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Abstract

The function of constructing the hierarchy of objects is
important to the visual process of the human brain. Previ-
ous studies have successfully adopted capsule networks to
decompose the digits and faces into parts in an unsuper-
vised manner to investigate the similar perception mecha-
nism of neural networks. However, their descriptions are
restricted to the 2D space, limiting their capacities to imi-
tate the intrinsic 3D perception ability of humans. In this
paper, we propose an Inverse Graphics Capsule Network
(IGC-Net) to learn the hierarchical 3D face representations
from large-scale unlabeled images. The core of IGC-Net is
a new type of capsule, named graphics capsule, which rep-
resents 3D primitives with interpretable parameters in com-
puter graphics (CG), including depth, albedo, and 3D pose.
Specifically, IGC-Net first decomposes the objects into a set
of semantic-consistent part-level descriptions and then as-
sembles them into object-level descriptions to build the hier-
archy. The learned graphics capsules reveal how the neural
networks, oriented at visual perception, understand faces as
a hierarchy of 3D models. Besides, the discovered parts can
be deployed to the unsupervised face segmentation task to
evaluate the semantic consistency of our method. Moreover,
the part-level descriptions with explicit physical meanings
provide insight into the face analysis that originally runs in
a black box, such as the importance of shape and texture
for face recognition. Experiments on CelebA, BP4D, and
Multi-PIE demonstrate the characteristics of our IGC-Net.

*Corresponding author.

1. Introduction

A path toward autonomous machine intelligence is to en-
able machines to have human-like perception and learning
abilities [19]. As humans, by only observing the objects,
we can easily decompose them into a set of part-level com-
ponents and construct their hierarchy even though we have
never seen these objects before. This phenomenon is sup-
ported by the psychological studies that the visual process
of the human brain is related to the construction of the hi-
erarchical structural descriptions [11,22,23,29]. To investi-
gate the similar perception mechanism of neural networks,
previous studies [18, 35] incorporate the capsule networks,
which are designed to present the hierarchy of objects and
describe each entity with interpretable parameters. After
observing a large-scale of unlabeled images, these meth-
ods successfully decompose the digits or faces into a set of
parts, which provide insight into how the neural networks
understand the objects. However, their representations are
limited in the 2D space. Specifically, these methods follow
the analysis-by-synthesis strategy in model training and try
to reconstruct the image by the decomposed parts. Since the
parts are represented by 2D templates, the reconstruction
becomes estimating the affine transformations to warp the
templates and put them in the right places, which is just like
painting with stickers. This strategy performs well when
the objects are intrinsically 2D, like handwritten digits and
frontal faces, but has difficulty in interpreting 3D objects in
the real world, especially when we want a view-independent
representation like humans [2].

How to represent the perceived objects is the core re-
search topic in computer vision [3,25]. One of the most
popular theories is the Marr’s theory [22,23]. He believed
that the purpose of the vision is to build the descriptions
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of shapes and positions of things from the images and con-
struct hierarchical 3D representations of objects for recog-
nition. In this paper, we try to materialize Marr’s the-
ory on human faces and propose an Inverse Graphics Cap-
sule Network (IGC-Net), whose primitive is a new type
of capsule (i.e., graphics capsule) that is defined by com-
puter graphics (CG), to learn the hierarchical 3D represen-
tations from large-scale unlabeled images. Figure | shows
an overview of the proposed method. Specifically, the hi-
erarchy of the objects is described with the part capsules
and the object capsules, where each capsule contains a set
of interpretable parameters with explicit physical meanings,
including depth, albedo, and pose. During training, the in-
put image is first encoded to a global shape and albedo em-
beddings, which are sent to a decomposition module to get
the spatially-decoupled part-level graphics capsules. Then,
these capsules are decoded by a shared capsule decoder to
get explicit 3D descriptions of parts. Afterward, the parts
are assembled by their depth to generate the object capsules
as the object-centered representations, naturally construct-
ing the part-object hierarchy. Finally, the 3D objects em-
bedded in the object capsules are illuminated, posed, and
rendered to fit the input image, following the analysis-by-
synthesis manner. When an IGC-Net is well trained, the
learned graphics capsules naturally build hierarchical 3D
representations.

