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Knowledge distillation is widely used in pre-trained language model compression, which can transfer knowl-

edge from a cumbersome model to a lightweight one. Though knowledge distillation based model compres-

sion has achieved promising performance, we observe that explanations between the teacher model and the

studentmodel are not consistent.We argue that the studentmodel should study not only the predictions of the

teacher model but also the internal reasoning process. To this end, we propose Explanation Guided Knowl-

edge Distillation (EGKD) in this article, which utilizes explanations to represent the thinking process and

improve knowledge distillation. To obtain explanations in our distillation framework, we select three typical

explanation methods rooted in different mechanisms, namely gradient-based, perturbation-based, and feature

selection methods. Then, to improve computational efficiency, we propose different optimization strategies

to utilize the explanations obtained by these three different explanation methods, which could provide the

student model with better learning guidance. Experimental results on GLUE demonstrate that leveraging ex-

planations can improve the performance of the student model. Moreover, our EGKD could also be applied to

model compression with different architectures.
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1 INTRODUCTION

Large pre-trained languagemodels, like BERT [9] and GPT [24], have achieved cutting-edge results
on various NLP tasks [6]. However, these models often involve billions or even trillions of param-
eters and thus have high latency, prohibitive memory footprint, and massive power consumption
in application [13]. Therefore, lots of studies have explored compressing an original cumbersome
model into a lightweight model without performance compromising [27, 33, 45].

One of the typical compression methods is knowledge distillation [14], which trains a light-
weight model (Student) to emulate a cumbersome one (Teacher) by matching their predictions.
However, solely matching the teacher’s predictions cannot ensure the student model learns
well from the teacher model [33]. To augment the vanilla knowledge distillation, recent studies
[1, 16, 33] align not only the predictions in the output layer but also the internal representations.

Human teachers facilitate the development of the reasoning ability of students by requiring stu-
dents to explain and show their thinking process [3, 40]. Inspired by this, we expect the lightweight
student model in knowledge distillation should exhibit the same internal logic as the cumbersome
teacher model. In this article, we leverage explanations1 to reveal the internal logic of the model.
Naturally, we need to investigate whether the current student models have a similar internal logic
to the teacher model. Thus, we conduct experiments to analyze these student models. As shown
in Figure 1, when we apply the widely used gradient explanation method [29] on both models in
a sentiment analysis task, we could obtain explanation ET and ES of the teacher model and the
student model, respectively. In specific, from ET we could observe that the teacher model predicts
this sentence as positive because of the presence of exists and fine. However, the student model
relies on and, its, and fine, which is different from the teacher model. This difference suggests
that the models may follow different reasoning processes. Furthermore, we perform a quantitative
analysis with the same explanation method to obtain the explanations on the sentiment classifica-
tion task (SST-2). From the results in Table 1, we observe that though knowledge distillation could
improve performance, the explanations are quite different between the teacher model and the stu-
dent model. Even armed with internal representations [33], their explanations still remain incon-
sistent. These results indicate that current compression methods can not exploit the full potential
of knowledge distillation, and the knowledge maintained in the teacher model is not completely
transferred into the student model. As a result, the student model could not perform well on both
in-distribution and out-of-distribution tests.
To fully exploit the potential of knowledge distillation, we propose Explanation Guided

Knowledge Distillation (EGKD), which constrains the explanations of the student model to
be consistent with the teacher model. Specifically, we utilize three kinds of well-explored explana-
tion methods to obtain explanations, namely gradient-based, perturbation-based, and feature selec-

tion explanation methods. According to the different characteristics of these explanation methods,
we design different ways to integrate them into a unified knowledge distillation framework, with
the goal of effectively transferring the knowledge from the teacher model to the student model.
Besides, compared with the gradient-based explanation methods, perturbation-based and feature

1In this article, explanations refer to attribution scores contributing to the prediction for tokens in the input.
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Fig. 1. The teacher and the student model predict the same because knowledge distillation constrains similar

logits. However, when we use the gradient explanation method [29] to explore the attribution of each token

contributes to the prediction, we can find that the obtained explanations ET ,ES are obviously different.

Table 1. BERT6-FT, BERT6-KD Refer to the Naive Fine-tuning and

the Vanilla Knowledge Distillation of 6-layer BERT, Respectively

Model Spear↑ Jac@50%↑ Accuracy

BERT-base (Teacher) 1.00 1.00 93.8
BERT6-FT 0.17 0.19 91.8
BERT6-KD [14] 0.22 0.21 92.9
BERT6-PKD [33] 0.22 0.22 93.1

BERT6-PKD aligned hidden states as a more strict constraint. Accuracy

refers to their performance on the test dataset. The other two metrics both

evaluate the similarity of explanations between the teacher model and the

student model. Spear shows the Spearman Correlation between the full

attribution scores. Jac50% shows the Jaccard similarity of tokens that have

top 50% attributions.

