. Accuracy 
(Ori) and Accuracy (Useful) stand for the accuracy of the 50 sampled examples in terms of providing total 
concepts and useful concepts, respectively.

Method Total Concept Useful Concept Ratio Accuracy (Ori) Accuracy (Useful)

MHGRN [6] 572.84 152.76 0.27 72.0 78.0

QA-GNN [40] 534.95 133.84 0.25 80.0 84.0

edge Fusing: they aggregated the knowledge representations and original textual representations together for predictions. In this 
process, learning better knowledge-augmented representations is very important for reasoning. To this end, previous studies mainly 
focused on the last two steps (knowledge encoding and knowledge fusing), i.e. obtaining better knowledge representations [16,6,40]

and fusing the knowledge representations with the textual representations well [43,45].

However, previous studies [16,6,40,43] all ignore the quality of the retrieved knowledge subgraph (i.e. step 1), which is actually 
unsatisfactory. As shown in Fig. 1, the knowledge subgraph obtained by heuristic methods is extensive and redundant. Only the 
subgraph connected with the pink line is useful and the other parts are useless for reasoning. To further illustrate, we choose 
CommonsenseQA [30] which is a widely used dataset for commonsense reasoning to make a quantitative analysis. We analyze the 
results from existing heuristic KG-augmented methods [6,40] by randomly sampling 50 instances and inviting three postgraduates 
are invited to annotate the potentially useful concepts. Table 1 presents the statistics of the sampled instances and the annotation 
results. We observe that less than 30% of the introduced concepts are useful, which demonstrates that the retrieved subgraph contains 
a substantial amount of useless knowledge. Intuitively, if the quality of the selected knowledge is poor, it will not be helpful for the 
subsequent reasoning models. Thus we test these 50 examples with these two KG-augmented models. Accuracy (Ori) and Accuracy 
(Useful) represent the accuracy when providing the total concepts and the useful concepts, respectively. The performance gaps verify 
that the redundant knowledge indeed hurts the following reasoning performance, which is also consistent with the findings in [2].

To filter the retrieved knowledge noises, existing KG-augmented reasoning models try some solutions in the knowledge encoding 
step (step 2). For example, they employed GNNs or attention mechanism on knowledge selection. However, recent studies have shown 
that GNNs are not competent according to their core message-passing mechanism [41,27], i.e., the message of all k-hop neighbors 
would be encoded into the node representation for a k-layer GNN. Moreover, as for the most anticipated attention mechanism, recent 
studies also proved that the soft attention value could not filter information but scale information in GNNs [41,42,20]. As a result, 
2

the existing efforts in step 2 [16,6,40,43] could only encode retrieved knowledge instead of filtering the noisy information.
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Different from previous approaches, this paper focuses on selecting useful knowledge in the first step, i.e. knowledge retrieving. 
To achieve this, we borrow the idea of the information bottleneck [31,1], which seeks a representation that is maximally informative 
about the prediction while being minimally informative about the original input data. That is to say, information bottleneck (IB) 
provides a convenient mechanism for penalizing an information-theoretic measure of redundant information in the original inputs. 
Based on this, IB is expected to filter useless knowledge which is irrelevant to the prediction. Thus, this paper proposes an Information 
Bottleneck based Knowledge Selection (IBKS) method. Specifically, motivated by Yu et al. [42] and Miao et al. [20], we apply IB 
on the graph data.1 However, unlike their tasks, selecting knowledge subgraphs should consider both the textual inputs and the 
original retrieved graph. The textual inputs could provide more sufficient contextual information for precise knowledge selection. 
For example, for two different questions that have the same concepts, if we do not consider the contextual information, the selected 
subgraph would be the same, which is obviously unreasonable. To this end, we add a textual constraint in our selection model to 
select knowledge more precisely. Moreover, we additionally introduce task-related prior information in the selection process, that is 
the edges which could connect the concepts in the original text would be more important [9]. Accordingly, the reasoning performance 
could be improved further. Furthermore, considering the optimization objective of our proposed IBKS is not tractable, this paper 
utilizes variational inference to obtain its tractable upper bound for optimization. Besides, our proposed IBKS is model-agnostic, and 
we expatiate how to plug it into existing KG-augmented models in § 3.2.

Our contributions can be summarized as:

• In this paper, we first illustrate the importance of knowledge selection for commonsense reasoning. To better fit our task, we 
further propose information bottleneck based knowledge selection (IBKS), which could effectively filter irrelevant and redundant 
noises from retrieved knowledge subgraphs and be beneficial for the subsequent reasoning models.

• IBKS could be easily plugged into any KG-augmented model and we plug it into three typical KG-augmented models. Ex-

tensive experimental results show our proposed method could improve the commonsense reasoning performance of existing 
KG-augmented models with only about 30% of knowledge preserved.

2. Related work

2.1. KG-augmented models for commonsense reasoning

KG-augmented models are proposed to address the problem of lacking enough commonsense knowledge in existing models. These 
models first employ heuristic methods to obtain a knowledge subgraph that is associated with the question and the answer from a 
huge external knowledge graph such as ConceptNet [28]. The heuristic methods usually match the tokens in the questions and 
answers to the mentioned concepts in the external knowledge graph. With these matched concepts, they can find a relevant subgraph 
covering all these concepts via subgraph matching [7] and path finding [16].

After obtaining the relevant knowledge sub-graph, KG-augmented models usually utilize GNNs like RGCN [26], and Gconattn 
[35] to encode the knowledge subgraph and fuse the knowledge representations with the textual representations which are encoded 
by PLMs. Relation Networks (RN) [25] is originally proposed to solve questions about the relations between multiple objects in an 
image. And the concepts in the inputs can be seen as objects and RN could be easily transferred into modeling the relations between 
concepts in external knowledge graphs. RN could model single-hop triplets well, which results in better knowledge representations. 
To introduce multi-hop relations, Kagnet [16] modeled the multi-hop relations by extracting relational paths from KGs and then 
encoding paths with LSTM, which leads to big performance improvements. To further model these multi-hop relations, MHGRN 
[6] modeled relational paths as multi-hop message passing with multi-layer graph attention networks. Previous studies all learn 
the knowledge representations in isolation, neglecting the critical role of text representation. To solve this problem, Yasunaga et 
al. [40] introduced the QA context node to represent text representation and added this node into the knowledge subgraph, which 
could obtain text-enhanced graph representations. To further enhance the interaction of the text representation and the knowledge 
representation, GREASELM [43] fused the text representations and the knowledge representations through multi-layered modality 
interaction operations, JointLK [29] utilized the bidirectional attention module to fuse these two representations. More recently, 
there are also some studies focusing on the quality of the retrieved knowledge. DGRN [44] added relevant edges to help in finding 
the chain of reasoning when there are missing edges in external KG. Our concurrent work DHLK [36] pruned the noisy knowledge 
according to the attention weights.