We apply IGC-Net to human faces, which have been
widely used to investigate human vision system [31] due
to the similar topology structures and complicated appear-
ances. Thanks to the capacity of the 3D descriptions, IGC-
Net successfully builds the hierarchy of in-the-wild faces
that are captured under various illuminations and poses. We
evaluate the IGC-Net performance on the unsupervised face
segmentation task, where the silhouettes of the discovered
parts are regarded as segment maps. We also incorporate
the IGC-Net into interpretable face analysis to uncover the
mechanism of neural networks when recognizing faces.

The main contributions of this paper are summarized as:

e This paper proposes an Inverse Graphics Capsule Net-
work (IGC-Net) to learn the hierarchical 3D face repre-
sentations from unlabeled images. The learned graph-
ics capsules in the network provide insight into how
the neural networks, oriented at visual perception, un-
derstand faces as a hierarchy of 3D models.

e A Graphics Decomposition Module (GDM) is pro-
posed for part-level decomposition, which incorpo-
rates shape and albedo information as cues to ensure
that each part capsule represents a semantically con-
sistent part of objects.

e We execute the interpretable face analysis based on the
part-level 3D descriptions of graphics capsules. Be-
sides, the silhouettes of 3D parts are deployed to the

unsupervised face segmentation task. Experiments on
CelebA, BP4D, and Multi-PIE show the effectiveness
of our method.

2. Related Work
2.1. Capsule Network

The connections of the human brain are thought to be
sparse and hierarchical [1,4, 9, 15], which inspires the de-
sign of capsule networks to present the objects with dy-
namic parse trees. Given inputs, capsule networks [12, 13,

,26,27,35] will encode the images to a set of low-level
capsules, which describe the local entities of the objects,
and then assemble them into higher-level capsules to de-
scribe more complicated entities. The parameters of cap-
sules are usually with explicit meanings, which enables the
interpretability of neural networks. Recently, some capsule
networks have been proposed to explore the hierarchy of
objects. SCAE [18] proposes to describe the objects with
a set of visualizable templates through unsupervised learn-
ing. However, SCAE can only handle simple 2D objects
like digits. HP-Capsule [35] extends SCAE to tackle hu-
man faces, which proposes subpart-level capsules and uses
the compositions of subparts to present the variance of pose
and appearance. Due to the limitation of 2D representa-
tions, HP-Capsule can only tackle faces with small poses.
Sabour et al. [27] propose to apply the capsule network to
human bodies, but it needs optical flow as additional in-
formation to separate the parts. In this paper, we propose
graphics capsules to learn the hierarchical 3D representa-
tions from unlabeled images.

2.2. Unsupervised Part Segmentation

We evaluate the graphics capsule performance on the un-
supervised face segmentation task. Several methods have
been proposed for this challenging task. DFF [7] proposes
to use non-negative matrix factorization upon the CNN fea-
tures to discover semantics, but it needs to optimize the
whole dataset during inference. Choudhury et al. [6] follow
a similar idea, which uses k-means to cluster the features
obtained by a pre-trained network. SCOPS [14] and Liu et
al. [20] propose to constrain the invariance of images be-
tween TPS transformation. However, their methods rely on
the concentration loss to separate parts, leading to similar
silhouettes of different parts. HP-Capsule [35] proposes a
bottom-up schedule to aggregate parts from subparts. The
parts of the HP-Capsule rely on the learning of subpart-part
relations, which is unstable when tackling faces with large
poses. Compared with these methods, our IGC-Net can pro-
vide interpretable 3D representations of the parts, which are
with salient semantics and keep semantic consistency across
the in-the-wild faces with various poses.
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Figure 1. Overview of the Inverse Graphics Capsule Network (IGC-Net). The input image is first encoded to global shape and albedo
embeddings and then sent to a decomposition module to get the spatially-decoupled part-level graphics capsules. Afterward, these capsules
are decoded to get the explicit 3D descriptions of parts, which are assembled by their depth to generate the object capsules as object-centered
representations. Finally, the object capsules are illuminated, posed, and rendered to fit the input image. After training, the learned graphics

capsules naturally build hierarchical 3D representations.