selection explanationmethods both have high computation complexity andmake knowledge trans-
fer very time-consuming [30]. In specific, perturbation-based explanation methods need to sample
many perturbed examples from the original input [19, 26], and feature selection methods require
reparameterization and extra training [4, 15]. To accelerate the knowledge transfer process, we
further introduce our novel optimization strategy for different explanation methods (Section 3) to
improve efficiency. Experimental results conducted on GLUE [37] indicate that EGKD can achieve
better performance and our efficiency optimization is effective.
Beyond obtaining good results on GLUE, we also claim that EGKD provides a more general

approach to knowledge transfer than previous studies, which are featured by utilizing internal
representations [16, 33]. These studies are all limited by the homogeneous assumption that the
student model shares the same architecture as the teacher model. However, EGKD can fully relax
this assumption since the explanation is independent of the model architecture and is only related
to the input. Therefore, EGKD can be applied to heterogeneous model compression, like distilling a
Transformer-based model into a BiLSTMmodel, which is easier deployed on resource-constrained
mobile devices [10, 13].
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The contributions can be summarized as follows:

— This article proposes explanation guided knowledge distillation (EGKD), which is the first
work to introduce the explanation constraints into knowledge distillation based model com-
pression.

— To improve knowledge transfer efficiency, this article proposes different optimization strate-
gies to utilize explanations according to the different mechanisms of typical explanation
methods.

— Various experimental results show EGKD performs well in both in-distribution and out-of-
distribution conditions. Furthermore, EGKD is decoupled from the model architecture and
can be applied to heterogeneous model compression.

The remainder of this article is structured as follows: Section 2 briefly reviews knowledge dis-
tillation and its recent application in model compression formally. Section 3 presents the details
of EGKD. Section 4 describes the experimental settings and corresponding results. Additionally,
we provide more detailed discussions of the proposed methods in Section 5 and present relevant
background information in Section 6. Finally, Section 7 concludes the article.

2 BACKGROUND

In this section, we introduce the basic information of knowledge distillation in Section 2.1 and
recent studies that utilize internal representations to augment knowledge distillation in Section 2.2.

2.1 Vanilla Knowledge Distillation

Knowledge distillation [14] is widely used in model compression, which encourages the student
model fS to mimic the teacher model fT via matching their logits. Formally, for a K-classes classi-
fication task and the input xi , the loss of matching their logits can be computed as:

Lloдit =
∑
i

∑
k ∈K

[softmax(fT (xi )/T ) · log(softmax(fS (xi )/T ))] (1)

where softmax refers to the softmax operation, T is the temperature of knowledge distillation,
which adjusts the scale of the logit. And the common cross entropy loss can be computed as:

LCE =
∑
i

∑
k ∈K

[I[yi = k] · log P(yi = k |xi )] (2)

where I is an indicator function and yi is the label of xi . Besides,P(y |x) is the equivalent form of f .
In summary, for vanilla knowledge distillation, the corresponding total loss function is:

LKD = αLCE + (1 − α)Lloдit (3)

where α ∈ [0, 1] is the loss weight.

2.2 Knowledge Distillation with Internal Representations

We simply introduce recent studies [33] utilize the internal representations of the teacher model to
enhance knowledge distillation. Suppose that the teacher and studentmodels are both Transformer
[36] with M,N (M > N ) layers, respectively. N − 1 layers should be selected from the teacher to
match the first N − 1 layer of the student. The loss of matching hidden states is defined as:

Lhidden =
N−1∑
m=1

MSE
(
hSm ,h

T
Iselect (m)

)
(4)

where hSm is the hidden state of them-th layer of the student model, and hT
Iselect (m)

is the hidden

state of the layer in the teachermodel thatmatches them-th layer of the studentmodel. Specifically,
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Fig. 2. Explanations which are obtained by different explanationmethods for a sentence in the SST-2 dataset.

the hidden state is the representation of the [CLS]. If we only match hidden states [1, 33], the total
loss function is:

LKD = αLCE + (1 − α)Lloдit + βLhidden (5)

where α , β is the loss weight.
Similarly, the loss of attention matrices is:

Latt =
N−1∑
m=1

1

d

∑
n

MSE
(
AS
m,n ,A

T
Iselect (m),n

)
(6)

where d is the number of attention heads; and AS
m,n ,A

T
m,n refer to the attention matrix of the n-

th head of them-th layer of the student model and the teacher model, respectively. If we further
match hidden states and attention matrices [16, 18] at the same time, the corresponding total loss
function is defined as:

LKD = αLCE + (1 − α)Lloдit + β(Lhidden + Latt ) (7)

where α , β is the loss weight.