Previous studies ignore the quality of the heuristically obtained knowledge subgraph, which contains numerous useless knowl-

edge. As a result, the obtained knowledge representations would be filled with noise information, which constrains the model 
performance [36].

2.2. Information bottleneck

Information bottleneck (IB) is originally proposed to find a short code of the input signal but preserve maximum information in 
signal processing [31]. Then Tishby et al. [32] first applied it in deep learning. And Alemi et al. [1] further proposed variational 
information bottleneck (VIB) to bridge the gap between IB and deep learning. In summary, IB aims to seek a trade-off between 
3

1 Our retrieved knowledge subgraphs are actually the graph data.
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Fig. 2. Overall model architecture of IBKS. The blue box denotes the knowledge selector, which could select 𝐺𝑠 with the constraints of text and 𝐺. The red box refers 
to the KG-augmented model.

maximizing predictive accuracy and minimizing the representation complexity, which could be applied to improving the model 
robustness and generalization [5,34]. More recently, [37] and [42] extended the general IB to irregular graph data and proposed 
graph information bottleneck (GIB), which could be applied to subgraph recognition problem [20]. However, in KG-augmented 
models, previous studies are not applicable because of the completely different probabilistic graph and the extra constraints of text. 
Fig. 3 presents the differences between these previous studies and our proposed method in detail.

3. Method

In this section, we first introduce the background of the task and the formulation of existing KG-augmented models. Then we 
illustrate how to implement our method. Finally, we present the target of IBKS and deduce a tractable lower bound for optimization.

3.1. Task definition of commonsense reasoning

In this paper, we focus on the multiple-choice commonsense reasoning task, which requires choosing the correct answer 𝑦 from 
𝑁 candidate answers {𝑎1, 𝑎2, ⋯ , 𝑎𝑁} based on the question 𝑞. And we denote the question and all answers as the textual input 𝑥. 
The target is to maximize 𝑝(𝑦|𝑥).

Existing KG-augmented models usually introduce relevant knowledge 𝐺 from the external knowledge graph  to help reason. 
These models share a similar architecture (Fig. 1) and the target of these models is to maximize 𝑝(𝑦|𝑥, 𝐺).

3.2. Overview of KG-augmented models with IBKS

In this part, we would introduce the implementation of IBKS. Fig. 2 shows the model architecture, which consists of the knowledge 
selector and KG-augmented model. This paper aims to select 𝐺𝑆 from the original 𝐺 to improve existing models. The target of the 
knowledge selector is 𝑝𝜙(𝐺𝑆 |𝐺, 𝑥). Therefore, the original target 𝑝(𝑦|𝑥, 𝐺) could be decomposed as 𝑝𝜙(𝐺𝑆 |𝐺, 𝑥)𝑝𝜃(𝑦|𝑥, 𝐺𝑆 ), where 
𝜙 and 𝜃 refer to the parameters of the knowledge selector and the KG-augmented model, respectively. And we introduce these two 
components in the following parts.

Knowledge Selector is depicted in the blue box, which could be formulated as 𝑝𝜙(𝐺𝑆 |𝐺, 𝑥). This module aims to select a 
knowledge subgraph 𝐺𝑆

2 from the original retrieved knowledge graph 𝐺.

2 In this paper, we obtain 𝐺𝑆 by selecting useful edges. And the isolated node would naturally be filtered. Compared to selecting useful nodes, edge selection is 
4

more refined and more effective [42,20].
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Fig. 3. Probabilistic graphical model of VIB [1], GIB [42] and IBKS.

Firstly, we utilize the pre-trained language model to encode the textual input 𝑥 to obtain the textual representation 𝑇𝑇𝑇 . Then we 
use the graph encoder3 to obtain the edge embedding4 𝐸𝐸𝐸 = (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, ⋯ , 𝑒𝑒𝑒𝑁𝑒

), where 𝑁𝑒 refers the number of edges. Then we denote 
a binary embedding 𝑍𝑍𝑍 = (𝑧𝑧𝑧1, 𝑧𝑧𝑧2, ⋯ , 𝑧𝑧𝑧𝑁𝑒

) to represent which edges would be reserved, where 𝑧𝑧𝑧𝑖 = 1 indicates the corresponding 𝑖-th 
edge would be reserved. This binary embedding 𝑍𝑍𝑍 can be computed as follows:

𝑍𝑍𝑍 = Gumbel_Softmax(MLP(𝐸𝐸𝐸,𝑇𝑇𝑇 )) (1)

where MLP refers to a 3-layer perception and Gumbel_Softmax refers to the reparameterization method [8]. With this binary 
embedding 𝑍𝑍𝑍 , we can easily obtain the corresponding subgraph 𝐺𝑆 =𝑍𝑍𝑍 ⊙ 𝐺. However, the modification of the graph input does 
not fit the end-to-end training paradigm and has adverse effects on GNNs [24]. Thus we do not modify the original knowledge graph 
input and turn to modify the message-passing process, which is the core mechanism of GNN. In specific, we let the message passed 
by the 𝑖-th edge be zero when 𝑧𝑖 = 0 and keep the passing message unchanged when 𝑧𝑖 = 1.

KG-augmented Model is shown in the red box, which refers to 𝑝𝜃(𝑦|𝑥, 𝐺𝑆 ). And existing KG-augmented models all can be 
summarized as this formulation. With this part, we can judge the quality of the selected 𝐺𝑆 according to the loss between the 
output probability and the ground truth label 𝑦. This signal could help the knowledge selector adaptively select a more label-relevant 
subgraph.

Obviously, the knowledge selector could be plugged into any previous KG-augmented model. Therefore, IBKS is model-agnostic 
and could be applied to improving any KG-augmented model.