2.3. Unsupervised 3D Face Reconstruction

Learning to recover the 3D face from 2D monocular im-
ages has been studied for years. Following the analysis-by-
synthesis strategy, many methods [5, 8, 32, 39] propose to
estimate the parameters of the 3D Morphable Model [24],
which describes the faces with a uniform topology pre-
defined by humans. Recently, several works [34, 37, 38]
have been proposed to only use the symmetric character of
faces to learn 3D face reconstruction. Under the graphics
decomposition, these methods achieve promising results.
Inspired by them, we propose the graphics capsule to learn
the hierarchical 3D face representations from images, which
provides insight into how neural networks understand faces
by learning to decompose them into a set of parts.

3. Method

Based on previous explorations in capsule networks [ 8
35], our goal is to explore a system that can build hierar-
chical 3D representations of objects through browsing im-
ages. Specifically, we focus on the human faces and aim to
learn the part-object hierarchy in an unsupervised manner,
where each part is represented by a set of interpretable CG
parameters, including shape, albedo, 3D poses, etc. In the
following sections, we will introduce the graphics capsule
and the overview of the network in Section 3.1, the graph-
ics decomposition module that is used to build hierarchy in
Section 3.2, and the loss functions that enable unsupervised
learning in Section 3.3.

3.1. Overview

To learn a hierarchical 3D representation from unlabeled
images, we propose an Inverse Graphics Capsule Network
(IGC-Net), whose capsules are composed of interpretable
CG descriptions, including a depth map D € RH*XW,
an albedo map A € RE*HXW and 3D pose parameters
p € RY*6 (rotation angles and translations). Our IGC-Net
is applied to human faces, which have been widely used
to investigate the human vision system due to their simi-
lar topology structures and complicated appearances. The
overview of IGC-Net is shown in Figure 1. Following a
bottom-up schedule, a CNN-based image encoder first en-
codes the input image I into the shape and the albedo em-
beddings f; and f,:

f, f, = ImageEncoder(I). (1)

Then a Graphics Decomposition Module (GDM) is em-
ployed to decompose the global embeddings into a set of
part-level embeddings, which can be further decoded into
interpretable graphics capsules:

{el,....eM}, {e},....e}'} = GDM(f,, f.),
{Dy", AJ',p,'} = GraphicsDecoder (", &"),
2)

where €" is the shape embedding of the mth part, &]" is the
corresponding albedo embedding, M is the number of part
capsules, and ©}" : {D}', A", p;'} is a graphics capsule
that describes a part w1th depth albedo, and 3D pose. Af-
terward, the part capsules are assembled according to their
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Figure 2. Illustration of the Graphics Decomposition Mod-

ule (GDM). GDM is proposed to ensure that each part capsule
presents a semantic-consistent part of objects.

depth to generate the global object capsule:
A% (7’5 .7) = ]-m:argmin(Dg (i,9))»

D, = Z V™ oD,

A, =) V"eAr,

1
Po = MZmPZL7

where V" is the visibility map of the mth part capsule at
the position (7, ), © is the element-wise production, and
O, : {Dy,, A,, Po} is the object capsule. During assembly,
a capsule is visible at (7, j) only when its depth is smaller
than the others. The part-level depth and albedo maps are
multiplied with their visibility maps and aggregated as one,
respectively, and the object pose is the average of part poses.
In the object capsule, both the depth D,, and albedo A, are
defined in the canonical space, and the pose p, is used to
project the 3D object to the image plane. Finally, by esti-
mating the lighting 1 with another module similar to [34],
the recovered image Lis generated by the differentiable ren-
dering A [16]:

3)

I=A(D,A,p,l). )

When training IGC-Net, we can minimize the distance be-
tween the input image I and the reconstructed image I fol-
lowing the analysis-by-synthesis strategy, so that the net-
work parameters can be learned in an unsupervised manner.