3 EXPLANATION GUIDED KNOWLEDGE DISTILLATION

3.1 Overall Description of EGKD

For a given model f and a given sentence xi = (xi,1,xi,2, . . . ,xi,n), we can obtain the attribution
value vector ai = (ai,1,ai,2, . . . ,ai,n) through an explanation method E. ai, j

2 is the attribution
value of token xi, j , and refers to the contribution of xi, j to the prediction. This process can be
denoted as:

ai = E(xi , f (xi ), f ) (8)

where f (xi ) denotes the prediction of xi .
According to different mechanisms, current explanation methods can be classified as gradient

based, perturbation based, and feature selectionmethods [15]. An example of explanations obtained
by different explanation methods for a sentence in SST-2 is shown in Figure 2.
Let denote the explanations of the teacher and the student model as aTi and aSi , respectively. In

the proposed EGKD, we require the student model to study not only the predictions of the teacher
model but also explanations. That constraint on explanations could be uniformly modeled as:

Lexp =
∑
i

MSE
(
aTi ,a

S
i

)
(9)

Following Equation (7), the corresponding total loss function is defined as:

Lexplanation = αLCE + (1 − α)Lloдit + βLexp (10)

where α , β is the loss weight.

2For gradient-based and perturbation-based methods, ai, j is continuous value. For feature selection methods, ai, j is 0 or 1.
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Fig. 3. Gradient-based explanation guided knowledge distillation. LT ,LS refers to the logits of the teacher

model and student model.

3.2 EGKD with Different Explanation Methods

However, different from the internal representations, it is time-consuming to obtain the explana-
tions by existing explanationmethods [30], especially for perturbation-based explanationmethods
and feature selection explanation methods. Therefore, if we generate explanations while training
the model, the training time of EGKD would be greatly increased. In the following subsections, we
will detail how to efficiently compute and incorporate the aforementioned explanation matching
loss for different explanation methods.

3.3 Gradient-based Explanation Guided Knowledge Distillation

Gradient-based explanation methods compute ai, j via the gradient of the model [29]:

ai, j =
∂L

∂x i, j
· x i, j (11)

where L is the loss of the model prediction. Some variations like Smooth Gradient [31] and Inte-
grated Gradient [34] also follow this formula.

As shown in Figure 3, when we want to match the gradient-based explanations between the
teacher and the student model, we can match the attribution scores in Equation (11). Both the

gradient value ∂L
∂x i

and the embedding x i are internal representations. Therefore, the loss func-

tion to match the gradient explanations between the teacher model and the student model can be
formulated as follows:

Lexp_дra =
∑
i

∑
j

MSE

(
∂LT

∂xTi, j
· xTi, j ,

∂LS

∂xSi, j
· xSi, j

)
(12)

where LT ,LS refers to the loss of the teacher model and the student model, respectively. And
xTi, j ,x

S
i, j stand for the textual representation of xi, j for teacher model and student model,

respectively.

3.4 Perturbation-based Explanation Guided Knowledge Distillation

Perturbation-based explanationmethods first sample a binarymask vector zi = (zi,1, zi,2, . . . , zi,n),
where zi, j indicates whether xi, j is present (zi, j = 1) or absent (zi, j = 0). And Mx (z) can map the
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Fig. 4. Optimization of perturbation-based explanation guided knowledge distillation. On the left, aTi, j ,a
S
i, j

stands for the explanation of the teacher model and the student model, respectively. On the right, LTi ,L
S
i

refers to the logits of the teacher model and student model for sentence xi . Originally, we should compute

losses with aTi, j and a
S
i, j , to improve efficiency, we turn to utilize Equation (14).

mask z to the perturbed input x ′. In summary, these methods seek to learn a local linear classifier
д on z to align the prediction of model f [44]:

д(z) = c +
n∑
j=1

ai, jzi, j

ai, j = arдmin
д

∑
z∈Z

πx (z)[f (Mx (z)) − д(z)]2
(13)

where πx (z) is a local kernel to assign weight to each perturbation z and Z is the set of pertur-
bations. Specifically, LIME [26] sets πx (z) as an exponential kernel and Leave-One-Out [19] is a
special case of LIME. SHAP [20] designs πx (z) so that the attribution can be seen as Shapley Values.
As shown in Figure 4, when we want to match the perturbation-based explanations between

the teacher and the student model, we do not have to compute the attribution via Equation (13).
The only difference between the teacher model and the student model is the f in Equation (13).
Therefore, we can simplify the loss function as follows:

Lexp_per t =
∑
i

∑
z∈Z

MSE(fT (Mx (z), fS (Mx (z)) (14)

3.5 Feature Selection Explanation Guided Knowledge Distillation

Feature selection explanationmethods aim to find aminimal sufficient subset of the original inputs,
which ensures these features alone suffice for the same prediction as the originals. To find a subset
for xi = (xi,1,xi,2, . . . ,xi,n), we always train a binary mask vector zi = (zi,1, zi,2, . . . , zi, j ), where
zi, j refers to whether xi, j should be reserved. And we also define Mx (zi ) to map zi to the masked

input x
′

i . To satisfy sufficiency, we should ensure the prediction difference is small enough. To
satisfy minimal, we should try to make the size of the subset small enough. Therefore, we can get
the explanation ei for xi as follows [4, 15, 17]:

ei = arд min
z i ∈Z

λ1L(f (xi ), f (Mx (zi )) + λ2

n∑
j=1

zi, j (15)
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Fig. 5. Optimization of feature selection explanation guided knowledge distillation. On the left, eTi , e
S
i stands

for the explanation of the teacher model and the student model, respectively. On the right, Ls ,Lr means

the logits of the student model when feeding the original sentence and the rationale of the teacher model,

respectively. Originally, we should compute losses with eTi and eSi . To improve efficiency, we approximate

the original loss function as Equation (18).