3.3. Information bottleneck based knowledge selector

As shown in Fig. 3b, original GIB [42] seeks 𝐺𝑆 from 𝐺 and requires 𝐺𝑆 minimally informative about 𝐺. The optimization 
objective of GIB could be formulated as follows:

min−𝐼(𝐺𝑆 ;𝑦) + 𝛽𝐼(𝐺;𝐺𝑆 ) (2)

where 𝐼 denotes the mutual information and 𝛽 is the weight to adjust the two terms. Obviously, this optimization objective ignores 
the impact of the textual inputs, which is not suitable for our task. Therefore, we need to introduce the textual constraint in the 
selection process.

IB with Textual Constraint As shown in Fig. 3c, we introduce the textual constraint to better model our task, which named

IBKS. In specific, 𝐺𝑆 is selected from 𝐺 with the constraint of the text input 𝑥, and we expect 𝐺𝑆 to contain as little information 
about 𝐺 as possible. 𝐺𝑆 would be fed into KG-augmented models to check its quality, and we expect 𝐺𝑆 could help maximize the 
probability of obtaining the correct answer 𝑦. Therefore, the overall optimization target of IBKS can be formulated as:

min−𝐼(𝑥,𝐺𝑆 ;𝑦) + 𝛽𝐼(𝐺;𝐺𝑆 |𝑥) (3)

where 𝐼 denotes the mutual information and 𝛽 is the weight to adjust the two terms. The first term 𝐼(𝑥, 𝐺𝑆 ; 𝑦) requires the mutual 
information between the label 𝑦 and the input 𝑥 fused with the selected knowledge 𝐺𝑆 to be big enough. The second term 𝐼(𝐺; 𝐺𝑆 |𝑥)
constrains the conditional mutual information between the original 𝐺 and the selected knowledge subgraph 𝐺𝑆 given the textual 
input 𝑥. Combining these two terms, IBKS could select optimal 𝐺𝑆 from 𝐺, which satisfies that 𝐺𝑆 entails less information of 𝐺 but 
could provide more information about the label 𝑌 , which can be seen as useful knowledge.

The above optimization objective is obviously not tractable because of the mutual information terms. Thus, we utilize variational 
inference to obtain its tractable upper bound for optimization. In specific, we need to deduce the lower bound for 𝐼(𝑥, 𝐺𝑆 ; 𝑦) and 
the upper bound for 𝐼(𝐺; 𝐺𝑆 |𝑥). And we illustrate these details in the following parts.

For the first term, we expect 𝐺𝑆 could add relevance between the input 𝑥 and the ground truth label 𝑦. This term can be 
formulated as follows:

3 Graph encoder in knowledge selector shares parameters with the graph encoder in KG-augmented model.
4 Considering some GNNs do not have separate edge representations, we uniformly average the node representations of the start node and the end node as the edge 
5

representations.
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𝐼(𝑋,𝐺𝑆 ;𝑌 ) = ∫ 𝑝(𝑥,𝐺𝑆, 𝑦) log
𝑝(𝑦|𝑥,𝐺𝑆 )

𝑝(𝑦)
𝑑𝑥𝑑𝑦𝑑𝐺𝑆

= ∫ 𝑝(𝑥,𝐺𝑆, 𝑦) log
𝑝𝜃(𝑦|𝑥,𝐺𝑆 )

𝑝(𝑦)
𝑑𝑥𝑑𝑦𝑑𝐺𝑆

+ KL(𝑝(𝑦|𝑥,𝐺𝑆 )||𝑝𝜃(𝑦|𝑥,𝐺𝑆 ))

≥ ∫ 𝑝(𝑥,𝐺𝑆, 𝑦) log𝑝𝜃(𝑦|𝑥,𝐺𝑆 )𝑑𝑥𝑑𝑦𝑑𝐺𝑆

(4)

where 𝑝(𝑦|𝑥, 𝐺𝑆 ) can not be estimated, thus we utilize 𝑝𝜃(𝑦|𝑥, 𝐺𝑆 ) to be a varitional estimation of this distribution. And 𝑝𝜃(𝑦|𝑥, 𝐺𝑆 )
could be seen as any existing KG-augmented model and 𝜃 denotes the model parameter.

Considering 𝐺𝑆 is selected from 𝐺, we introduce 𝐺 into the probability density to form 𝑝(𝑥, 𝐺𝑆, 𝑦, 𝐺). According to the proba-

bilistic graph of IBKS (Fig. 3 (c)), we could decompose it as 𝑝(𝑥, 𝑦)𝑝𝜙(𝐺𝑆 |𝑥, 𝐺)𝑝(𝐺|𝑥). Based on this, we could simplify the above 
term as follows:

𝐼(𝑋,𝐺𝑆 ;𝑌 )

≥ ∫ 𝑝(𝑥,𝐺𝑆, 𝑦,𝐺)𝑙𝑜𝑔𝑝𝜃(𝑦|𝑥,𝐺𝑆 )𝑑𝑥𝑑𝑦𝑑𝐺𝑆𝑑𝐺

= ∫ 𝑝(𝑥, 𝑦)𝑝𝜙(𝐺𝑆 |𝑥,𝐺)𝑝(𝐺|𝑥) log𝑝𝜃(𝑦|𝑥,𝐺𝑆 )𝑑𝑥𝑑𝑦𝑑𝐺𝑆𝑑𝐺

(5)

As for the second term 𝐼(𝐺; 𝐺𝑆 |𝑥), it requires the conditional mutual information between 𝐺 and the selected knowledge subgraph 
𝐺𝑆 given the textual input 𝑥 to be small. This term constrains the selected 𝐺𝑆 to contain less information from the original 𝐺, which 
can be formulated as:

𝐼(𝐺;𝐺𝑆 |𝑋)