3.2. Graphics Decomposition Module

Humans can decompose an object into a set of parts and
construct a hierarchy by just observation. To realize this

ability in neural networks, we propose the Graphics Decom-
position Module (GDM) to decompose the global embed-
ding of the image into a set of semantic-consistent part-level
descriptions. The illustration of GDM is shown in Figure 2.

Taking shape decomposition as an example, GDM main-
tains M shape basis {W7"} as the implicit part templates.
Given the global embeddings f; extracted in Eqn. 1, GDM
performs cross attention between the global embedding and
the basis to get M disentangled D dimensional embed-
dings:

e =f,W"” m=1,.,M. )

To further reduce the entanglement between {el" } and gen-
erate independent part-level embeddings, an M-way one-
hot attention vector is generated for each of the D dimen-
sions, by deploying that only one embedding can preserve
its value and the others are set to 0 at each dimension. This
dimension attention is formulated as:

e =e' OMp, j,

M. 4 = hard_softmax([e(d) e2(d),...,eM(d)]), 6)

, €5 e, €
);

hard_softmax(e) = — ® onehot(

e e
>_ie(i) > (i)
where M/« p is the attention matrix, whose mth row is
M, and dth column is M. 4, €7 (d) is the dth dimen-
sion of the embedding e, onehot(-) is the one-hot opera-
tion, and €}" is the final part-level shape embedding. The
same pipeline is applied to the albedo embeddings, where
the only difference is that the attention M is copied from
the shape embeddings, which ensures that the shape and the
albedo information are decomposed synchronously.

By incorporating both shape and albedo information as
cues, GDM successfully decomposes parts from objects un-
der varied poses and appearances, ensuring that each part
capsule represents a semantic-consistent part.

3.3. Loss and Regularization

When training IGC-Net with unlabelled images, we em-
ploy the following constraints to learn the hierarchical 3D
representations effectively:

Reconstruction. We adopt the negative log-likelihood
loss [34] to measure the distance between the original image
I and the reconstructed image I:

1 1 V2L -1
Lroe = —— In exp —
o] 2 5 T

1 1 V2[1f, — 1
- In exp — P ,
o 2= 5, o o

(7

where (2 is for normalization and 0 € R *W is the confi-
dence map estimated by a network to present the symmetric
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probability of each position in I, I flip 1s the image recon-
structed with the flipped albedo and shape. Following un-
sup3d [34], we also incorporate the perceptual loss to im-
prove the reconstruction results:

1 1 V2 f () — M)
T am) > In V2o TP o (k)
V2 A ) — fPD)
o(k) ’

®)

‘[':T'EC

1 1
- Zln Ty P

where f(*)(-) is the k-th layer of a pre-trained image en-
coder (VGG [28] in this paper) and o(¥) is the correspond-
ing confidence map.

Semantic Consistency. In GDM, shape embedding is used
as the cue for part decomposition. To improve the semantic
consistency across samples, we employ a contrastive loss

on the shape embedding €" of each capsule, which is for-

mulated as:
B M
£cont'ru = - Z Z 10g
b=1m=1

D ikt exp(el"® - el /7)

Zi;éb exp(egl’(b) : egl’(i)/T) + Zj;ﬁm Ez’;ﬁb eXp(e:n’(b) : ei:’(i)/T) 7

©

where B is the batch size, M is the number of part capsules,
ég’(i’) is the shape embedding of the jth part that belongs to
the ith sample. L ot Mmaximizes the shape similarity be-
tween the same capsule across the samples and minimizes
the similarity across different capsules. 7 is the hyperpa-
rameter utilized to control the discrimination across the neg-
ative pairs.
Sparsity. To prevent the network from collapsing to use
one capsule to describe the whole objects, we employ the
spatial sparsity constraint on the visible regions V'™ of part
capsules:

Laparse = std(d_ V), (10)

1,7

where std(:) calculates the standard deviation, V"; is the
visibility map of the mth capsule at the position (i, j).
Background Separation. The prerequisite for unsuper-
vised part discovery is separating foreground and back-
ground so that the network can focus on the objects. To
achieve that, previous works incorporate salient maps or the
ground-truth foreground masks during training. Instead, we
use a specific part capsule to model the background. Note
that the graphics capsule can recover the 3D information of
the objects without any annotation, the foreground map can
be easily estimated by setting a threshold to the depth:

Loy =V = V|, V=1p, ., (11)

where V9 is the visibility map of the part capsule that is
used for background estimation, V is the external region
of the object, D, is the depth of the object, and ~ is the
threshold for locating the external region.