where Z denotes the set for all of possible binary mask vector zi , and λ1, λ2 are the hyper-
parameters for loss weights. The first term ensures sufficiency, and the second term computes
the number of 1 in zi , which can guarantee the size of the subset is small enough.
If wewant to align the feature selection explanations between the teacher model and the student

model, we just need to compute the following loss:

Lxi = Loss
(
eTi ,e

S
i

)
(16)

Since eTi is fixed for a trained teacher model, if we want the student model to imitate the expla-

nation of the teacher model, that means that we need to force eSi = eTi . Then we consider how we

can make the explanation of the student model eSi approach eTi . Therefore, we approximate the
above problem as follows:

Lxi = MSE
(
fS

(
Mx

(
eTi

))
, fS (xi ))

)
(17)

Optimizing Equation (17) is actually optimizing the first term in Equation (15). Now eTi satisfy
sufficiency for the student model fS . Therefore, we believe Equation (17) is an approximation of
Equation (16). And we utilize this approximation in the following experiment. In summary, as
shown in Figure 5, we can formulate the loss function to match the feature selection explanations
between the teacher model and the student model as follows:

Lexp_f s =
∑
i

MSE
(
fS

(
Mx

(
eTi

))
, fS (xi )

)
(18)

In summary, for the three typical explanation methods, we show the detail of how to compute
the explanation matching loss in Equation (9). In our following experiments, we could replace Lexp
with the specific explanation matching loss in Equation (10) to construct the whole loss function
for these different variants of EGKD.

4 EXPERIMENTS

4.1 Experimental Data and Evaluation Metrics

We evaluate all of the models on the classification3 tasks of General Language Understanding
Evaluation (GLUE) [37]. We select one text classification task: SST-2 [32], two sentence similarity

3We do not select the regression task STS-B because current explanation methods focus on the classification task.
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Table 2. Statistics of the Datasets in GLUE

Dataset Task Type Train / Valid / Test Metric

MNLI-m Natural Language Inference 393k / 9.8k / 20k Acc
MNLI-mm Natural Language Inference 393k / 9.8k / 20k Acc
MRPC Sentence Similarity 3.7k / 0.4k / 1.7k F1
QNLI Natural Language Inference 105k / 5.4k / 5.4k Acc
QQP Sentence Similarity 364k / 40k / 391k F1
SST-2 Single-sentence Classification 67k / 0.8k / 1.8k Acc
RTE Natural Language Inference 2.5k / 0.2k / 3k Acc

tasks: MRPC [11], QQP [8], and three natural language inference tasks: MNLI [41], QNLI [25],
RTE [5].4

Following previous works [16, 18], we use classification accuracy as the evaluation metric for
MNLI-m, MNLI-mm, QNLI, RTE, and SST-2. And we use F1 metric for MRPC and QQP for fair
comparisons. All of the results are reported on the test set of the GLUE. Table 2 shows the details
of the evaluation datasets.

4.2 Implementation Details

Following the previous work [16], we use BERT-BASE [9] as the teacher model and select 6-layer
and 4-layer BERT as the student models. The batch size is set to 16, the learning rate is set to
1e-5 and the number of training epochs is set to 10. To determine the other hyperparameters, we
employ a grid search algorithm on the validation set. In detail, we first tune the loss function
weight α in {0.2, 0.5, 0.7} and the temperatureT in {1, 5, 10}, and we fix α andT to the values with
best performance from vanilla KD experiments. Then we only search the loss function weight β
in {0.01, 0.005, 0.001}. All experiments are conducted with an NVIDIA GeForce RTX 3090 Ti.

4.3 Baselines

We compare the following state-of-the-art (SoTA) methods in the following experiments: (1)
naive fine-tune, which refers to only fine-tuning the student model on the dataset, namely
BERT6/BERT4-FT. (2) vanilla knowledge distillation, which is called BERT6/BERT4-KD (3) PKD
[33] and the concurrent work [1] further leverage the internal representation matching based on
the vanilla knowledge distillation. These baselines are called BERT6/BERT4-PKD. (4) TinyBERT
[16] and BERT-EMD [18] introduce the hidden states matching and attention matrix matching in
knowledge distillation.5 We name these baselines as BERT6/BERT4-PKD + attention.