= ∫ 𝑝(𝐺,𝐺𝑆,𝑥) log
𝑝(𝐺𝑆 |𝑥,𝐺)
𝑝(𝐺𝑆 |𝑥) 𝑑𝑥𝑑𝐺𝑑𝐺𝑆

= ∫ 𝑝(𝐺,𝐺𝑆,𝑥) log[
𝑝(𝐺𝑆 |𝑥,𝐺)
𝑟(𝐺𝑆 |𝑥) ]𝑑𝑥𝑑𝐺𝑑𝐺𝑆

− KL[𝑝(𝐺𝑆 |𝑥)||𝑟(𝐺𝑆 |𝑥)]
≤ ∫ 𝑝(𝐺,𝐺𝑆,𝑥) log

𝑝(𝐺𝑆 |𝑥,𝐺)
𝑟(𝐺𝑆 |𝑥) 𝑑𝑥𝑑𝐺𝑑𝐺𝑆

(6)

where the marginal distribution of 𝑝(𝐺𝑆 |𝑥) is difficult to compute. Thus we utilize a prior distribution 𝑟(𝐺𝑆 |𝑋) to be the variational 
estimation of this marginal distribution. In specific, 𝑟(𝐺𝑆 |𝑥) = ∫ 𝑟(𝐺𝑆 |𝐺, 𝑥)𝑝(𝐺|𝑥)𝑑𝐺. For the heuristic method, 𝑝(𝐺|𝑥) could be seen 
as a one-point distribution, which means 𝐺 is deterministic for a given 𝑥. Therefore, 𝑟(𝐺𝑆 |𝑥) = 𝑟(𝐺𝑆 |𝐺, 𝑥) = 𝑟(𝐺 ∗𝑍𝐺|𝐺, 𝑥), where 
𝑍𝐺 is a binary embedding that denotes whether the edge should be reserved.

Task-related Prior We illustrate the prior distribution of whether to reserve an edge in this part. For edge 𝑒, we sample 𝛼𝑒 ∼
Bern(𝑝), where Bern(𝑝) denotes the Bernoulli distribution which sample 1 with the probability 𝑝. Then we retain 𝑒 when 𝛼𝑒 = 1 and 
drop 𝑒 when 𝛼𝑒 = 0. A recent study [9] has shown the edges which could connect question and answer would be more important. 
Inspired by this new finding, we further design the prior distribution as follows: For edge 𝑒 which connects the question concept and 
answer concept, we sample 𝛼𝑒 ∼ Bern(𝑝1). For the edges that do not serve as connectors, we sample 𝛼𝑒 ∼ Bern(𝑝2), where 𝑝1 is bigger 
than 𝑝2. With this sampling strategy, the edges that could connect question concepts and answer concepts would be reserved with 
higher probability.

Considering the golden label 𝑦 could help to judge the quality of 𝐺𝑆 , we introduce 𝑦 to form 𝑝(𝐺, 𝐺𝑆, 𝑥, 𝑦). Following Fig. 3 (c), 
we can decompose it as 𝑝(𝑥, 𝑦)𝑝𝜙(𝐺𝑆 |𝑥, 𝐺)𝑝(𝐺|𝑥). Thus the above formula could be simplified as:

𝐼(𝐺;𝐺𝑆 |𝑋)

≤ ∫ 𝑝(𝐺,𝐺𝑆,𝑥, 𝑦) log
𝑝(𝐺𝑆 |𝑥,𝐺)
𝑟(𝐺𝑆 |𝑥) 𝑑𝑥𝑑𝑦𝑑𝐺𝑑𝐺𝑆

= ∫ 𝑝(𝑥, 𝑦)𝑝𝜙(𝐺𝑆 |𝑥,𝐺)𝑝(𝐺|𝑥) log 𝑝𝜙(𝐺𝑆 |𝑥,𝐺)
𝑟(𝐺𝑆 |𝑥) 𝑑𝑥𝑑𝑦𝑑𝐺𝑑𝐺𝑆

(7)

where 𝑝𝜙(𝐺𝑆 |𝑥, 𝐺) denotes the knowledge selector, which could select 𝐺𝑆 with the constraints of text 𝑥 and original knowledge 𝐺. 
6

𝜙 refers to the parameter of the knowledge selector.
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Table 2

Stastics of the datasets CommonsenseQA and OpenBookQA.

Dataset Train Valid Test

CommonsenseQA(IH) 8500 1221 1241

OpenbookQA 4957 500 500

Therefore, the original intractable optimization target could be computed as follows:

− 𝐼(𝑋,𝐺𝑆 ;𝑌 ) + 𝛽𝐼(𝐺;𝐺𝑆 |𝑋)

≤ −∫ 𝑝(𝑥, 𝑦)𝑝𝜙(𝐺𝑆 |𝑥,𝐺)𝑝(𝐺|𝑥)(log𝑝𝜃(𝑦|𝑥,𝐺𝑆 )

+ 𝛽 log
𝑝𝜙(𝐺𝑆 |𝐺,𝑥)
𝑟(𝐺𝑆 |𝑥) )𝑑𝑥𝑑𝑦𝑑𝐺𝑑𝐺𝑆

(8)

In practice, we can approximate 𝑝(𝑥, 𝑦) with its empirical data distribution 𝑝(𝑥, 𝑦) ≈ 1
𝑁

∑𝑁

𝑖=1 𝛿𝑥𝑖 (𝑥)𝛿𝑦𝑖 (𝑦). With the existing de-

terministic heuristic methods, 𝐺𝑖 is also deterministic for a given 𝑥𝑖. Based on this, our optimization target could be formulated 
as:

− 𝐼(𝑋,𝐺𝑆 ;𝑌 ) + 𝛽𝐼(𝐺;𝐺𝑆 |𝑋)

≤ − 1
𝑁

𝑁∑
𝑖=1

[𝑝𝜙(𝐺𝑆𝑖
|𝑥𝑖,𝐺𝑖) log𝑝𝜃(𝑦𝑖|𝑥𝑖,𝐺𝑆𝑖

) + 𝛽KL[𝑝𝜙(𝐺𝑆𝑖
|𝑥𝑖,𝐺𝑖)||𝑟(𝐺𝑆𝑖

|𝑥𝑖)]]
(9)

Combining these two terms, the selected 𝐺𝑆 would have less information about the original 𝐺 but could help the KG-augmented 
model more. Generally speaking, for a chosen KG-augmented model, the selected 𝐺𝑆 is the label-relevant knowledge in the whole 
knowledge subgraph 𝐺.

According to Fig. 3, our designed IBKS diverge from existing representative IB studies, including VIB [1] and GIB [42]. The 
fundamental difference is the constraints of the textual input. When selecting 𝐺𝑆 , we should consider the synergy of the textual 
input 𝑋 and the original knowledge 𝐺. When judging the quality of 𝐺𝑆 , we should also consider the mapping from the combination 
of 𝐺𝑆 and 𝑋 to 𝑌 .