The final loss functions to train IGC-Net are combined
as:

»C :L:rec + )\contraﬁcontra + )\sparseﬁsparse

(12)
+ )\bgﬁbg7

where Acontra, Asparse and Ayg are the hyper-parameters to

balance different loss functions.

4. Experiments

Implement Details. The image encoder, the capsule de-
coder, and the lighting module of IGC-Net are composed
of convolutional neural networks. We set the number of
the part-level graphics capsules M = 6, where one of
them is used to model the background. Besides, the hyper-
parameters for loss combination are set to be Acontrqa =
10’5,)\Sparse = 10’1,)\179 = 10~!. For optimization, we
use the Adam optimizer [17] with 10~% learning rate to train
the networks on a GeForce RTX 3090 for 60 epochs. More
training and evaluation details are provided in the supple-
mentary material.

Datasets. Following the recent study for the unsuper-
vised face part discovery [35], we evaluate IGC-Net on
BP4D [36] and Multi-PIE [10]. Both of these two datasets
are captured in the controlled environment. To further vali-
date the capability of tackling the images under real-world
scenarios, we adopt the CelebA [21] for experiments, which
contains over 200K in-the-wild images of real human faces.
In the experiments, BP4D and CelebA are used to evaluate
the unsupervised face segmentation and Multi-PIE is used
for the interpretable face analysis.

4.1. The Discovered Face Hierarchy

Due to the 3D representations embedded in the graph-
ics capsules, IGC-Net successfully builds the hierarchy of
in-the-wild faces that are captured under varied illumina-
tions and poses, shown in Figure 3. By incorporating shape
and albedo information as cues, the face images are natu-
rally decomposed into six semantic-consistent parts: back-
ground, eyes, mouth, forehead, nose, and cheek, without
any human supervision. Each part is described with a
specific graphics capsule, which is composed of a set of
interpretable parameters including pose, view-independent
shape, and view-independent albedo. These parts are as-
sembled by their depth to generate the object capsules as the
object-centered representations, building a bottom-up face
hierarchy. We also try to discover other numbers of facial
parts by controlling M and get reasonable results, shown in
the supplementary material.
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Figure 3. Illustration of the discovered face hierarchy with 3D descriptions. By incorporating shape and albedo information as cues,
IGC-Net decomposes the images into six parts: background, eyes, mouth, forehead, nose, and cheek.

To show the potential of IGC-Net, we extend our method
to image collections of cat faces. Compared with human
faces, cat faces are more challenging as cats have more var-
ied textures than humans. The results are shown in Figure 4.
It can be seen that the cats are split into background, eyes,
ears, nose, forehead, and other skins.

Image Part (canonical pose) Reconstruction

Figure 4. The discovered hierarchy of cats. The cat faces are split
into background, eyes, ears, nose, forehead, and other skins.

4.2. Analysis of Hierarchical 3D Face Representa-
tion

The graphics capsules learned by IGC-Net provide a face
hierarchy with explicit graphics descriptions, which gives
a plausible way to materialize Marr’s theory [22, 23] that
the purpose of vision is building hierarchical 3D represen-
tations of objects for recognition. In this section, we apply
IGC-Net to validate the advantages of such hierarchical 3D
descriptions and uncover the face recognition mechanism of
neural networks.
3D Representation vs. 2D Representation. As Marr’s the-
ory reveals [23,30], the brain should construct the observer-
independent object-centered representations of the objects.
To evaluate the view-independence of 2D and 3D repre-
sentations, we compare our method with a 2D autoencoder
with the architecture and the training strategy same as ours.
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Figure 5. The comparison of the representation consistency un-
der different views between 2D representations and 3D represen-
tations on Multi-PIE. (a) The recognition accuracy. The repre-
sentations are sent to a linear classifier for classification. (b) The
similarity matrices of the 2D and 3D representations are subtracted
and shown as a heatmap. The score higher than 0 indicates 3D is
better than 2D.