4.4 Experimetal Results on GLUE

We submitted the model predictions to the official GLUE evaluation server to obtain the results on
the test set and Table 3 shows the detailed results. Overall, the experiment results from the 4-layer
or the 6-layer student models consistently demonstrate that EGKD can achieve better performance
than the baseline methods.
In detail, we find that: (1) For the 6-layer student model, compared to the best baseline, the

best variant of EGKD improves 0.29% average scores on GLUE. Especially on the RTE dataset,
our proposed method obtains a 1.3% improvement over the best baseline. For the 4-layer student

4We do not select CoLA which tests whether a sentence is grammatical. Many errors are due to the lack of components

and explanation methods explore what parts of the input lead to the prediction, therefore they are not suitable for CoLA.
5To conduct a fair comparison, we just utilize the task distillation in TinyBERT and do not apply the general distillation.
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Table 3. Results on GLUE

Model
Params

Num
MNLI-m MNLI-mm MRPC QNLI QQP SST-2 RTE AVG

BERT-BASE(Teacher) 110M 84.6 83.5 86.4 90.6 71.0 93.8 67.4 82.47

BERT-BASE(Teacher)* 110M 83.9 83.4 87.5 90.9 71.1 93.4 67.0 82.46

BERT6-FT 66M 82.2 81.1 82.8 89.0 70.0 92.6 59.1 79.54
BERT6-KD

∗ 66M 80.2 79.8 86.2 88.3 70.1 91.5 64.7 80.11
BERT6-KD 66M 82.7 81.7 85.7 89.2 70.3 92.9 62.8 80.76

Internal Representation

BERT6-PKD
∗ 66M 81.5 81.0 85.0 89.0 70.7 92.0 65.5 80.67

BERT6-PKD 66M 83.0 81.8 86.0 89.0 70.4 93.1 63.0 80.90
BERT6-PKD + attention 66M 83.0 82.3 86.1 89.5 70.4 93.1 63.1 81.07

Explanation

BERT6-EGKDgra(ours) 66M 83.1 82.0 86.1 89.5 71.0 93.1 63.1 81.13
BERT6-EGKDpert(ours) 66M 83.5 82.3 86.3 89.7 70.3 93.1 64.3 81.36

BERT6-EGKDfs(ours) 66M 83.2 82.1 86.0 89.5 70.3 93.1 63.8 81.14

BERT4-FT 52.2M 79.8 79.5 83.5 86.9 69.4 90.6 62.8 78.93
BERT4-KD 52.2M 81.5 79.6 85.2 87.8 69.8 91.4 62.3 79.66

Internal Representation

BERT4-PKD
∗ 52.2M 79.9 79.3 82.6 85.1 70.2 89.4 62.3 78.40

BERT4-PKD 52.2M 81.3 80.0 84.3 87.8 69.7 90.8 64.4 79.75
BERT4-PKD + attention 52.2M 81.3 80.0 84.2 87.8 69.9 91.0 64.4 79.80

Explanation

BERT4-EGKDgra(ours) 52.2M 81.5 80.1 85.5 88.2 69.2 91.0 63.8 79.90
BERT4-EGKDpert(ours) 52.2M 81.6 80.1 85.8 88.0 70.0 91.5 63.8 80.11

BERT4-EGKDfs(ours) 52.2M 81.3 80.1 85.4 87.9 69.7 91.3 63.8 79.93

All results are reported from the test set of GLUE benchmark. We split the results for 6-layer BERT and 4-layer BERT

in the table. Results with ∗ refer to the results in the original article. For fair comparisons, we reproduce all of the

baselines and show the results in the table. Actually, compared to the original article, all of our reproduced baselines

get better performance on GLUE.

model, the best variant of EGKD gets 0.31 improvement on average scores of GLUE. On MRPC,
it increases 1.5% in F1 scores. (2) Among the three variants, EGKDpert gets the best performance.
This variant outperforms the other variants 0.22% and 0.18% average scores on GLUE for 6-layer
and 4-layer students, respectively.
Besides achieving the best performance on GLUE, EGKDpert could could also be applied in more

scenarios. In detail, in the black-box scenarios, EGKDgra is not applicable because we cannot com-
pute the gradient. If we cannot compute explanations in advance, EGKDfs also does not work.
Therefore, among the proposed variants, EGKDpert is the better choice in practice.

4.5 Beyond Preserve Accuracy—- OOD Test and Loyalty Test

Current evaluation for model compression always tests the compressed model on the same test
dataset. Actually, the ultimate goal of model compression is not just to performwell under the same
test set [43]. Inspired by [43], we further performOOD (out-of-distribution) test and loyalty test.
OOD test could check the generalization of the model, and loyalty test could check the similarity
of the outputs between the teacher model and the student model.
We select the 6-layer BERT model as the student model and utilize the well-trained model to

perform these two tests. Specifically, we conduct experiments on MNLI and we choose the test
dataset of HANS as the corresponding OOD test dataset. For the loyalty test, we measure the
similarity of the output labels and the output probabilities.
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Table 4. Results of OOD Test and Loyalty Test

Model
OOD Test Loyalty Test

Ori OOD Label Probability

BERT-BASE 84.5 59.8 100.0 100.0

BERT6-KD 82.7 58.3 88.2 93.2
BERT6-PKD 83.0 54.6 88.2 93.3
BERT6-PKD + attention 83.0 47.7 88.9 93.5

BERT6-EGKDgra 83.1 52.3 89.4 93.8
BERT6-EGKDpert 83.5 58.7 89.6 94.0

BERT6-EGKDfs 83.2 55.4 89.4 93.8

We select 6-layer BERT model as the student model. And we just utilize the

well-trained model on MNLI-m to perform these two tests.