4. Experiments

Firstly, we introduce the basic experimental setups in § 4.1. Then we list the corresponding experimental results and show analysis 
in § 4.2.

4.1. Experimental setup

4.1.1. Datasets

We evaluate all models on the two widely used commonsense reasoning datasets: CommonsenseQA [30] and OpenBookQA [26].

CommonsenseQA is a 5-way multiple choice QA task that requires reasoning with commonsense knowledge. And there are 12,102 
questions in the dataset. Following previous studies, we conduct experiments on the in-house (IH) data splits [16]. OpenBookQA is a 
4-way multiple choice QA task that requires reasoning with elementary science knowledge. There are 5,957 questions in the dataset. 
We conduct experiments on the official data splits [21]. And Table 2 presents the specific statistics of the data splits in our following 
experiments.

4.1.2. External knowledge graph

Following previous work, we utilize ConceptNet [28] as the external commonsense knowledge graph resource in our exper-

iments. ConceptNet is a general-domain knowledge graph and consists of 799,273 nodes and 2,487,810 edges, which has been 
regarded as a good commonsense knowledge origin in various tasks.

4.1.3. Models

Existing KG-augmented models mainly share a similar architecture and we select three typical methods.

(1) RGCN [26] is one of the most typical KG-augmented models, which utilizes RGCN to encode the retrieved knowledge. 
Compared to common GCN [22], RGCN considers the important role of relations in a multi-relation graph additionally, which is 
better suited for the knowledge graph.

(2) MHGRN [6] addresses the limitation of previous methods that only modeled single-hop relationships and proposes multi-layer 
graph attention networks [33] to encode the multi-hop relation paths.

(3) QA-GNN [40] highlights the issue with previous methods that focused solely on learning isolated representations of knowledge 
while neglecting the role of text representations. QA-GNN introduces a context node to represent text representation and adds this 
node into the knowledge subgraph, which could obtain text-enhanced graph representations. With the text-enhanced knowledge 
7

representations, QA-GNN achieves the SOTA performances.
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Table 3

The hyperparameter settings on the CommonsenseQA and OpenBookQA datasets.

Hyperparameter CommonsenseQA OpenbookQA

Learning Rate for BERT-base 3e-5 3e-5

Learning Rate for BERT-large 2e-5 2e-5

Learning Rate for Roberta-large 1e-5 1e-5

Learning Rate for Knowledge Encoder 1e-3 3e-4

Batch Size 32 32

Table 4

Performance comparison on CommonsenseQA [30]. We report in-house Dev (IHdev) and Test (IHtest) accuracy using the 
data splits of Lin et al. [16]. All results are reported with the mean and standard derivation of five runs.

BERT-base BERT-large RoBerta-large

IHdev IHtest IHdev IHtest IHdev IHtest

RGCN 56.94 (±0.38) 54.50 (±0.56) 62.98 (±0.82) 57.13 (±0.36) 72.69 (±0.19) 68.41 (±0.66)

+IBKS 58.68 (±1.02) 55.97 (±1.44) 64.34 (±1.01) 58.28 (±1.36) 74.01 (±1.27) 69.72 (±1.56)

MHGRN 60.36 (±0.23) 57.23 (±0.82) 63.29 (±0.51) 60.59 (±0.58) 74.45 (±0.10) 71.11 (±0.81)

+IBKS 61.37 (±0.86) 57.94 (±1.18) 64.42 (±0.97) 60.99 (±1.07) 75.42 (±0.83) 71.78 (±1.23)

QA-GNN 61.92 (±0.46) 58.85 (±0.89) 65.24 (±0.40) 61.34 (±0.72) 76.54 (±0.21) 73.41 (±0.92)

+IBKS 63.81 (±1.22) 59.87 (±1.65) 66.97 (±1.08) 62.33 (±1.53) 78.47 (±1.14) 74.47 (±1.77)

Table 5

Performance comparison on OpenbookQA [21]. We report the accuracy of the official dev and test datasets. All results are 
reported with the mean and standard derivation of five runs.

BERT-base BERT-large RoBerta-large

Dev Test Dev Test Dev Test

RGCN 51.12 (±2.22) 48.96 (±0.85) 58.20 (±1.30) 56.24 (±1.11) 64.65 (±1.96) 62.45 (±1.57)

+IBKS 52.57 (±1.97) 50.02 (±1.66) 59.33 (±1.55) 57.62 (±1.47) 66.47 (±2.04) 63.92 (±1.79)

MHGRN 55.77 (±1.13) 53.83 (±1.02) 59.46 (±0.55) 58.46 (±1.16) 68.10 (±1.02) 66.85 (±1.19)

+IBKS 56.65 (±1.08) 54.40 (±1.47) 60.05 (±1.02) 59.11 (±1.27) 69.02 (±1.15) 67.41 (±1.53)

QA-GNN 57.88 (±0.50) 56.20 (±1.77) 61.60 (±1.23) 60.22 (±1.55) 69.60 (±1.06) 67.51 (±0.58)

+IBKS 58.55 (±1.14) 56.31 (±1.75) 63.08 (±1.36) 61.17 (±1.84) 71.58 (±2.12) 68.93 (±1.86)

For these three KG-augmented models, we choose BERT-base, BERT-large, and RoBERTa-large as the text encoder, respectively. 
We plug our proposed IBKS on these selected models to show its effectiveness.

4.1.4. Implementation details

Following the previous studies [16,6], we reproduce the typical KG-augmented models RGCN, MHGRN, and QA-GNN with the 
official implementations. We use the Adam optimizer [12] to train our model and list the best-performing values of hyperparameters 
in Table 3. For 𝛽 in formula (9), we select 𝛽 from {1𝑒 −1, 1𝑒 −2, 1𝑒 −3, 1𝑒 −4, 1𝑒 −5}. As for the prior distribution, we select 𝑝1 from 
{0.5, 0.6, 0.7, 0.8, 0.9} and choose 𝑝2 from {0.4, 0.3, 0.2}. All hyper-parameters are selected based on the validation set through a grid 
search. All experiments are conducted with an NVIDIA GeForce RTX 3090 Ti.