Specifically, both the models are trained on CelebA and
tested on the Multi-PIE dataset with yaw variations from
-60 to 60. When performing recognition, the embeddings
of the autoencoder, and the depth and albedo embeddings
of our method are sent to a linear classifier for face recogni-
tion to evaluate the consistency of the representations under
different views. The results are shown in Figure 5. Firstly,
it can be seen from Figure 4(a) that the 3D presentation
achieves better accuracy (95.1% vs. 91.2%) in this cross-
view recognition task. Secondly, we further analyze the
representation consistency across views by computing the
similarity matrix of representations under different views.
The similarity matrices of the 2D and 3D representations
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are subtracted (3D minus 2D) and shown as a heatmap in
Figure 4(b). It can be seen that our method shows better
consistency, especially when matching images across large
views, i.e., 30° vs —60°.

Shape vs. Albedo. To show the potential of our method for
interpretable analysis, we design an experiment to explore
which part-level graphics capsule is crucial for face recog-
nition and which component (shape or albedo) of the cap-
sule is more important. Specifically, we assign the part-level
shape embeddings {€." } and albedo embeddings {€,"} with
trainable scalar {w™} and {w™} as the attention weights.
The weight parameters {w™e" } are sent to a linear classi-
fier for face recognition. After training with L1 penaliza-
tion for sparsity, the attention weights of part capsules are
shown in Figure 6. By summarizing the attention weights
of different parts, we can see that the albedo (w = 0.70) is
more important than the shape (w = 0.34) for face recog-
nition. Besides, the part-level attention weights also show
that the albedo of the eyes is the most important compo-
nent and the shape of the nose is more important than the
shape of other parts, which is consistent with the previous
conclusions [33, 35].

M shape (0.34)

0.20
0.15
0.15
0.13
011 0.11 011
0.10 009
0.08
0.05
0.03 0.03

eyes mouth forehead nose cheek

M albedo (0.70)

Figure 6. The importance of part-level graphics capsules for face
recognition on Multi-PIE. On average, the albedo is more crucial
than the shape when recognizing faces. The albedo of the eyes is
the most important component and the shape of the nose is more
important than the shape of other parts.

4.3. Unsupervised Face Segmentation

To execute the quantitative and qualitative evaluation,
we treat the silhouettes of parts as segment maps and ap-
ply them to the unsupervised face segmentation task. Note
that there is no ground truth for the unsupervised part-level
segmentation, the key of this task is to evaluate the semantic
consistency of the parsing manners. The following experi-
ments show the superiority of our method.

Baselines. Learning to segment the face parts from the
unlabeled images is a challenging task as parts are diffi-
cult to be described by math. In this paper, we compare
our method with the state-of-art methods for unsupervised
face segmentation, including DFF [7], SCOPS [14] and HP-
Capsule [35]. To discover the semantic parts, DFF proposes
to execute the non-negative matrix upon the CNN features,

DFF

SCOPS

HP-Capsule

IGC-Net
(ours)

Figure 7. The qualitative comparison of unsupervised face seg-
mentation on CelebA.

DFF

SCOPS

HP-Capsule

IGC-Net
(ours)

Figure 8. The qualitative comparison of unsupervised face seg-
mentation on BP4D.

which need to optimize the whole dataset to get the segment
results. SCOPS proposes a framework with the concentra-
tion loss to constrain the invariance of images between TPS
transformation. However, due to the lack of effective con-
straints, their results tend to assign similar silhouettes to dif-
ferent parts. HP-Capsule proposes a bottom-up schedule to
aggregate parts from subparts, whose parts are described
with interpretable parameters. However, their descriptions
are defined in the 2D space, limiting their capacity to tackle
faces with large poses.