Table 4 presents the corresponding results. In the OOD test, we find existing methods which uti-
lize internal representations even perform worse on the OOD dataset while getting better perfor-
mance on the in-distribution dataset. We conjecture the reason behind that is the more constraints
may lead to the student model overfit the original datasets, thus make these student model perform
not well on the OODdataset. In contrast, all EGKD variants get better performance onOODdataset
than existing methods. In the loyalty test, we find the similarity increases with more constraints
in existing methods. And EGKD also gets better output similarity compared to existing methods.
Besides, in both tests, EGKDpert gets the best performance among the three EGKD variants.

In summary, under more evaluation criteria [43] for model compression, our proposed EGKD
also gets better performance compared to existing methods. And EGKDpert also achieves the best
performance in these evaluations.

4.6 Verification of Efficiency Optimization

To illustrate our optimization in the Section 3 could save time, we take Equation (9) as the baselines,
which generates explanations for the student model when training. Figure 6 shows the correspond-
ing cost time for these three variants, in which we show the training time of each epoch and the
time of generating explanations for the teacher model. According to the figure, we can observe
that our optimization could save much time, which verifies our optimization is useful.
In specific, for EGKDgra, since the step of computing gradient is hard to save time, we do not

make extra optimization. Thus, the training time of our method is almost equal to the training time
before optimization. However, the time of generating explanations could be saved. For EGKDpert,
the training time is limited by the GPU memory size. We show the training time when setting
the batch size 1 and 2. The training time would be further decreased with a bigger GPU memory
size. For EGKDgra and EGKDpert, we also do not need extra time to generate explanations for the
teacher in advance, which makes these two variants could be applied to more scenarios compared
to no optimization version. As for EGKDfs, the time of generating explanations could not be saved.
However, the training time is reduced 1,000 times compared to its no-optimization version.
To illustrate the effectiveness of our optimization, we also test the performance before and after

optimization and Table 5 presents the results. For EGKDgra and EGKDpert, the optimization does not
sacrifice performance. For EGKDfs, because of the approximation in Equation (17), the performance
decreases only 0.2%. We consider this small performance sacrifice to be acceptable compared to
the more than 1,000-times efficiency gain.
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Fig. 6. Time analysis of the three variants on SST-2 when distilling into 4-layer BERT. After our optimization,

the training time has decreased, especially on perturbation-based explanation methods and feature selection

explanation methods.

Table 5. Performance Comparisons on SST-2 before and after Efficiency Optimization when Distilling

into 4-layer BERT

EGKDgra EGKDgra EGKDpert EGKDpert EGKDpert EGKDfs EGKDpert

(w/o optimization) (w/o optimization) (batch size = 1) (batch size = 2) (w/o optimization)

91.0 91.0 91.5 91.5 91.5 91.3 91.1

4.7 Knowledge Distillation for Different Model Architectures

Existing methods mainly utilize the internal representation of the teacher model, which requires
the student model shares a similar architecture with the teacher model. EGKD just utilizes the ex-
planations, which are only related to the input. Therefore, different from the mainstream methods,
EGKD can also be applied to knowledge distillation with different model architectures.
Following previous work [35], we select BiLSTM as the student model and BERT-base as the

teacher model. We choose the same settings of BiLSTM with [35] and use 300-dimensional pre-
trained GloVe word embeddings [22]. We conduct experiments on SST-2, QQP, and MNLI.
Table 6 presents the corresponding results. When compressing BERT-base into BiLSTM,

the model size could reduce nearly 20 times. Besides, the inference time also decreases a lot.
Specifically, compared to compressing BERT into a 6-layer or 4-layer, which only reduces the
inference time 2× and 3×, compressing it into BiLSTM could reduce the inference time nearly
20×. Compared to vanilla knowledge distillation, the three variants of EGKD can further improve
the performance on the whole datasets. Especially for EGKDpert, this variant gets the best perfor-
mance, which achieves improvements from 0.6% to 1.0% among these four datasets compared to
the vanilla knowledge distillation.

5 DISCUSSION

5.1 Relation between Internal Representations and Explanations

In previous experiments, the internal representations and explanations are used in knowledge dis-
tillation alone. Thus, we naturally want to know whether the internal representations could work
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Table 6. Results of Compressing BERT-base into Simple Neural Network BiLSTM

Model Params SST-2 QQP MNLI-m/mm

BERT-BASE 110M 93.8 71.0 84.6/83.5

BiLSTM 5.3M 86.0 62.3 67.9/67.4
BiLSTM-KD 5.3M 87.1 63.6 69.4/68.3

BiLSTM-EGKDgra 5.3M 87.5 64.1 69.7/68.8
BiLSTM-EGKDpert 5.3M 87.8 64.2 70.1/69.3

BiLSTM-EGKDfs 5.3M 87.4 63.9 69.9/69.0

We test on SST-2, QQP, and MNLI and we show the results in this table.