4.2. Experimental results

We divide the experiments into two parts. Firstly, we conduct various experiments on different KG-augmented models and 
different text encoders on different datasets. According to these experiments, we could illustrate the effectiveness of IBKS on these 
different conditions. Secondly, we adhere to the settings of the text encoder in the leaderboard and compare to a series of KG-

augmented models. Besides, we also compare to the large language models (GPT-3.5 family) [23].

4.2.1. Performance improvements of IBKS

Table 4 and Table 5 show the experimental results on CommonsenseQA and OpenbookQA, respectively. From these results, we could 
observe that IBKS could further improve these three KG-augmented models across different text encoders and different datasets.

In specific, for CommonsenseQA (Table 4), we utilize the in-house data split [16]. For the best text encoder Roberta-large, IBKS

could improve 1.31%, 0.67%, and 1.06% on IHtest for RGCN, MHGRN, and QA-GNN, respectively. For the recent SOTA method 
QA-GNN [40], IBKS could bring 1.02%, 0.99%, 1.06% improvements for BERT-base, BERT-large, and Roberta-large, respectively.

As for OpenbookQA (Table 4), we conduct experiments on official data splits. For Roberta-large, IBKS outperforms the baseline 
8

methods 1.47%, 0.56%, 1.42% on the test dataset for RGCN, MHGRN, QA-GNN, respectively.
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Fig. 4. Average edge save ratio of IHDev on CommonsenseQA and OpenbookQA. We present the results of three KG-augmented models across the three different text 
encoders: BERT-base, BERT-large, and Roberta-large.

Table 6

Performance comparison on CommonsenseQA in-house split. We choose QA-

GNN and GREASELM and plug IBKS on these two KG-augmented models. 
Besides, we also show the performance of large language models. We select

text-davinci-002, text-davinci-003, and gpt-3.5-turbo and show 
average 4-shot performances of 3 runs.

Methods IHDev-Acc(.%) IHTest-Acc(.%)

RoBERTa-large [19] 73.07 (±0.45) 68.69 (±0.56)

RoBERTa-large+RGCN [26] 72.69 (±0.19) 68.41 (±0.66)

RoBERTa-large+GconAttn [35] 72.61 (±0.39) 68.59 (±0.96)

RoBERTa-large+Kagnet [16] 73.47 (±0.22) 69.01 (±0.76)

RoBERTa-large+RN [25] 74.57 (±0.91) 69.08 (±0.21)

RoBERTa-large+MHGRN [6] 74.45 (±0.10) 71.11 (±0.81)

RoBERTa-large+QA-GNN [40] 76.54 (±0.21) 73.41 (±0.92)

RoBERTa-large+DESC-KCR [38] 78.21 (±0.23) 73.78 (±0.39)

RoBERTa-large+DGRN [44] 78.20 74.00

RoBERTa-large+GREASELM [43] 78.50 (±0.50) 74.20 (±0.40)

RoBERTa-large+JointLK [29] 77.78 (±0.25) 74.43 (±0.83)

RoBERTa-large+DHLK [36] 79.39 (±0.24) 74.68 (±0.26)

text-davinci-002 79.44 (±0.56) 74.78 (±0.58)

text-davinci-003 79.03 (±0.61) 74.70 (±0.62)

gpt-3.5-turbo (ChatGPT) 74.61 (±0.49) 72.63 (±0.52)

RoBERTa-large+QA-GNN+IBKS 78.47 (±1.14) 74.47 (±1.77)

RoBERTa-large+GREASELM+IBKS 79.75 (±1.37) 75.32 (±1.29)

Besides the performance improvement, we also present the edge save ratio of IBKS for these three KG-augmented models. As 
shown in Fig. 4, for these three KG-augmented models, IBKS could filter numerous useless knowledge. For different text encoders, 
we could observe that the stronger text encoder needs less extra knowledge for the same KG-augmented method. This is because 
the stronger text encoder like Roberta-large has more parameters and could save more knowledge in the pre-training phase. As 
for different KG-augmented methods, we do not find obvious conclusions and the results are just for reference, this is because the 
difference between these methods is too big, including completely different graph encoders and different fusion ways of the text 
representations and knowledge representations. Especially for MHGRN, which is based on a multi-hop message-passing mechanism, 
the average save ratio is obviously higher than the others. Considering our IBKS is based on edge selection, a multi-hop path would 
fail to pass messages when any edge in this path is dropped. In contrast, the similar multi-hop path would fail only when all the 
edges are filtered for RGCN and QA-GNN.

4.2.2. Comparison with SOTA methods

In this part, we select QA-GNN [40] and GREASELM [43] as the basic KG-augmented model and plug our IBKS on these two 
models. To compare with SOTA methods, we follow the settings in previous studies. In specific, we choose the text encoder as 
RoBERTa-large [19] and AristorRoBERTa [3] for CommonsenseQA and OpenbookQA, respectively. And we compare to the mainstream 
KG-augmented models in recent years, including RGCN [26], GconAttn [35], Kagnet [16], RN [25], MHGRN [6], QA-GNN [40], 
DESC-KCR [38], DGRN [44], GREASELM [43], JointLK [29], and DHLK [36]. And we also compare to the large language models. 
In specific, we compare to the GPT-3.5 series models, including text-davinci-002, text-davinci-003, and gpt-3.5-turbo

(ChatGPT). For these three large language models, we perform 4-shot in-context learning and report the average performance of 3 
9

runs due to the high API costs. Table 6 and Table 7 present the corresponding results, respectively.
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Table 7

Performance comparison on OpenbookQA test set. We choose QA-GNN and 
GREASELM and plug IBKS on these two KG-augmented models. Besides, 
we also show the performance of large language models. We select text-

davinci-002, text-davinci-003, and gpt-3.5-turbo and show av-

erage 4-shot performances of 3 runs.

Methods Test-Acc(.%)

AristoRoBERTta [3] 78.40 (±1.64)

AristoRoBERTta+RGCN [26] 74.60 (±2.53)

AristoRoBERTta+GconAttn [35] 71.80 (±1.21)

AristoRoBERTta+RN [25] 75.35 (±1.39)

AristoRoBERTta+MHGRN [6] 80.60 (±0.10)

AristoRoBERTta+QA-GNN [40] 82.77 (±1.21)

AristoRoBERTta+DGRN [44] 84.10

AristoRoBERTta+GREASELM [43] 84.80 (±0.50)

AristoRoBERTta+JointLK [29] 84.92 (±1.07)

AristoRoBERTta+DHLK [36] 86.00 (±0.79)

text-davinci-002 80.43 (±0.54)

text-davinci-003 84.27 (±0.57)

gpt-3.5-turbo (ChatGPT) 79.67 (±0.42)

AristoRoBERTta+QA-GNN+IBKS 84.18 (±1.02)

AristoRoBERTta+GREASELM+IBKS 86.12 (±1.33)

Table 8

Performance comparison between IBKS and random selection. And the ran-

dom selection keeps the same save ratio with IBKS. We report the average 
performance of IHDev on CommonsenseQA. And ori refers to the original 
KG-augmented model without any knowledge selection.