Quantitative Comparison. Following the previous
work [35], we utilize the Normalized Mean Error (NME)
of the landmarks predicted by segment maps to evaluate the
quality of the parsing manners. Specifically, NMEy, treats
the centroid of the segment maps as landmarks and uses
linear mapping to convert them to human-annotated land-
marks. NMEpy, incorporates a shallow network to directly
predict the landmarks from the segment maps. Table 1 and
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Table 1. The quantitative comparison of unsupervised face seg-
mentation on CelebA. NMEL (%) and NMEpL (%) use the land-
marks estimated from the segment maps to evaluate the semantic
consistency of parts.

METHOD NME;, NMEpy,
DFF [7] 22.78 27.27
SCOPS [14] 18.72 23.69
HP-Capsule [35] 21.25 25.27
IGC-Net (ours) 11.84 18.88

Table 2. The quantitative comparison of unsupervised face seg-
mentation on BP4D.

METHOD NME;, NMEpy,
DFF [7] 18.85 12.26
SCOPS [14] 9.10 6.74
HP-Capsule [35] 8.81 6.10
IGC-Net (ours) 6.35 4.32

IGC-Net

w/o
One-Hot

LCO"U‘H

Figure 9. The qualitative ablation study on CelebA. It can be seen
that the semantic consistency will be damaged without the one-
hot operation in GDM (see Eqn. 6) and the Lcontrq (see Eqn. 9) is
important for discovering parts with salient semantics.

Table 2 show the quantitative comparison results on CelebA
and BP4D, which validate the effectiveness of our method.
Qualitative Comparison. The qualitative comparison re-
sults are shown in Figure 7 and Figure 8. It can be seen
that our method performs better than other methods. The
results of DFF don’t successfully separate the foreground
and the background. As for SCOPS, due to the lack of ef-
fective constraints, the segment maps of SCOPS are with
some ambiguity, where the organs with salient semantics
are assigned to different parts for different samples. For ex-
ample, SCOPS sometimes takes the right eye as the green
part (the fifth column in Figure 7) while sometimes split-
ting it from the middle (the first and the second column
in Figure 7). The segment boundaries of HP-Capsule are
clearer than DFF and SCOPS. However, as shown in the
third column of Figure 7, limited by their 2D descriptions,

Table 3. The quantitative ablation study on CelebA. The results
show the importance of the one-hot operation in GDM and the
semantic constraint Leontra.

One-Hot Leontra | NMEL
v 19.10

v 13.46

v v 11.84

HP-Capsule fails on the faces with large poses while our
method performs well on these challenging samples.

4.4. Ablation Studies

The basis of building the hierarchy of objects is to learn
the parts with explicit semantics and keep semantic consis-
tency across different samples. In this section, we perform
the ablation study to show the importance of the one-hot op-
eration in the GDM (see Eqn. 6) and the semantic constraint
L contra (see Eqn. 9) for discovering meaningful parts. Fig-
ure 9 shows the qualitative ablation study on CelebA. In the
second row of Figure 9, it can be seen that, without the one-
hot operation to prevent the information leakage of different
parts, the semantic consistency across samples will be dam-
aged. The third row of Figure 9 shows that the contrastive
semantic constraint L..n¢rq is important for the discovery
of parts with salient semantics. Without such constraint, the
segmentation of the important organs such as the eyes will
have ambiguity. These conclusions are also validated by the
quantitative ablation study shown in Table 3.

5. Conclusion and Discussion

In this paper, we propose the IGC-Net to learn the hier-

archical 3D face representations from large-scale unlabeled
in-the-wild images, whose primitive is the graphics capsule
that contains the 3D representations with explicit meanings.
By combining depth and albedo information as cues, IGC-
Net successfully decomposes the objects into a set of part-
level graphics capsules and constructs the hierarchy of ob-
jects by assembling the part-level capsules into object-level
capsules. IGC-Net reveals how the neural networks, ori-
ented at visual perception, understand faces as a hierarchy
of 3D models. Besides, the part-level graphics descriptions
can be used for unsupervised face segmentation and inter-
pretable face analysis. Experiments on CelebA, BP4D, and
Multi-PIE validate the effectiveness and the interpretability
of our method.
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