Table 7. Results of GLUE for 6-layer BERT which Combining Explanations with Internal

Representations

Model MNLI-m/mm MRPC QNLI QQP SST-2 RTE AVG

EGKDpert 83.5/82.3 86.3 89.7 70.3 93.1 64.3 81.36

+hidden 83.6/82.3 86.5 89.7 70.7 93.1 64.5 81.48
+hidden+att 83.6/82.4 86.5 90.1 70.6 93.1 64.6 81.56

together with the explanations in knowledge distillation. Then we explore whether the perfor-
mance would be further improved when combining explanations with internal representations.
Specifically, we add the constraints of internal representations on EGKD.
Table 7 presents that the performances of EGKD can be further improved. From these results, we

could observe that EGKDpert, the variant which gets the best performance, can be improved when
aligning the extra hidden states. And the performance also gets further improved when adding
the additional constraint of aligning both hidden states and attention matrices. These results in-
dicate that matching explanations and internal representations could work together to improve
the student, which means that explanations and internal representations are complementary to
some extent. Therefore, when the student model has a similar architecture to the teacher model,
we can add the constraints of internal representations on EGKD, which can further improve the
performance of student model.

5.2 Exploration of Different Variants of EGKD

We propose three variants of EGKD in the previous sections and only list the performance of
each of the three. In this subsection, we further analyze the proposed three variants of EGKD.
Specifically, in our previous experiments, we leverage the formulated explanation matching losses
of the different explanation methods to replace Lexp in Equation (10). We naturally want to know
whether these different explanation matching losses can be combined and how the corresponding
performance would change. Thus, we combine these losses to replace Lexp in Equation (10) and
conduct experiments on GLUE for the 6-layer student model.
Figure 7 shows the average performance on GLUE for these different variants. We can find the

performancewould decreasewhenwe combine the loss of the gradient-based and the perturbation-
based methods. The performance would be further improved when combining the loss of the
feature selection methods with the loss of the gradient-based or the perturbation-based meth-
ods. Thus, when we combine the loss of the perturbation-based method and the feature selection
method, the corresponding result gets the best performance but the performance would dropwhen
combining the whole three losses. To illustrate these results, we go back to the characteristics of
these three explanation methods. Gradient-based and perturbation-based methods both show the
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Fig. 7. Results of average performance on GLUE. We combine different losses of the three variants as the

regularization term and show the corresponding results.

attribution scores for each token, and these methods have shown that they would give different
scores for the same instance [2]. Therefore, when we combine these two losses, the student model
would be confused to get close to which score. However, feature selection methods do not care
about the specific score and only focus on the important tokens. Therefore, when we combine
it with the loss of gradient-based or perturbation-based method, the student model can not only
know what the important part is but also learn the specific attribution score for each token, which
is consistent with [7]. Besides, perturbation-based methods have been shown that could get more
faithful explanations compared to gradient-based methods. Thus, combining the loss of feature
selection method with the loss of perturbation-based method could get better performance.

5.3 Effect of Sample Size for EGKDpert

Among the proposed three variants, EGKDpert gets the best performance. In this variant, the sample
size, which refers to |Z | in Equation (14), is the most important parameter. Thus, we explore the
effect of the sample size for EGKDpert.

Specifically, we select 6-layer BERT as the student model and choose SST-2 as the target dataset.
We show the performance of the valid dataset and the explanation similarity. And we also test
the model performance on the test dataset of IMDB to explore the generalization. Figure 8 shows
the corresponding results. We can observe that both the in-distribution and out-of-distribution
performance are correlated with explanation similarity because of their same change trend. These
results reveal the close relationship between the explanation similarity and the performance of the
student model. Besides, we guess the best sample size differs among different datasets, which leads
to different change trends. Too big sample size usually could not achieve the best performance be-
cause of too much noise. And if the sample size is small, the contribution of the perturbation-based
methods would not be computed accurately, which could not obtain the best performance, either.
Furthermore, Equation (14), the final form of EGKDpert, is similar with data augmentation, espe-

cially for the word-deletion based data augmentation methods [39]. However, the main motivation
of EGKDpert is not to leverage more augmented data to help knowledge distillation. Our method
EGKD aims to better transfer the knowledge from the teacher model to the student model by
matching the explanations between the teacher model and the student model. In specific, we hope
the student model could learn the better attention to each token, which is generated by the teacher
model. Especially for EGKDpert, the explanations are generated by sampling many after-deletion
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Fig. 8. Effect of sample size for BERT6-EGKDpert on SST-2 and MNLI. We show the performance on the

dev set of the original dataset and the performance of corresponding OOD dataset. Besides, we also utilize

Spearman Correlation Coefficient to evaluate the explanations similarity and list the similarity results.

sentences. Therefore, we think EGKDpert can be seen as the theoretical support for the performance
gain of word-deletion based data augmentation methods [39].
Moreover, we also do not think that the performance gain of EGKDpert is totally from data

augmentation. As most data augmentation methods show [12], the performance would improve
with bigger augmented data size. However, as shown in Figure 8, the performance of EGKDpert does
not increase with bigger sample size. In our view, the explanation similarity is the more important
reason for the performance of EGKDpert.