RGCN MHGRN QA-GNN

ori 72.69 (±0.19) 74.45 (±0.10) 76.54 (±0.21)

IBKS 74.01 (±1.27) 75.42 (±0.83) 78.47 (±1.14)

random selection 71.87 (±2.65) 73.59 (±2.15) 76.36 (±2.49)

For CommonsenseQA, when we plug IBKS on QA-GNN, we can get comparative performance with the recent SOTA methods and 
the large language models. To further illustrate the effectiveness of IBKS, we also add IBKS into a stronger KG-augmented model 
GREASELM, which follows a similar idea to QA-GNN. IBKS brings 1.25% and 1.12% on IHDev and IHTest on GREASELM, which 
achieve the best performance on CommonsenQA. For OpenbookQA, IBKS also improves 1.41% and 1.32% for QA-GNN and GREASELM, 
respectively. With the help of IBKS, GREASELM could achieve the best performance on OpenbookQA.

4.3. Effectiveness of information bottleneck for knowledge selection

In the previous experiments, corresponding results show that IBKS could improve existing KG-augmented models. In this section, 
we discuss the effectiveness of alternative knowledge selection methods. First, we apply random selection with the same save ratio 
with IBKS to illustrate the impact of the reduction of the knowledge scale. Then, we compare with the sparsity-based selection 
methods [20,1], which is an effective selection method and has been widely applied to rationale selection [10].

4.3.1. Impact of the reduction of knowledge scale

In this part, we explore whether the performance improvement in previous experiments simply comes from the reduction of 
the knowledge scale. To answer this question, We follow the save ratio in Fig. 4 and generate the corresponding random selection. 
In this way, we could set the scale of the introduced knowledge the same. And we select Roberta-large as the text encoder and 
conduct experiments on CommonsenseQA. Table 8 presents the results of the dev set. From these experimental results, we observe 
that the random selection brings big performance degradation. Concretely, compared to IBKS, the random selection brings 2.14%, 
1.83%, and 2.11% performance drops on RGCN, MHGRN, and QA-GNN, respectively. Moreover, the random selection even leads 
to worse performance compared to the original KG-augmented models. These experimental results indicate that the performance 
improvement of IBKS is not only attributed to the reduction in the size of the subgraph and how selecting useful knowledge is the 
key to performance improvement.

4.3.2. Comparision with sparsity-based methods

In this section, we explore whether the IB-based knowledge selection frame is superior to other approaches. To address this 
problem, we compare IBKS with the sparsity-based knowledge selection method [20]. Let us go back to the formula (3), the second 
10

term 𝐼(𝐺; 𝐺𝑆 |𝑋) utilizes the mutual information to constrain the information from 𝐺 to 𝐺𝑆 . Sparsity-based methods usually adopt 
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Fig. 5. Effect of different 𝛽 . We show the average performance and the standard derivations on IHDev of CommonsenseQA. The red line indicates the information 
constraint, which is applied to our IBKS. The blue line presents the sparsity constraint, which is formulated in Formula (10). And 𝛽 = 0 refers to the performance of 
the original QA-GNN and we take this as a baseline.

Table 9

Ablation study on text constraints, different prior distribu-

tion, and random selection using Roberta-large as the text 
encoder. We report the average performance of IHDev on 
CommonsenseQA.

QA-GNN RGCN

IBKS 78.47 (±1.14) 74.01 (±1.27)

w/o text constraint 78.43 (±1.17) 73.67 (±1.31)

w new prior 78.02 (±1.33) 73.54 (±1.36)

the sparsity loss to constrain information passing, which has been widely used in rationale selection [14,10]. Thus we utilize the 
sparsity constraint in our task for comparison, the specific formulation is:

min−𝐼(𝑋,𝐺𝑆 ;𝑌 ) + 𝛽
count_edge(𝐺𝑆 )
count_edge(𝐺)

(10)

where count_edge(⋅) refers to computing the number of edges for a given graph. Actually, count_edge(𝐺𝑆 ) could be seen as L0-norm. 
For fair comparisons, we perform normalization to constrain the scale of the sparsity loss to be the same as the original conditional 
mutual information loss.

For comprehensive comparisons, we also conduct experiments using the sparsity constraints across different 𝛽. Fig. 5 presents the 
corresponding results. We conduct experiments on QA-GNN using Roberta-large. The red line presents the results of different 𝛽 and 
the blue line shows the results of the sparsity-based method on different 𝛽.

Considering 𝛽 = 0 refers to the performance of the original QA-GNN, we could find that both IBKS and the sparsity-based method 
could achieve better performance for different 𝛽, which validates the effectiveness of knowledge selection. Besides, we observe that 
the information constraint we used in IBKS outperforms the sparsity constraint for different 𝛽. From these results, we conclude that 
the mutual information constraints (IBKS) could perform better in knowledge selection compared to sparsity constraints. Thus the 
proposed IB method is more suitable for knowledge selection.

In summary, from the above experiments, we find that the performance improvements do not come from the reduction of the 
knowledge scale. Only reducing the size of the introduced knowledge even destroys the original KG-augmented models, which 
indicates that selecting which knowledge is the most important part. And the proposed methods utilize the mutual information 
constraints to help select knowledge, which is more effective than other methods like the sparsity-based method.

5. Discussions

5.1. Ablation study

In this section, we discuss the impact of the two important components in IBKS: the text constraint and the designed prior 
distribution. To illustrate their impacts, we remove the text constraint and design a new prior distribution. And we conduct the 
ablation experiments on RGCN and QA-GNN.