5.4 Error Analysis

The teacher model usually could not get 100% accuracy among the test datasets. Therefore, its
reasoning ways (explanation) would also lead to wrong answers. However, our explanation loss
function encourages the student model to imitate the reasoning ways of the teacher model in these
instances which the teacher model could not solve correctly. At the same time, the loss of ground
truth encourages the model to predict the correct label in these instances, which is a contradiction.
Therefore, the student model could not imitate all the reasoning ways of the teacher model, which
leads to the gap between the teacher model and the student model. And we leave this problem as
our future work to solve.

6 RELATEDWORK

6.1 Pre-trained Language Model Compression

Pretrained language models have achieved promising performance on various NLP tasks, but they
are trapped in application due to their high storage costs andmassive power consumption. Current
mainstreammodel compression techniques includeweight quantization [28, 45], structure pruning
[21, 38] and knowledge distillation [1, 16, 18, 33].

The weight quantization technique aims to reduce the number of bits needed to store weights.
Most computer architectures use 32 bits to represent weights and existing quantization methods
try to leverage fewer bits to store weights with less precision loss and performance sacrifice. Struc-
ture pruning based model compression technique aims to prune away structures like neurons,
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attention heads, or layers. Existing methods try to find the most useless structures in the model
and then prune them to reduce the model size. In this article, we just list these two mainstream
techniques and only focus on knowledge distillation based model compression.
Knowledge distillation [14] is proposed to transfer the knowledge of a strong teacher model

into the weak student model, which naturally fit the goal of model compression. In recent years,
knowledge distillation based model compression methods focused on how to utilize the internal
representation of the teacher model to help the student model learn better. [33] first proposed
to utilize the hidden states ([CLS] representations) to help the student model learn more from
the teacher model. They mapped some layers of the teacher model into each layer of the student
model and the aligning the hidden states of these layers. The concurrent study [1] also proposed a
similar method which leverages hidden states to enhance knowledge distillation. TinyBERT [16]
performed both pre-training distillation and task distillation. In task distillation, they utilize both
the [CLS] representations and the attention matrices. BERT-EMD [18] follow the fine-tuning dis-
tillation of TinyBERT, but they do not specify the correspondence between layers. They proposed
a many-to-many mapping mechanism to learn different knowledge among different layers.
Moreover, one of the main limitations of these methods is that the student model should share

a similar architecture with the teacher model. It is because these methods align the internal repre-
sentations between teacher and student models and can only be applied to compressing the layer
of Transformer. However, our proposed EGKD could perform heterogeneous model compression.

6.2 Explanation Methods

Current explanation methods aim to get the attribution of each token in the input to the model
prediction, which can be classified as three classes according to different mechanisms: Gradient-
based explanationmethods get the attribution scores by leveraging the gradient of themodel. They
compute the gradient of each token and obtain the attribution scores by multiplying the gradient
with the token embedding [29, 31, 34]. Perturbation-based explanation methods perturb the
original inputs by masking some tokens. They can get a series of masks and corresponding output
logits. The attribution scores can be computed according to a linear function [19, 26]. Feature
selection explanation methods aim to find a minimal sufficient subset of the original inputs to
ensure these features alone suffice for the same prediction to be reached by the model [4, 17].
Figure 2 also presents an example of the explanation results for these three explanationmethods. In
this article, we design different variants of EGKD according to these typical explanation methods.
Recent work [23] evaluated the explanation methods by utilizing the attribution scores of the

teacher model to guide the attention of the student model. And they find the attention method gets
the best performance. Actually, our baseline is stronger than this because matching the attention
matrix is a far more strict constraint.

7 CONCLUSION AND FUTURE DIRECTION

In this article, we propose EGKD, which can utilize the explanations of the teacher model to help
the student model learn better. Experimental results show EGKD could get promising performance
on both in-distribution and out-of-distribution tests. And we also verify the effectiveness of EGKD
on knowledge distillation with different model architectures, which sheds light on the universality
of EGKD.
Because of the universality of EGKD, we think EGKD could be applied to not only model com-

pression but also more fields where vanilla knowledge distillation is effective, such as incremental
learning [42]. And we believe that our proposed EGKD could further improve the performance of
vanilla knowledge distillation. The greatest limitation of EGKD is themuch training time compared
to the vanilla knowledge distillation. Efficiently generating explanations and further improving the
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efficiency of EGKD are worth exploring in the future, which could lead to the wider application
of EGKD. Moreover, further research is required to explore the integration of EGKD into large
language models.
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