Impact of the Text Constraint. In Formula (1), we generate the binary embedding with the extra text constraint. Without this 
text constraint, it could be seen as GIB (Fig. 3(b)). We show the corresponding performance in Table 9. The text constraint leads 
11

to a 0.34% accuracy drop on RGCN. However, there is only a 0.04% performance drop on QA-GNN. This is because QA-GNN has 
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Fig. 6. The reasoning chain from the question node to the candidate answer node of QA-GNN on CommonsenseQA. Q refers to the question node and the blue nodes 
are entity nodes in the question. The red node refers to the golden answer and the green node refers to the original prediction answer. And the thicker edges indicate 
higher relevance between these two nodes, which could be seen as a reasoning process. After plugging IBKS into QA-GNN, the edge (guitar, band) and (band,

stage) are seen as useless knowledge and filtered. As a result, the model would change the prediction from rock band to music room.

introduced a text node to the knowledge subgraph, which is equal to introducing the text constraint. Therefore, the text constraint 
only introduces performance drops on RGCN.

Impact of Different Prior Distribution. In the formula (6), we utilize the prior distribution 𝑟(𝐺𝑆 |𝑥) to estimate the inestimable 
distribution 𝑝(𝐺𝑆 |𝑥). We design other prior distribution which is associated with distance. The edge is sampled from Bern(𝑝) and 𝑝
is bigger when the edge is closer to the question node and answer node. We present the performance with this prior distribution in 
Table 9. This new prior distribution brings 0.45% and 0.47% drops in performance for QA-GNN and RGCN.

5.2. Example analysis

To further clearly demonstrate how IBKS improves the model, we analyze a specific example.

We take the SOTA method QA-GNN with Roberta-large as an example, which could provide a reasoning chain like Fig. 6. The 
thicker edges refer to higher relevance between the nodes. Therefore, according to the left figure, the reasoning path could be seen 
as Q → guitar → band → rock band. As a result, the original model predicts rock band as the answer, which is wrong.

After adding IBKS, the edge (guitar, band) and (band, stage) are dropped as useless knowledge and the new knowledge 
subgraph would be fed into QA-GNN. Correspondingly, as shown in the right figure, the model would generate a new reasoning 
chain without these two edges. i.e., Q → guitar → instrument → playing instrument → music room. Therefore, the model 
predicts music room as the answer, which is consistent with the golden answer.

In summary, we think the performance improvement of IBKS comes from the filtration of useless knowledge, including irrelevant 
knowledge and the knowledge associated with the wrong options. Dropping irrelevant knowledge would reduce the scale of the 
subgraph. Filtering the knowledge associated with the wrong options would reduce interference information. Therefore, the new 
knowledge subgraph could provide more useful knowledge which is relevant to the ground truth answers.

5.3. Efficiency analysis

Considering our proposed method requires the training of the original KG-augmented models, thus we perform efficiency analysis 
in this part.

Firstly, we discuss the extra parameter costs of our proposed method. Considering IBKS is a plug-in module, the extra costs 
are only located on the knowledge selector in § 3.2. In our designed knowledge selector, the parameter costs are only the MLP in 
Formula (1), which transform the 100-dimension representations into 2-dimension representations in our experiments. As for the 
Gumbel-Softmax sampling, this sampling strategy is efficiently implemented in PyTorch and does not require extra parameter costs.

Then we analyze the training time costs of IBKS. Considering the extra knowledge selector module and the end-to-end training 
frame, IBKS is bound to incur additional training time consumption. We conduct experiments on all three KG-augmented models 
across the three text encoders. Then we compare the training time with and without IBKS and Fig. 7 presents the corresponding 
results of the training time. On average, IBKS increases about 50% extra training time for the three KG-augmented models across the 
three text encoders. Compared to the negligible extra parameter costs of the added knowledge selector module, the additional time 
costs are indeed not small. However, compared to designing and training a new method in recent studies [43], we think these costs 
are still acceptable. Besides, IBKS could plug into any KG-augmented models and bring enough performance improvements, which 
12

is more attractive than designing a new model.
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Fig. 7. Training time comparison of whether to add IBKS. We present the training time of the three KG-augmented models across the three text encoders on 
CommensenseQA.

Table 10

Test accuracy on MedQA-USMLE.

Methods Test-Acc(.%)

BERT-base [4] 34.3

BioBERT-base [13] 34.1

BERT-large [4] 35.0

BioBERT-large [13] 36.7

SapBERT [17] 37.2

SapBERT+QA-GNN [40] 38.0

SapBERT+GREASELM [43] 38.5

SapBERT+QA-GNN+IBKS 38.7

SapBERT+GREASELM+IBKS 39.1

5.4. Effectiveness on domain-oriented task

In previous parts, we demonstrate the effectiveness of IBKS in the general commonsense reasoning domain. To further show the 
domain generality, we explore whether IBKS could boost KG-augmented models on other domains. In specific, following previous 
studies [40,43], we test on MedQA-USMLE dataset [11], which is a 4-way multiple choice QA task that requires biomedical and 
clinical knowledge.

Following [40,43], we also utilize SpaBERT [17] as the text encoder. As shown in Table 10, IBKS brings 0.7% and 0.6% im-

provements for QA-GNN and GREASELM, respectively. According to these results, we can find that IBKS could also boost existing 
KG-augmented models in domain-oriented tasks.

6. Conclusion and future work

In this paper, we first illustrate the importance of knowledge selection for existing KG-augmented models. To select useful 
knowledge, we extend existing IB methods and propose IBKS, which is model-agnostic and could be plugged into any existing 
KG-augmented model. Extensive experimental results show the effectiveness of our method. IBKS has high applicability due to its 
model-agnostic nature, which can be used to enhance the performance of existing KG-augmented models. In addition, the selected 
knowledge can assist us in better understanding the reasoning process of the model, thereby providing guidance for model design.

There are some interesting future research directions to extend our work. First, although the proposed IBKS is mode-agnostic, 
these models are essentially still discriminative models. The recent study [18] applies the generative method to solve this task. It is 
desirable to further design knowledge selection methods in the generative setting. Secondly, IBKS is designed for knowledge selection 
in KG, which is graph structure. Therefore, IBKS could only work for KG-augmented models, which is only one of the mainstream 
QA methods. Expanding our approach to other types of question-answering methods is worth researching. Finally, large language 
models (LLMs) attract much attention currently. These LLMs contain numerous knowledge and it would be interesting to perform 
knowledge selection in LLMs for the downstream tasks.
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